Function and Engineering of a Food Enzyme Under Coupled High-Temperature–Pressure Conditions: Insights from Molecular Dynamics Simulation and Experimental Validation
Abstract
1. Introduction
2. Materials and Methods
2.1. Molecular Dynamics Simulations at Coupled High-Temperature–Pressure
2.2. MD Trajectory Analysis
2.3. Ananysis of Number of Water Molecules
2.4. Substrate-Binding Pocket Analysis
2.5. Conformational Biasing Analysis
2.6. Strains, Plasmids, and Culture Conditions
2.7. Enzyme Purification
2.8. Determination of Enzymatic Activity
2.9. Ethanol-Tolerance Assay
2.10. Evaluation of Enzymatic Performance in a Simulated Wine System
3. Results and Discussion
3.1. Molecular Dynamics Simulations of Hydrolase at Different Temperature and Pressure
3.2. Tightness Changes at Different Temperatures and Pressures
3.3. Hydrogen Bond Changes at Different Temperatures and Pressures
3.4. The Flexibility of Catalytic Pockets and Their Interaction with Water
3.5. Engineering and Functional Characterization of EC Hydrolase Mutants with Conformational Biasing
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Pinney, M.M.; Mokhtari, D.A.; Akiva, E.; Yabukarski, F.; Sanchez, D.M.; Liang, R.; Doukov, T.; Martinez, T.J.; Babbitt, P.C.; Herschlag, D. Parallel molecular mechanisms for enzyme temperature adaptation. Science 2021, 371, 2784. [Google Scholar] [CrossRef] [PubMed]
- Kour, D.; Sharma, B.; Kaur, T.; Kaur, S.; Alqahtani, A.M.S.; Khan, S.S.; Jan, T.; Kadasah, S.F.; Singh, S.; Maithini, D. Extremozymes: Unlocking potential of extreme environments for sustainable biotechnology. Syst. Microbiol. Biomanuf. 2025, 5, 915–947. [Google Scholar] [CrossRef]
- Pucci, F.; Rooman, M. Physical and molecular bases of protein thermal stability and cold adaptation. Curr. Opin. Struct. Biol. 2017, 42, 117–128. [Google Scholar] [CrossRef] [PubMed]
- Liu, N.; Jiang, T.; Cui, W.-P.; Qi, X.-Q.; Li, X.-G.; Lu, Y.; Wu, L.-F.; Zhang, W.-J. The TorRS two component system regulates expression of TMAO reductase in response to high hydrostatic pressure in Vibrio fluvialis. Front. Microbiol. 2023, 14, 1291578. [Google Scholar] [CrossRef]
- Wang, F.; Ma, X.; Sun, Y.; Guo, E.; Shi, C.; Yuan, Z.; Li, Y.; Li, Q.; Lu, F.; Liu, Y. Structure-Guided Engineering of a Protease to Improve Its Activity under Cold Conditions. J. Agric. Food Chem. 2023, 71, 12528–12537. [Google Scholar] [CrossRef] [PubMed]
- Zhou, H.; Wang, F.; Niu, H.; Yuan, L.; Tian, J.; Cai, S.; Bi, X.; Zhou, L. Structural studies and molecular dynamic simulations of polyphenol oxidase treated by high pressure processing. Food Chem. 2022, 372, 131243. [Google Scholar] [CrossRef]
- Borzova, V.A.; Markossian, K.A.; Chebotareva, N.A.; Kleymenov, S.Y.; Poliansky, N.B.; Muranov, K.O.; Stein-Margolina, V.A.; Shubin, V.V.; Markov, D.I.; Kurganov, B.I. Kinetics of Thermal Denaturation and Aggregation of Bovine Serum Albumin. PLoS ONE 2016, 11, e0153495. [Google Scholar] [CrossRef] [PubMed]
- Wei, B.; Kang, Y.; Zhao, Y.; Xu, H.; Liang, H. Rational Design of Spontaneous Self-Cyclization Enzymes In Vivo and In Vitro with Improved Thermal Tolerance and Activity. ACS Catal. 2024, 14, 5469–5480. [Google Scholar] [CrossRef]
- Xue, M.; Wakamoto, T.; Kejlberg, C.; Yoshimura, Y.; Nielsen, T.A.; Risor, M.W.; Sanggaard, K.W.; Kitahara, R.; Mulder, F.A.A. How internal cavities destabilize a protein. Proc. Natl. Acad. Sci. USA 2019, 116, 21031–21036. [Google Scholar] [CrossRef]
- Karshikoff, A.; Nilsson, L.; Ladenstein, R. Rigidity versus flexibility: The dilemma of understanding protein thermal stability. FEBS J. 2015, 282, 3899–3917. [Google Scholar] [CrossRef]
- Wu, Q.; Zhang, C.; Dong, W.; Lu, H.; Yang, Y.; Li, W.; Xu, Y.; Li, X. Simultaneously Enhanced Thermostability and Catalytic Activity of Xylanase from Streptomyces rameus L2001 by Rigidifying Flexible Regions in Loop Regions of the N-Terminus. J. Agric. Food Chem. 2023, 71, 12785–12796. [Google Scholar] [CrossRef]
- Dong, W.; Zhu, W.; Wu, Q.; Li, W.; Li, X. Improvement the thermostability and specific activity of acidic xylanase PjxA from Penicillium janthinellum via rigid flexible sites. Int. J. Biol. Macromol. 2024, 279, 135399. [Google Scholar] [CrossRef] [PubMed]
- Ji, L.; Du, J.; Zhang, W.; Lu, Z.; Nian, B.; Hu, Y. Dual role of ionic liquid modified β-Cyclodextrin in dynamic conformational regulation and substrate enrichment for improved lipase immobilization. Carbohydr. Polym. 2025, 364, 123786. [Google Scholar] [CrossRef] [PubMed]
- Liu, J.; Han, L.; Li, J.; Du, G.; Zhang, G. Modification of Flexible Regions for Enhanced Thermal Stability of Alkaline Amylase. J. Agric. Food Chem. 2025, 73, 9973–9982. [Google Scholar] [CrossRef]
- Luo, J.; Song, C.; Cui, W.; Han, L.; Zhou, Z. Counteraction of stability-activity trade-off of Nattokinase through flexible region shifting. Food Chem. 2023, 423, 136241. [Google Scholar] [CrossRef] [PubMed]
- Ogasahara, K.; Khechinashvili, N.N.; Nakamura, M.; Yoshimoto, T.; Yutani, K. Thermal stability of pyrrolidone carboxyl peptidases from the hyperthermophilic Archaeon, Pyrococcus furiosus. Eur. J. Biochem. 2001, 268, 3233–3242. [Google Scholar] [CrossRef]
- Zhao, L.; Ma, Z.; Wang, Q.; Hu, M.; Zhang, J.; Chen, L.; Shi, G.; Ding, Z. Engineering the Thermostability of Sucrose Synthase by Reshaping the Subunit Interaction Contributes to Efficient UDP-Glucose Production. J. Agric. Food Chem. 2023, 71, 3832–3841. [Google Scholar] [CrossRef]
- Toke, O. Three Decades of REDOR in Protein Science: A Solid-State NMR Technique for Distance Measurement and Spectral Editing. Int. J. Mol. Sci. 2023, 24, 13637. [Google Scholar] [CrossRef]
- Vanga, S.K.; Wang, J.; Singh, A.; Raghavan, V. Simulations of Temperature and Pressure Unfolding in Soy Allergen Gly m 4 Using Molecular Modeling. J. Agric. Food Chem. 2019, 67, 12547–12557. [Google Scholar] [CrossRef]
- Huang, A.; Li, Z.-W.; Guo, L.; Zhong, N.; Tong, L.; Xu, Y.; Ma, X.; Zhu, F.; Chen, G.; Huang, S.; et al. An aggregation-induced conformation locking strategy facilitates the activation of lipase biocatalyst. Nat. Commun. 2025, 16, 4660. [Google Scholar] [CrossRef]
- Liu, X.; Xu, Z.; Liu, X.; Zhang, C.; Ma, M.; Sui, Z.; Corke, H. Lamellar structure changes in rice starch during α-amylase hydrolysis: Effect of starch granule surface and channel proteins. Food Biosci. 2024, 61, 104502. [Google Scholar] [CrossRef]
- Meersman, F.; Dobson, C.M.; Heremans, K. Protein unfolding, amyloid fibril formation and configurational energy landscapes under high pressure conditions. Chem. Soc. Rev. 2006, 35, 908–917. [Google Scholar] [CrossRef]
- Kitchen, D.B.; Reed, L.H.; Levy, R.M. Molecular dynamics simulation of solvated protein at high pressure. Biochemistry 1992, 31, 10083–10093. [Google Scholar] [CrossRef]
- Abraham, M.J.; Murtola, T.; Schulz, R.; Páll, S.; Smith, J.C.; Hess, B.; Lindahl, E. GROMACS: High performance molecular simulations through multi-level parallelism from laptops to supercomputers. SoftwareX 2015, 1–2, 19–25. [Google Scholar] [CrossRef]
- Abramson, J.; Adler, J.; Dunger, J.; Evans, R.; Green, T.; Pritzel, A.; Ronneberger, O.; Willmore, L.; Ballard, A.J.; Bambrick, J.; et al. Accurate structure prediction of biomolecular interactions with AlphaFold 3. Nature 2024, 630, 493–500. [Google Scholar] [CrossRef]
- Donnelly, S.M.; Lopez, N.A.; Dodin, I.Y. Steepest-descent algorithm for simulating plasma-wave caustics via metaplectic geometrical optics. Phys. Rev. E 2021, 104, 025304. [Google Scholar] [CrossRef] [PubMed]
- Staritzbichler, R.; Ristic, N.; Goede, A.; Preissner, R.; Hildebrand, P.W. Voronoia 4-ever. Nucleic Acids Res. 2021, 49, W685–W690. [Google Scholar] [CrossRef]
- Schmidtke, P.; Le Guilloux, V.; Maupetit, J.; Tuffery, P. fpocket: Online tools for protein ensemble pocket detection and tracking. Nucleic Acids Res. 2010, 38, W582–W589. [Google Scholar] [CrossRef]
- Eisenmenger, M.J.; Reyes-De-Corcuera, J.I. High pressure enhancement of enzymes: A review. Enzym. Microb. Technol. 2009, 45, 331–347. [Google Scholar] [CrossRef]
- Mozhaev, V.V.; Lange, R.; Kudryashova, E.V.; Balny, C. Application of high hydrostatic pressure for increasing activity and stability of enzymes. Biotechnol. Bioeng. 1996, 52, 320–331. [Google Scholar] [CrossRef]
- Zazeri, G.; Povinelli, A.P.R.; Le Duff, C.S.; Tang, B.; Cornelio, M.L.; Jones, A.M. Synthesis and Spectroscopic Analysis of Piperine- and Piperlongumine-Inspired Natural Product Scaffolds and Their Molecular Docking with IL-1β and NF-κB Proteins. Molecules 2020, 25, 2841. [Google Scholar] [CrossRef] [PubMed]
- Zazeri, G.; Povinelli, A.P.R.; Pavan, N.M.; Jones, A.M.; Ximenes, V.F. Solvent-Induced Lag Phase during the Formation of Lysozyme Amyloid Fibrils Triggered by Sodium Dodecyl Sulfate: Biophysical Experimental and In Silico Study of Solvent Effects. Molecules 2023, 28, 6891. [Google Scholar] [CrossRef] [PubMed]
- Payne, V.A.; Matubayasi, N.; Murphy, L.R.; Levy, R.M. Monte Carlo Study of the Effect of Pressure on Hydrophobic Association. J. Phys. Chem. B 1997, 101, 2054–2060. [Google Scholar] [CrossRef]
- Heremans, K.; Smeller, L. Protein structure and dynamics at high pressure. Biochim. Biophys. Acta 1998, 1386, 353–370. [Google Scholar] [CrossRef]
- Zhang, Z.; Long, M.; Zheng, N.; Lu, X.; Zhu, C.; Osire, T.; Xia, X. Inside Out Computational Redesign of Cavities for Improving Thermostability and Catalytic Activity of Rhizomucor Miehei Lipase. Appl. Environ. Microbiol. 2023, 89, e0217222. [Google Scholar] [CrossRef] [PubMed]
- Roche, J.; Caro, J.A.; Norberto, D.R.; Barthe, P.; Roumestand, C.; Schlessman, J.L.; Garcia, A.E.; García-Moreno E, B.; Royer, C.A. Cavities determine the pressure unfolding of proteins. Proc. Natl. Acad. Sci. USA 2012, 109, 6945–6950. [Google Scholar] [CrossRef]
- Cavanagh, P.E.; Xue, A.G.; Dai, S.; Qiang, A.; Matsui, T.; Ting, A.Y. Computational design of conformation-biasing mutations to alter protein functions. bioRxiv 2025. [Google Scholar] [CrossRef]
- Meinhold, L.; Clement, D.; Tehei, M.; Daniel, R.; Finney, J.L.; Smith, J.C. Protein Dynamics and Stability: The Distribution of Atomic Fluctuations in Thermophilic and Mesophilic Dihydrofolate Reductase Derived Using Elastic Incoherent Neutron Scattering. Biophys. J. 2008, 94, 4812–4818. [Google Scholar] [CrossRef]
- Liu, Z.; Lemmonds, S.; Huang, J.; Tyagi, M.; Hong, L.; Jain, N. Entropic contribution to enhanced thermal stability in the thermostable P450 CYP119. Proc. Natl. Acad. Sci. USA 2018, 115, E10049–E10058. [Google Scholar] [CrossRef]
- Zhang, Z.; Cai, Y.; Zheng, N.; Deng, Y.; Gao, L.; Wang, Q.; Xia, X. Diverse models of cavity engineering in enzyme modification: Creation, filling, and reshaping. Biotechnol. Adv. 2024, 72, 108346. [Google Scholar] [CrossRef]
Name | Primers |
---|---|
V370I-F | 5′-TACAGAGATTTTTAATAAGATTGATGTGCTCATTTCCCCTAC-3′ |
V370I-R | 5′-GGGTAGGGGAAATGAGCACATCAATCTTATTAAAAATCTCTG-3′ |
A205F-F | 5′-CGGCTGCTACCCGCTATTTTGGAGCTTAGACCATATTGGTCC-3′ |
A205F-R | 5′-TCGGACCAATATGGTCTAAGCTCCAAAATAGCGGGTAGCAGC-3′ |
N79Y-F | 5′-CATGGGATACCTATGGCCTTAAAGGACTACTTGTATTTTAAA-3′ |
N79Y-R | 5′-ATCTTTAAAATACAAGTAGTCCTTTAAGGCCATAGGTATCCC-3′ |
E293I-F | 5′-GGATTCAGGCGCTAAAGTAATTGTGGTGCGTATTCCTTCCCT-3′ |
E293I-R | 5′-GGGAAGGAATACGCACCACAATTACTTTAGCGCCTGAATCCA-3′ |
L343Y-F | 5′-GAGCTTGGTGAGTACCCTTCTGCAGTCGATTACTTGCAGGCT-3′ |
L343Y-R | 5′-AGCCTGCAAGTAATCGACTGCAGAAGGGTACTCACCAAGCTC-3′ |
A315F-F | 5′-GGGCAGAGCTTGTGACGTCTCTTTCAGAGTTTGCAGCTATAC-3′ |
A315F-R | 5′-GGTGTATAGCTGCAAACTCTGAAAGAGACGTCACAAGCTCTG-3′ |
T171I-F | 5′-GGAGCAAGTGTTGCTTCACTAGGGATTGATACAGCAGGCTCT-3′ |
T171I-R | 5′-GCCTGCTGTATCAATCCCTAGTGAAGCAACACTTGCTCCAGC-3′ |
D220Y-F | 5′-GGTCCGATGACAAAGACAGTTAAGTACGCAGCGGGCTTGCTC-3′ |
D220Y-R | 5′-GCAAGCCCGCTGCGTACTTAACTGTCTTTGTCATCGGACCAA-3′ |
A159F-F | 5′-GTGGAGGCTCTGGTGCGTTTGTTGCAGCTGGAGCAAGTGTTG-3′ |
A159F-R | 5′-GCAACACTTGCTCCAGCTGCAACAAACGCACCAGAGCCTCCA-3′ |
L373I-F | 5′-GGTAGATGTGATAATTTCCCCTACCCTACCTATTGTAGCTAG-3′ |
L373I-R | 5′-GCTACAATAGGTAGGGTAGGGGAAATTATCACATCTACCTTA-3′ |
A31Y-F | 5′-CCCGTGGAATTAACGAAAGCTATTTTAGATTTTTACGAGGAA-3′ |
A31Y-R | 5′-AGCCTGCAAGTAATCGACTGCAGAAGGGTACTCACCAAGCTC-3′ |
V309I-F | 5′-GCAGAATGGGCAGAGCTTATTACGTCTCTTTCAGAGGCAGCA-3′ |
V309I-R | 5′-GCTGCTGCCTCTGAAAGAGACGTAATAAGCTCTGCCCATTCT-3′ |
S40F-F | 5′-CCTAAAATTAATTTTTATATGGCTTTTTATCGGGAAGAAGCC-3′ |
S40F-R | 5′-GCTAAGGCTTCTTCCCGATAAAAAGCCATATAAAAATTAATT-3′ |
P213Y-F | 5′-CCCGCTAGCATGGAGCTTAGACCATATTGGTTACATGACAAA-3′ |
P213Y-R | 5′-TCTTTGTCATGTAACCAATATGGTCTAAGCTCCATGCTAGCG-3′ |
I366F-F | 5′-CAGAGTTTTTTAATAAGGTAGATGTGCTCATTTCCCCTACCC-3′ |
I366F-R | 5′-GGGGAAATGAGCACATCTACCTTATTAAAAAACTCTGTAAAC-3′ |
A164I-F | 5′-4GGCTCTGGTGCGGCTGTTGCAGCTGGAATTAGTGTTGCTTCA-3′ |
A164I-R | 5′-TAGTGAAGCAACACTAATTCCAGCTGCAACAGCCGCACCAGA-3′ |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Liu, Z.; Long, W.; Chen, K.; Luo, L.; Li, Q.; Osire, T.; Zheng, N.; Long, M. Function and Engineering of a Food Enzyme Under Coupled High-Temperature–Pressure Conditions: Insights from Molecular Dynamics Simulation and Experimental Validation. Foods 2025, 14, 2485. https://doi.org/10.3390/foods14142485
Liu Z, Long W, Chen K, Luo L, Li Q, Osire T, Zheng N, Long M. Function and Engineering of a Food Enzyme Under Coupled High-Temperature–Pressure Conditions: Insights from Molecular Dynamics Simulation and Experimental Validation. Foods. 2025; 14(14):2485. https://doi.org/10.3390/foods14142485
Chicago/Turabian StyleLiu, Zidan, Weihao Long, Keying Chen, Linyu Luo, Qiong Li, Tolbert Osire, Nan Zheng, and Mengfei Long. 2025. "Function and Engineering of a Food Enzyme Under Coupled High-Temperature–Pressure Conditions: Insights from Molecular Dynamics Simulation and Experimental Validation" Foods 14, no. 14: 2485. https://doi.org/10.3390/foods14142485
APA StyleLiu, Z., Long, W., Chen, K., Luo, L., Li, Q., Osire, T., Zheng, N., & Long, M. (2025). Function and Engineering of a Food Enzyme Under Coupled High-Temperature–Pressure Conditions: Insights from Molecular Dynamics Simulation and Experimental Validation. Foods, 14(14), 2485. https://doi.org/10.3390/foods14142485