Processing, Characterization and Valorization of Agri-Food and Its By-Products

A special issue of Foods (ISSN 2304-8158). This special issue belongs to the section "Food Engineering and Technology".

Deadline for manuscript submissions: 31 July 2025 | Viewed by 1844

Special Issue Editors


E-Mail Website
Guest Editor
CBQF—Centro de Biotecnologia e Química Fina, Escola Superior de Biotecnologia, Universidade Católica Portuguesa, Porto, Portugal
Interests: extraction and characterization studies of bioactive compounds derived from by-products; with an emphasis on their health-promoting properties
Special Issues, Collections and Topics in MDPI journals

E-Mail Website
Guest Editor
CBQF—Centro de Biotecnologia e Química Fina, Escola Superior de Biotecnologia, Universidade Católica Portuguesa, Porto, Portugal
Interests: technological systems for the sustainable valorization of food by-products; the design and analysis of food formulations, and strategies geared toward food innovation

Special Issue Information

Dear Colleagues,

The agri-food sector increasingly recognizes the importance of sustainable practices and waste reduction in response to global environmental challenges and resource limitations. The perspective on agri-food by-products has significantly shifted, viewing them not as waste, but as valuable resources with untapped potential.

These by-products are rich in natural, cost-effective biomolecules such as carbohydrates, lipids, proteins, and vitamins. Efficiently utilizing agri-food waste and by-products can significantly reduce environmental impact and play a crucial role in various industries, including food processing, agriculture, cosmetics, and pharmaceuticals. This approach aligns with sustainability principles and the circular economy, promoting cutting-edge solutions.

This Special Issue of Foods investigates the potential of bioactive compounds, highlighting pioneering technological advances that enhance agri-food management and innovation, with a particular emphasis on by-product valorization.

Dr. Sandra F. Borges
Dr. Sara Baptista da Silva
Guest Editors

Manuscript Submission Information

Manuscripts should be submitted online at www.mdpi.com by registering and logging in to this website. Once you are registered, click here to go to the submission form. Manuscripts can be submitted until the deadline. All submissions that pass pre-check are peer-reviewed. Accepted papers will be published continuously in the journal (as soon as accepted) and will be listed together on the special issue website. Research articles, review articles as well as short communications are invited. For planned papers, a title and short abstract (about 100 words) can be sent to the Editorial Office for announcement on this website.

Submitted manuscripts should not have been published previously, nor be under consideration for publication elsewhere (except conference proceedings papers). All manuscripts are thoroughly refereed through a single-blind peer-review process. A guide for authors and other relevant information for submission of manuscripts is available on the Instructions for Authors page. Foods is an international peer-reviewed open access semimonthly journal published by MDPI.

Please visit the Instructions for Authors page before submitting a manuscript. The Article Processing Charge (APC) for publication in this open access journal is 2900 CHF (Swiss Francs). Submitted papers should be well formatted and use good English. Authors may use MDPI's English editing service prior to publication or during author revisions.

Keywords

  • sustainable practices
  • agri-food by-products
  • biomolecule recovery
  • green extraction techniques
  • circular economy
  • technological innovations

Benefits of Publishing in a Special Issue

  • Ease of navigation: Grouping papers by topic helps scholars navigate broad scope journals more efficiently.
  • Greater discoverability: Special Issues support the reach and impact of scientific research. Articles in Special Issues are more discoverable and cited more frequently.
  • Expansion of research network: Special Issues facilitate connections among authors, fostering scientific collaborations.
  • External promotion: Articles in Special Issues are often promoted through the journal's social media, increasing their visibility.
  • Reprint: MDPI Books provides the opportunity to republish successful Special Issues in book format, both online and in print.

Further information on MDPI's Special Issue policies can be found here.

Published Papers (3 papers)

Order results
Result details
Select all
Export citation of selected articles as:

Research

16 pages, 819 KiB  
Article
Screening and Relative Quantification of Migration from Novel Thermoplastic Starch and PBAT Blend Packaging
by Phanwipa Wongphan, Elena Canellas, Cristina Nerín, Carlos Estremera, Nathdanai Harnkarnsujarit and Paula Vera
Foods 2025, 14(13), 2171; https://doi.org/10.3390/foods14132171 (registering DOI) - 21 Jun 2025
Abstract
A novel biodegradable food packaging material based on cassava thermoplastic starch (TPS) and polybutylene adipate terephthalate (PBAT) blends containing food preservatives was successfully developed using blown-film extrusion. This active packaging is designed to enhance the appearance, taste, and color of food products, while [...] Read more.
A novel biodegradable food packaging material based on cassava thermoplastic starch (TPS) and polybutylene adipate terephthalate (PBAT) blends containing food preservatives was successfully developed using blown-film extrusion. This active packaging is designed to enhance the appearance, taste, and color of food products, while delaying quality deterioration. However, the incorporation of food preservatives directly influences consumer perception, as well as health and safety concerns. Therefore, this research aims to assess the risks associated with both intentionally added substances (IAS) and non-intentionally added substances (NIAS) present in the developed active packaging. The migration of both intentionally and non-intentionally added substances (IAS and NIAS) was evaluated using gas chromatography–mass spectrometry (GC-MS) and ultra-high-performance liquid chromatography coupled with quadrupole time-of-flight mass spectrometry (UHPLC-Q-TOF-MS). Fifteen different volatile compounds were detected, with the primary compound identified as 1,6-dioxacyclododecane-7,12-dione, originating from the PBAT component. This compound, along with others, resulted from the polymerization of adipic acid, terephthalic acid, and butanediol, forming linear and cyclic PBAT oligomers. Migration experiments were conducted using three food simulants—95% ethanol, 10% ethanol, and 3% acetic acid—over a period of 10 days at 60 °C. No migration above the detection limits of the analytical methods was observed for 3% acetic acid and 10% ethanol. However, migration studies with 95% ethanol revealed the presence of new compounds formed through interactions between the simulant and PBAT monomers or oligomers, indicating the packaging’s sensitivity to high-polarity food simulants. Nevertheless, the levels of these migrated compounds remained below the regulatory migration limits. Full article
Show Figures

Figure 1

23 pages, 1814 KiB  
Article
Repurposing Olive Oil Mill Wastewater into a Valuable Ingredient for Functional Bread Production
by Ignazio Restivo, Lino Sciurba, Serena Indelicato, Mario Allegra, Claudia Lino, Giuliana Garofalo, David Bongiorno, Salvatore Davino, Giuseppe Avellone, Luca Settanni, Luisa Tesoriere and Raimondo Gaglio
Foods 2025, 14(11), 1945; https://doi.org/10.3390/foods14111945 - 29 May 2025
Viewed by 343
Abstract
Untreated olive oil mill wastewater (OOMW) from conventionally farmed olives was used in bread production to create a new functional product. Two types of bread were developed with 50% OOMW (EXP-1) and 100% OOMW (EXP-2) replacing water. Two leavening processes were tested: sourdough [...] Read more.
Untreated olive oil mill wastewater (OOMW) from conventionally farmed olives was used in bread production to create a new functional product. Two types of bread were developed with 50% OOMW (EXP-1) and 100% OOMW (EXP-2) replacing water. Two leavening processes were tested: sourdough inoculum (S) vs. biga-like inoculum (B), with controls (CTR) without OOMW addition. The doughs were monitored throughout the acidification process by measuring pH, total titratable acidity, and the development of key fermentative microorganisms. To assess the hygienic quality during fermentation, plate count techniques were employed. After baking, the breads were evaluated for various quality parameters, including weight loss, specific volume, crumb and crust colors, image analysis, and the presence of spore-forming bacteria. Volatile compounds released from the breads were identified using solid-phase microextraction coupled with gas chromatography–mass spectrometry (SPME-GC/MS). Polyphenolic compounds were analyzed via liquid chromatography–mass spectrometry (LC-MS). To assess the functional properties of the final products, the breads were homogenized with synthetic human saliva and subjected to in vitro digestion. OOMW did not significantly affect the growth of yeasts and lactic acid bacteria (LAB) or the acidification process. However, in terms of the specific volume and alveolation, breads from the S process and OOMW had poor quality, while those from the B process had better quality. Experimental breads (EXPB-1 and EXPB-2) contained higher levels of alcohols (especially ethanol and isobutyl alcohol), carbonyl compounds (like benzaldehyde), esters (such as ethyl caproate and ethyl caprylate), and terpenes. OOMW introduced phenolic compounds like hydroxytyrosol, coumaric acid, caffeic acid, and trans-hydroxycinnamic acid, which were absent in CTRB breads. Functionalization of EXPB-1 and EXPB-2 breads was demonstrated by a 2.4- and 3.9-fold increase in Trolox equivalents, respectively. However, OOMW did not reduce post-prandial hyper-glycemia, as starch digestibility was similar between CTRB and EXPB breads. The sensory analysis, which focused solely on the visual, structural, and olfactory characteristics of the breads, excluding taste testing to prevent potential health risks from residual pesticides, showed a high appreciation for EXPB-1 and EXPB-2 breads, scoring higher than CTRB in the overall assessment. Full article
Show Figures

Figure 1

16 pages, 826 KiB  
Article
Bioactive Potential of Olive Leaf By-Product Throughout In Vitro Gastrointestinal Digestion
by Mónica Sánchez-Gutiérrez, Ricardo Gómez-García, Elena Carrasco, Alejandro Rodríguez and Manuela Pintado
Foods 2025, 14(4), 563; https://doi.org/10.3390/foods14040563 - 8 Feb 2025
Viewed by 1007
Abstract
Olive leaf, an abundant and underutilized byproduct of the olive industry, has gained attention as a potential functional ingredient due to its high content of dietary fiber and phenolic compounds. However, little is known about its bioaccessibility and transformation throughout the digestive process, [...] Read more.
Olive leaf, an abundant and underutilized byproduct of the olive industry, has gained attention as a potential functional ingredient due to its high content of dietary fiber and phenolic compounds. However, little is known about its bioaccessibility and transformation throughout the digestive process, limiting its application in food formulations. This study provides a comprehensive and quantitative assessment of how ground olive leaf bioactive compounds behave during gastrointestinal digestion, offering new insights into their stability and potential health benefits. The total phenolics content and antioxidant activity of ground olive leaf increased in the oral and gastric phases, decreasing slightly in the intestinal phase, with a bioaccessibility of 46% and up to 70% for the total phenolic content and antioxidant activity, respectively. The principal individual phenolic compounds identified in the intestinal phase were oleuropein, luteolin-7-glycoside, luteolin-6-glycoside and ferulic acid, with bioaccessibilities of up to 97%. The main soluble sugars (fructose, glucose, and sucrose) and organic acids (succinic, citric, and acetic acids) detected in the olive leaf samples showed different behaviors during gastrointestinal digestion: sugars increased in the oral and gastric phases but decreased in the intestinal phase, with high bioaccessibility despite reduced recovery, while organic acids remained mostly stable, except for citric acid, which decreased significantly in the intestinal phase, all showing close to 100% bioaccessibility. These results provide the first detailed evidence of the digestive fate of ground olive leaf bioactive compounds, reinforcing its potential as a functional ingredient. Its natural availability, without requiring pre-treatment, combined with its high antioxidant potential and bioaccessibility, highlights its relevance for the development of innovative food ingredients, aligning with circular economy principles and sustainable food strategies. Full article
Show Figures

Figure 1

Back to TopTop