Bioactive Properties of Persea americana Peel Extract and Their Role in Hypercholesterolemia Management and Cardiovascular Health
Abstract
1. Introduction
2. Materials and Methods
2.1. Materials
2.1.1. Chemicals
2.1.2. Cell Line and Cell Culture
2.2. Methods
2.2.1. Preparation of Persea americana Aqueous Extract
2.2.2. Quantification of Phenolic Content
2.2.3. UHPLC-ESI-QTOF-MS Analysis of Bioactive Compounds
2.2.4. Reactive Oxygen Species (ROS) Production
2.2.5. In Vivo Safety Assay
2.2.6. Assessment of Cholesterol’s Permeability in a Gastrointestinal Model
2.2.7. Permeation of the Extract Compounds
2.2.8. Statistical Analysis
3. Results
3.1. Quantification of Extract Total Phenolic Content
3.2. Identification of Bioactive Compounds by UHPLC-ESI-QTOF-MS
3.3. Reactive Oxygen Species (ROS) Protection in Hepatic Cell Line HepG2
3.4. In Vivo Safety Assays
3.5. Anti-Hypercholesterolemic Effect—Reduction in Cholesterol’s Permeability
3.6. Permeability of Chlorogenic Acid, Catechin, and Epicatechin: The Extract’s Compounds
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
Abbreviations
CVD | Cardiovascular Disease |
GA | Gallic Acid |
GAE | Gallic Acid Equivalents |
HMGR | 3-hydroxy-3-methylglutaryl coenzyme A reductase |
HPLC-DAD | High Performance Liquid Chromatography Coupled to a Diode-Array Detector |
NPC1L1 | Niemann-Pick C1-Like 1 |
NPs | Nanoparticles |
TPC | Total Phenolic Content |
Papp | Apparent Permeability Coefficient |
ROS | Reactive Oxygen Species |
TBHP | tert-butyl hydroperoxide |
UHPLC-ESI-QTOF-MS/MS | Ultra-High Performance Liquid Chromatography coupled to a Quadrupole Time-of-Flight Mass Spectrometer equipped with an Electrospray Ionization Source |
References
- Rodgers, J.L.; Jones, J.; Bolleddu, S.I.; Vanthenapalli, S.; Rodgers, L.E.; Shah, K.; Karia, K.; Panguluri, S.K. Cardiovascular Risks Associated with Gender and Aging. J. Cardiovasc. Dev. Dis. 2019, 6, 19. [Google Scholar] [CrossRef] [PubMed]
- Kamstrup, P.R. Lipoprotein(a) and Cardiovascular Disease. Clin. Chem. 2021, 67, 154–166. [Google Scholar] [CrossRef] [PubMed]
- Casas, R.; Castro-Barquero, S.; Estruch, R.; Sacanella, E. Nutrition and Cardiovascular Health. Int. J. Mol. Sci. 2018, 19, 3988. [Google Scholar] [CrossRef] [PubMed]
- Pinto, S.; Gaspar, M.M.; Ascensão, L.; Faísca, P.; Reis, C.P.; Pacheco, R. Nanoformulation of Seaweed Eisenia Bicyclis in Albumin Nanoparticles Targeting Cardiovascular Diseases: In Vitro and In Vivo Evaluation. Mar. Drugs 2022, 20, 608. [Google Scholar] [CrossRef] [PubMed]
- Martinez-Hervas, S.; Ascaso, J.F. Hypercholesterolemia. In Encyclopedia of Endocrine Diseases; Elsevier: Amsterdam, The Netherlands, 2018. [Google Scholar]
- Coelho, M.; Pacheco, R. Anti-Hypercholesterolemia Effects of Edible Seaweed Extracts and Metabolomic Changes in Hep-G2 and Caco-2 Cell Lines. Life 2023, 13, 1325. [Google Scholar] [CrossRef] [PubMed]
- Patel, K.K.; Kashfi, K. Lipoproteins and Cancer: The Role of HDL-C, LDL-C, and Cholesterol-Lowering Drugs. Biochem. Pharmacol. 2022, 196, 114654. [Google Scholar] [CrossRef] [PubMed]
- André, R.; Pacheco, R.; Bourbon, M.; Serralheiro, M.L. Brown Algae Potential as a Functional Food against Hypercholesterolemia: Review. Foods 2021, 10, 234. [Google Scholar] [CrossRef] [PubMed]
- Camerino, G.M.; Musumeci, O.; Conte, E.; Musaraj, K.; Fonzino, A.; Barca, E.; Marino, M.; Rodolico, C.; Tricarico, D.; Camerino, C.; et al. Risk of Myopathy in Patients in Therapy with Statins: Identification of Biological Markers in a Pilot Study. Front. Pharmacol. 2017, 8, 500. [Google Scholar] [CrossRef] [PubMed]
- Kim, S.W.; Kang, H.J.; Jhon, M.; Kim, J.W.; Lee, J.Y.; Walker, A.J.; Agustini, B.; Kim, J.M.; Berk, M. Statins and Inflammation: New Therapeutic Opportunities in Psychiatry. Front. Psychiatry 2019, 10, 103. [Google Scholar] [CrossRef] [PubMed]
- Gu, J.; Zhu, N.; Li, H.F.; Zhang, C.J.; Gong, Y.Z.; Liao, D.F.; Qin, L. Ezetimibe and Cancer: Is There a Connection? Front. Pharmacol. 2022, 13, 831657. [Google Scholar] [CrossRef] [PubMed]
- Ramirez, L.I.; Kanwugu, O.N.; Ivantsova, M.N. Impact of Herbal Supplements Nowadays: An Overview. Chim. Techno Acta 2022, 9, 202292S4. [Google Scholar] [CrossRef]
- Vilas-Boas, A.A.; Pintado, M.; Oliveira, A.L.S. Natural Bioactive Compounds from Food Waste: Toxicity and Safety Concerns. Foods 2021, 10, 1564. [Google Scholar] [CrossRef] [PubMed]
- Chun, O.; Balz, F.; Gardner, C.; Alekel, L.; Killen, J. Antioxidants: In Depth. Available online: https://www.nccih.nih.gov/health/antioxidant-supplements-what-you-need-to-know (accessed on 1 June 2025).
- Chen, Z.Y.; Ma, K.Y.; Liang, Y.; Peng, C.; Zuo, Y. Role and Classification of Cholesterol-Lowering Functional Foods. J. Funct. Foods 2011, 3, 61–69. [Google Scholar] [CrossRef]
- Poli, A.; Barbagallo, C.M.; Cicero, A.F.G.; Corsini, A.; Manzato, E.; Trimarco, B.; Bernini, F.; Visioli, F.; Bianchi, A.; Canzone, G.; et al. Nutraceuticals and Functional Foods for the Control of Plasma Cholesterol Levels. An Intersociety Position Paper. Pharmacol. Res. 2018, 134, 51–60. [Google Scholar] [CrossRef] [PubMed]
- Luo, X.Y.; Li, N.N.; Liang, Y.R. Effects of Ilex Latifolia and Camellia Sinensis on Cholesterol and Circulating Immune Complexes in Rats Fed with a High-Cholesterol Diet. Phytother. Res. 2013, 27, 62–65. [Google Scholar] [CrossRef] [PubMed]
- Guedes, L.; Reis, P.B.P.S.; Machuqueiro, M.; Ressaissi, A.; Pacheco, R.; Serralheiro, M.L. Bioactivities of Centaurium Erythraea (Gentianaceae) Decoctions: Antioxidant Activity, Enzyme Inhibition and Docking Studies. Molecules 2019, 24, 3795. [Google Scholar] [CrossRef] [PubMed]
- Arantes, A.A.; Falé, P.L.; Costa, L.C.B.; Pacheco, R.; Ascensão, L.; Serralheiro, M.L. Inhibition of HMG-CoA Reductase Activity and Cholesterol Permeation through Caco-2 Cells by Caffeoylquinic Acids from Vernonia Condensata Leaves. Rev. Bras. Farmacogn. 2016, 26, 738–743. [Google Scholar] [CrossRef]
- Falé, P.L.; Ferreira, C.; Maruzzella, F.; Helena Florêncio, M.; Frazão, F.N.; Serralheiro, M.L.M. Evaluation of Cholesterol Absorption and Biosynthesis by Decoctions of Annona Cherimola Leaves. J. Ethnopharmacol. 2013, 150, 718–723. [Google Scholar] [CrossRef] [PubMed]
- Henriques, J.; Falé, P.L.; Pacheco, R.; Florêncio, M.H.; Serralheiro, M.L. Phenolic Compounds from Actinidia Deliciosa Leaves: Caco-2 Permeability, Enzyme Inhibitory Activity and Cell Protein Profile Studies. J. King Saud. Univ. Sci. 2018, 30, 513–518. [Google Scholar] [CrossRef]
- Boggia, R.; Zunin, P.; Turrini, F. Functional Foods and Food Supplements. Appl. Sci. 2020, 10, 8538. [Google Scholar] [CrossRef]
- Mihaylova, D.; Dimitrova-Dimova, M.; Popova, A. Dietary Phenolic Compounds-Wellbeing and Perspective Applications. Int. J. Mol. Sci. 2024, 25, 4769. [Google Scholar] [CrossRef] [PubMed]
- Bhuyan, D.J.; Alsherbiny, M.A.; Perera, S.; Low, M.; Basu, A.; Devi, O.A.; Barooah, M.S.; Li, C.G.; Papoutsis, K. The Odyssey of Bioactive Compounds in Avocado (Persea Americana) and Their Health Benefits. Antioxidants 2019, 8, 426. [Google Scholar] [CrossRef] [PubMed]
- Wang, W.; Bostic, T.R.; Gu, L. Antioxidant Capacities, Procyanidins and Pigments in Avocados of Different Strains and Cultivars. Food Chem. 2010, 122, 1193–1198. [Google Scholar] [CrossRef]
- Tremocoldi, M.A.; Rosalen, P.L.; Franchin, M.; Massarioli, A.P.; Denny, C.; Daiuto, É.R.; Paschoal, J.A.R.; Melo, P.S.; De Alencar, S.M. Exploration of Avocado By-Products as Natural Sources of Bioactive Compounds. PLoS ONE 2018, 13, e0192577. [Google Scholar] [CrossRef] [PubMed]
- de OLIVEIRA, C.S.; Andrade, J.K.S.; Rajan, M.; Narain, N. Influence of the Phytochemical Profile on the Peel, Seed and Pulp of Margarida, Breda and Geada Varieties of Avocado (Persea Americana Mill) Associated with Their Antioxidant Potential. Food Sci. Technol. 2022, 42, e25822. [Google Scholar] [CrossRef]
- Figueroa, J.G.; Borrás-Linares, I.; Lozano-Sánchez, J.; Segura-Carretero, A. Comprehensive Identification of Bioactive Compounds of Avocado Peel by Liquid Chromatography Coupled to Ultra-High-Definition Accurate-Mass Q-TOF. Food Chem. 2018, 245, 707–716. [Google Scholar] [CrossRef] [PubMed]
- Rodríguez-Carpena, J.G.; Morcuende, D.; Andrade, M.J.; Kylli, P.; Estevez, M. Avocado (Persea Americana Mill.) Phenolics, in Vitro Antioxidant and Antimicrobial Activities, and Inhibition of Lipid and Protein Oxidation in Porcine Patties. J. Agric. Food Chem. 2011, 59, 5625–5635. [Google Scholar] [CrossRef] [PubMed]
- Oktay, M.; Gülçin, I.; Küfrevioǧlu, Ö.I. Determination of in Vitro Antioxidant Activity of Fennel (Foeniculum Vulgare) Seed Extracts. LWT 2003, 36, 263–271. [Google Scholar] [CrossRef]
- Wang, M.; Carver, J.J.; Phelan, V.V.; Sanchez, L.M.; Garg, N.; Peng, Y.; Nguyen, D.D.; Watrous, J.; Kapono, C.A.; Luzzatto-Knaan, T.; et al. Sharing and Community Curation of Mass Spectrometry Data with Global Natural Products Social Molecular Networking. Nat. Biotechnol. 2016, 34, 828–837. [Google Scholar] [CrossRef] [PubMed]
- Lopes, J.; Ferreira-Gonçalves, T.; Ascensão, L.; Viana, A.S.; Carvalho, L.; Catarino, J.; Faísca, P.; Oliva, A.; de Barros, D.P.C.; Rodrigues, C.M.P.; et al. Safety of Gold Nanoparticles: From In Vitro to In Vivo Testing Array Checklist. Pharmaceutics 2023, 15, 1120. [Google Scholar] [CrossRef] [PubMed]
- Teixeira, L.M.; Reis, C.P.; Pacheco, R. Potential of Application of Natural Product Nanoparticles in Hypercholesterolemia. Chem. Proc. 2024, 16, 84. [Google Scholar] [CrossRef]
- Ferreira, S.M.; Santos, L. From By-Product to Functional Ingredient: Incorporation of Avocado Peel Extract as an Antioxidant and Antibacterial Agent. Innov. Food Sci. Emerg. Technol. 2022, 80, 103116. [Google Scholar] [CrossRef]
- Restrepo-Serna, D.L.; Cardona-Alzate, C.A. The Avocado Peel as a Source of Catechins: A Comparison between Extraction Technologies and the Influence of Fruit Variety. Sustain. Chem. Pharm. 2024, 39, 101556. [Google Scholar] [CrossRef]
- Martínez-Gutiérrez, E. Study of Influence of Extraction Method on the Recovery Bioactive Compounds from Peel Avocado. Molecules 2023, 28, 2557. [Google Scholar] [CrossRef] [PubMed]
- Mahmood, T.; Anwar, F.; Abbas, M.; Saari, N. Effect of Maturity on Phenolics (Phenolic Acids and Flavonoids) Profile of Strawberry Cultivars and Mulberry Species from Pakistan. Int. J. Mol. Sci. 2012, 13, 4591–4607. [Google Scholar] [CrossRef] [PubMed]
- Klimczak, I.; Małecka, M.; Szlachta, M.; Gliszczyńska-Świgło, A. Effect of Storage on the Content of Polyphenols, Vitamin C and the Antioxidant Activity of Orange Juices. J. Food Compos. Anal. 2007, 20, 313–322. [Google Scholar] [CrossRef]
- Tadera, K.; Mori, E.; Yagi, F.; Kobayashi, A.; Imada, K.; Imabeppu, M. Isolation and Structure of a Minor Metabolite of Pyridoxine in Seedlings of Pisum sativum L. J. Nutr. Sci. Vitaminol. 1985, 31, 403–408. [Google Scholar] [CrossRef] [PubMed]
- Simos, Y.V.; Verginadis, I.I.; Toliopoulos, I.K.; Velalopoulou, A.P.; Karagounis, I.V.; Karkabounas, S.C.; Evangelou, A.M. Effects of Catechin and Epicatechin on Superoxide Dismutase and Glutathione Peroxidase Activity, in Vivo. Redox Rep. 2012, 17, 181–186. [Google Scholar] [CrossRef] [PubMed]
- Yan, Y.; Li, Q.; Shen, L.; Guo, K.; Zhou, X. Chlorogenic Acid Improves Glucose Tolerance, Lipid Metabolism, Inflammation and Microbiota Composition in Diabetic Db/Db Mice. Front. Endocrinol. 2022, 13, 1042044. [Google Scholar] [CrossRef] [PubMed]
- Maares, M.; Haase, H. A Guide to Human Zinc Absorption: General Overview and Recent Advances of in Vitro Intestinal Models. Nutrients 2020, 12, 762. [Google Scholar] [CrossRef] [PubMed]
- Ozeki, K.; Kato, M.; Sakurai, Y.; Ishigai, M.; Kudo, T.; Ito, K. Evaluation of the Appropriate Time Range for Estimating the Apparent Permeability Coefficient (Papp) in a Transcellular Transport Study. Int. J. Pharm. 2015, 495, 963–971. [Google Scholar] [CrossRef] [PubMed]
- Mortelé, O.; Jorissen, J.; Spacova, I.; Lebeer, S.; Van Nuijs, A.L.N.; Hermans, N. Demonstrating the Involvement of an Active Efflux Mechanism in the Intestinal Absorption of Chlorogenic Acid and Quinic Acid Using a Caco-2 Bidirectional Permeability Assay. Food Funct. 2021, 12, 417–425. [Google Scholar] [CrossRef] [PubMed]
- Rojo-Poveda, O.; Barbosa-Pereira, L.; Khattabi, C.E.; Youl, E.N.H.; Bertolino, M.; Delporte, C.; Pochet, S.; Stévigny, C. Polyphenolic and Methylxanthine Bioaccessibility of Cocoa Bean Shell Functional Biscuits: Metabolomics Approach and Intestinal Permeability through CaCo-2 Cell Models. Antioxidants 2020, 9, 1164. [Google Scholar] [CrossRef] [PubMed]
- André, R.; Pacheco, R.; Alves, A.C.; Santos, H.M.; Bourbon, M.; Serralheiro, M.L. The Hypocholesterolemic Potential of the Edible Algae Fucus Vesiculosus: Proteomic and Quantitative PCR Analysis. Foods 2023, 12, 2758. [Google Scholar] [CrossRef] [PubMed]
- André, R.; Guedes, L.; Melo, R.; Ascensão, L.; Pacheco, R.; Vaz, P.D.; Serralheiro, M.L. Effect of Food Preparations on in Vitro Bioactivities and Chemical Components of Fucus Vesiculosus. Foods 2020, 9, 955. [Google Scholar] [CrossRef] [PubMed]
- Hurtado-Fernández, E.; Pacchiarotta, T.; Gómez-Romero, M.; Schoenmaker, B.; Derks, R.; Deelder, A.M.; Mayboroda, O.A.; Carrasco-Pancorbo, A.; Fernández-Gutiérrez, A. Ultra High Performance Liquid Chromatography-Time of Flight Mass Spectrometry for Analysis of Avocado Fruit Metabolites: Method Evaluation and Applicability to the Analysis of Ripening Degrees. J. Chromatogr. A 2011, 1218, 7723–7738. [Google Scholar] [CrossRef] [PubMed]
- Ford, N.A.; Spagnuolo, P.; Kraft, J.; Bauer, E. Nutritional Composition of Hass Avocado Pulp. Foods 2023, 12, 2516. [Google Scholar] [CrossRef] [PubMed]
- Waly, D.A.; Zeid, A.H.A.; Attia, H.N.; Ahmed, K.A.; El-Kashoury, E.S.A.; El Halawany, A.M.; Mohammed, R.S. Comprehensive Phytochemical Characterization of Persea Americana Mill. Fruit via UPLC/HR-ESI–MS/MS and Anti-Arthritic Evaluation Using Adjuvant-Induced Arthritis Model. Inflammopharmacology 2023, 31, 3243–3262. [Google Scholar] [CrossRef] [PubMed]
- Gavicho Uarrota, V.; Fuentealba, C.; Hernández, I.; Defilippi-Bruzzone, B.; Meneses, C.; Campos-Vargas, R.; Lurie, S.; Hertog, M.; Carpentier, S.; Poblete-Echeverría, C.; et al. Integration of Proteomics and Metabolomics Data of Early and Middle Season Hass Avocados under Heat Treatment. Food Chem. 2019, 289, 512–521. [Google Scholar] [CrossRef] [PubMed]
- Ma, W.; Heianza, Y.; Huang, T.; Wang, T.; Sun, D.; Zheng, Y.; Hu, F.B.; Rexrode, K.M.; Manson, J.A.E.; Qi, L. Dietary Glutamine, Glutamate and Mortality: Two Large Prospective Studies in US Men and Women. Int. J. Epidemiol. 2018, 47, 311–320. [Google Scholar] [CrossRef] [PubMed]
- Huang, J.; Khatun, P.; Xiong, Y.; Liu, B.; Zhao, Y.; Lyu, Q. Intakes of Folate, Vitamin B6, and Vitamin B12 and Cardiovascular Disease Risk: A National Population-Based Cross-Sectional Study. Front. Cardiovasc. Med. 2023, 10, 1237103. [Google Scholar] [CrossRef] [PubMed]
- Ellinger, S.; Reusch, A.; Stehle, P.; Helfrich, H.P. Epicatechin Ingested via Cocoa Products Reduces Blood Pressure in Humans: A Nonlinear Regression Model with a Bayesian Approach. Am. J. Clin. Nutr. 2012, 95, 1365–1377. [Google Scholar] [CrossRef] [PubMed]
- Qi, X.; Liu, H.; Ren, Y.; Zhu, Y.; Wang, Q.; Zhang, Y.; Wu, Y.; Yuan, L.; Yan, H.; Liu, M. Effects of Combined Binding of Chlorogenic Acid/Caffeic Acid and Gallic Acid to Trypsin on Their Synergistic Antioxidant Activity, Enzyme Activity and Stability. Food Chem. X 2023, 18, 100664. [Google Scholar] [CrossRef] [PubMed]
- Velderrain-Rodríguez, G.R.; Quero, J.; Osada, J.; Martín-Belloso, O.; Rodríguez-Yoldi, M.J. Phenolic-Rich Extracts from Avocado Fruit Residues as Functional Food Ingredients with Antioxidant and Antiproliferative Properties. Biomolecules 2021, 11, 977. [Google Scholar] [CrossRef] [PubMed]
- Brai, B.I.C.; Falode, J.A.; Adisa, R.A.; Odetola, A.A. Effects of Aqueous Leaf Extract of Avocado (Persea Americana) on Total Cholesterol, Triacylglycerols, Protein and Haematological Parameters in CCl4-Intoxicated Rats. Clin. Phytosci. 2020, 6, 14. [Google Scholar] [CrossRef]
- Uchenna, U.E.; Shori, A.B.; Baba, A.S. Inclusion of Avocado (Persea Americana) Seeds in the Diet to Improve Carbohydrate and Lipid Metabolism in Rats. Rev. Argent. Endocrinol. Metab. 2017, 54, 140–148. [Google Scholar] [CrossRef]
- Miñón-Hernández, D.; Dorantes-Alvarez, L.; Guzmán-Gerónimo, R.I.; Alvarado-Olivarez, M.; Herrera-Meza, S.; Santiago-Roque, I.; Gutiérrez-López, G.F.; Gómez-Patiño, M.B.; Arrieta-Baez, D. Avocado Creole Peel Ameliorates Metabolic Alterations Caused by a High Sucrose Fat Diet in a Wistar Rats Model. Plant Foods Hum. Nutr. 2021, 76, 12–19. [Google Scholar] [CrossRef] [PubMed]
Rt (min) | [M − H]− m/z | Molecular Formula | Error (ppm) | MS2 Fragmentation | Name | N° |
---|---|---|---|---|---|---|
1.9 | 209.0668 | C6H10O8 | −0.52 | 71.0141 (41.20%); 59.0147 (100.0%) | Mucic Acid | 1 |
2.2 | 191.0563 | C7H12O6 | −3.08 | 93.0345 (26.1%); 87.0088 (16.3%); 85.0294 (100.0%); 59.0143 (39.8%) | Quinic Acid | 2 |
2.4 | 353.0879 | C16H18O9 | 8.80 | 192.0588 (12.5%); 191.0561 (100.0%); 93.0347 (15.6%); 85.0295 (30.6%) | Chlorogenic Acid | 3 |
2.5 | 191.0197 | C6H8O7 | 0.14 | 111.0081 (17.2%); 87.0787 (69.3%); 85.0294 (100.0%); 67.0195 (27.0%); 57.0351 (37.2%) | Citric Acid | 4 |
Rt (min) | [M + H]+ m/z | Molecular Formula | Error (ppm) | MS2 Fragmentation | Name | N° |
---|---|---|---|---|---|---|
1.5 | 105.1154 | C5H14NO+ | 0.86 | 104.1067 (52.2%); 60.0787 (100.0%); 58.0631 (30.6%) | Choline Cation | 5 |
1.7 | 332.1348 | C14H21NO8 | −2.43 | 332.1357 (76.3%); 314.1252 (52.8%); 152.0686 (42.0%); 124.0752 (41.4%); 108.0805 (100.0%) | Pyridoxine + O-Hex | 6 |
1.8 | 147.0759 | C5H10N2O3 | 4.89 | 130.0493 (13.4%); 85.0472 (10.8%); 84.0432 (100.0%); 56.0472 (20.5%) | L-Glutamine | 7 |
1.9 | 213.0971 | C7H16O7 | −1.04 | 123.0439 (41.4%); 111.0432 (51.9%); 99.0433 (49.9%); 85.0276 (57.6%); 81.0326 (76.7%); 69.0318 (100.0%) | Perseitol | 8 |
2.2 | 182.0806 | C9H11NO3 | 3.13 | 136.0748 (100.0%); 123.0451 (71.4%); 119.0491 (61.2%); 95.0504 (30.9%); 91.0543 (97.5%); | L-Tyrosine | 9 |
2.2 | 308.0916 | C10H17N3O6S | −1.44 | 305.1569 (100.0%); 130.0499 (36.4%); 84.0429 (42.2%); | Glutathione | 10 |
2.2 | 268.1043 | C10H13N5O4 | 1.01 | 136.0612 (100.0%) | Adenosine | 11 |
2.4 | 579.1493 | C30H26O12 | 0.70 | 579.1502 (15.8%); 287.0547 (26.2%); 271.0630 (24.7%); 127.0385 (100.0%); 123.0434 (44.2%) | Procyanidin B2 | 12 |
2.5 | 291.0869 | C15H14O6 | 1.76 | 207.0654 (20.4%); 165.0540 (13.9%); 147.0441 (22.3%); 139.0387 (100.0%); 123.0440 (87.2%) | (+)-Catechin | 13 |
2.5 | 355.1026 | C16H18O9 | −0.68 | 163.0384 (100.0%); 135.0433 (21.8%); 117.0330 (14.3%); 89.0594 (25.8%) | Chlorogenic Acid | 3 |
2.6 | 181.0501 | C9 H8O4 | 2.89 | 163.0368 (15.7%); 145.0284 (17.2%); 135.0428 (100.0%); 117.0332 (63.6%); 89.0382 (74.9%) | Caffeic Acid | 14 |
7.1 | 291.0864 | C15H14O6 | −2.70 | 147.0417 (15.3%); 139.0387 (100.0%); 123.0435 (88.1%) | (−)-Epicatechin | 15 |
21.9 | 256.2641 | C16H33NO | −5.11 | 256.2640 (100.0%); 88.0745 (20.2%) | Palmitamide | 16 |
22.8 | 282.2796 | C18H35NO | 2.26 | 282.2790 (21.0%); 265.2537 (10.3%) 247.2424 (15.8%) 97.1054 (46.3%); 83.0844 (81.2%); 69.0683 (100.0%); 57.0679 (67.7%); 55.0522 (67.0%) | Oleamide | 17 |
26.5 | 284.2958 | C18H37NO | −3.55 | 285.2999 (31.2%); 284.2529 (100.0%) | Octadecanamide | 18 |
Apical Sample | Compound | Papp (10−6 cm/s) |
---|---|---|
Extract | Chlorogenic Acid (3) | 6.5 |
Catechin (13) | 14.4 | |
Epicatechin (15) | 24.0 | |
Extract + Cholesterol | Chlorogenic Acid (3) | N.D. |
Catechin (13) | N.D. | |
Epicatechin (15) | 11.0 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Teixeira, L.M.; Reis, C.P.; Pacheco, R. Bioactive Properties of Persea americana Peel Extract and Their Role in Hypercholesterolemia Management and Cardiovascular Health. Foods 2025, 14, 2482. https://doi.org/10.3390/foods14142482
Teixeira LM, Reis CP, Pacheco R. Bioactive Properties of Persea americana Peel Extract and Their Role in Hypercholesterolemia Management and Cardiovascular Health. Foods. 2025; 14(14):2482. https://doi.org/10.3390/foods14142482
Chicago/Turabian StyleTeixeira, Laura M., Catarina P. Reis, and Rita Pacheco. 2025. "Bioactive Properties of Persea americana Peel Extract and Their Role in Hypercholesterolemia Management and Cardiovascular Health" Foods 14, no. 14: 2482. https://doi.org/10.3390/foods14142482
APA StyleTeixeira, L. M., Reis, C. P., & Pacheco, R. (2025). Bioactive Properties of Persea americana Peel Extract and Their Role in Hypercholesterolemia Management and Cardiovascular Health. Foods, 14(14), 2482. https://doi.org/10.3390/foods14142482