Gelling Characteristics and Mechanisms of Heat-Triggered Soy Protein Isolated Gels Incorporating Curdlan with Different Helical Conformations
Abstract
1. Introduction
2. Materials and Methods
2.1. Materials and Chemicals
2.2. Preparation of CUR Solutions with Different Helical Conformations
2.3. Preparation of CUR-SPI Composite Gels
2.4. WHC
2.5. Gel Strength
2.6. Texture Profile Analysis (TPA)
2.7. Dynamic Rheological Measurements
2.8. Scanning Electron Microscopy (SEM) Observation
2.9. Thermogravimetric Analysis (TGA)
2.10. Fourier Transform Infrared (FT-IR) Spectroscopy
2.11. Circular Dichroism (CD) Spectroscopy
2.12. Fluorescence Spectroscopy
2.13. Statistical Analysis
3. Results and Discussion
3.1. WHC and Gel Strength
3.2. TPA Characteristics
3.3. Dynamic Rheological Properties
3.4. Microstructures
3.5. Thermal Stability
3.6. FT-IR Analysis
3.7. Changes in SPI Structure During Gel Formation
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Nishinari, K.; Fang, Y.; Guo, S.; Phillips, G.O. Soy proteins: A review on composition, aggregation and emulsification. Food Hydrocoll. 2014, 39, 301–318. [Google Scholar] [CrossRef]
- Friedman, M.; Brandon, D.L. Nutritional and health benefits of soy proteins. J. Agric. Food Chem. 2001, 49, 1069–1086. [Google Scholar] [CrossRef] [PubMed]
- Deak, N.A.; Johnson, L.A.; Lusas, E.W.; Rhee, K.C. Soy protein products, processing, and utilization. In Soybeans Chemistry, Production, Processing, and Utilization; Johnsan, L.A., White, P.J., Galloway, R., Eds.; AOCS Press: Champaign, IL, USA, 2008; pp. 661–724. [Google Scholar] [CrossRef]
- Zhang, L.; Li, Q.; Zhang, W.; Bakalis, S.; Luo, Y.; Lametsch, R. Different source of commercial soy protein isolates: Structural, compositional, and physicochemical characteristics in relation to protein functionalities. Food Chem. 2024, 433, 137315. [Google Scholar] [CrossRef] [PubMed]
- Zhang, T.; Dou, W.; Zhang, X.; Zhao, Y.; Zhang, Y.; Jiang, L.; Sui, X. The development history and recent updates on soy protein-based meat alternatives. Trends Food Sci. Technol. 2021, 109, 702–710. [Google Scholar] [CrossRef]
- Zheng, L.; Regenstein, J.M.; Zhou, L.Y.; Wang, Z.J. Soy protein isolates: A review of their composition, aggregation, and gelation. Compr. Rev. Food Sci. Food Saf. 2022, 21, 1940–1957. [Google Scholar] [CrossRef] [PubMed]
- Lin, D.; Kelly, A.L.; Maidannyk, V.; Miao, S. Effect of concentrations of alginate, soy protein isolate and sunflower oil on water loss, shrinkage, elastic and structural properties of alginate-based emulsion gel beads during gelation. Food Hydrocoll. 2020, 108, 105998. [Google Scholar] [CrossRef]
- Guo, Y.; Zhang, X.; Hao, W.; Xie, Y.; Chen, L.; Li, Z.; Zhu, B.; Feng, X. Nano-bacterial cellulose/soy protein isolate complex gel as fat substitutes in ice cream model. Carbohydr. Polym. 2018, 198, 620–630. [Google Scholar] [CrossRef]
- Ma, X.; Chen, W.; Yan, T.; Wang, D.; Hou, F.; Miao, S.; Liu, D. Comparison of citrus pectin and apple pectin in conjugation with soy protein isolate (SPI) under controlled dry-heating conditions. Food Chem. 2020, 309, 125501. [Google Scholar] [CrossRef]
- Han, L.; Li, J.; Jiang, Y.; Lu, K.; Yang, P.; Jiang, L.; Li, Y.; Qi, B. Changes in the structure and functional properties of soybean isolate protein: Effects of different modification methods. Food Chem. 2024, 432, 137214. [Google Scholar] [CrossRef]
- Shen, R.; Liu, X.; Dong, J.; Si, J.; Li, H. The gel properties and microstructure of the mixture of oat β-glucan/soy protein isolates. Food Hydrocoll. 2015, 47, 108–114. [Google Scholar] [CrossRef]
- Chen, H.; Gan, J.; Ji, A.; Song, S.; Yin, L. Development of double network gels based on soy protein isolate and sugar beet pectin induced by thermal treatment and laccase catalysis. Food Chem. 2019, 292, 188–196. [Google Scholar] [CrossRef] [PubMed]
- Xiao, Y.; Li, J.; Liu, Y.; Peng, F.; Wang, X.; Wang, C.; Li, M.; Xu, H. Gel properties and formation mechanism of soy protein isolate gels improved by wheat bran cellulose. Food Chem. 2020, 324, 126876. [Google Scholar] [CrossRef] [PubMed]
- Li, Y.; Wang, S.; Zhang, G.; Liu, X.; Liu, H.; He, Y.; Zhu, D. Morphological and structural changes in thermally-induced soybean protein isolate xerogels modulated by soybean polysaccharide concentration. Food Hydrocoll. 2022, 133, 107967. [Google Scholar] [CrossRef]
- Xing, H.; Liu, X.; Hu, Y.; Hu, K.; Chen, J. Effect of Lycium barbarum polysaccharides on heat-induced gelation of soy protein isolate. Food Hydrocoll. 2024, 147, 109323. [Google Scholar] [CrossRef]
- Harada, T.; Misaki, A.; Saito, H. Curdlan: A bacterial gel-forming β-1,3-glucan. Arch. Biochem. Biophys. 1968, 124, 292–298. [Google Scholar] [CrossRef]
- Lehtovaara, B.C.; Gu, F.X. Pharmacological, structural, and drug delivery properties and applications of 1, 3-β-glucans. J. Agric. Food Chem. 2011, 59, 6813–6828. [Google Scholar] [CrossRef]
- Cai, Z.X.; Zhang, H.B. Recent progress on curdlan provided by functionalization strategies. Food Hydrocoll. 2017, 68, 128–135. [Google Scholar] [CrossRef]
- Li, M.; Yang, R.; Feng, X.; Fan, X.; Liu, Y.; Xu, X.; Zhou, G.; Zhu, B.; Ullah, N.; Chen, L. Effects of low-frequency and high-intensity ultrasonic treatment combined with curdlan gels on the thermal gelling properties and structural properties of soy protein isolate. Food Hydrocoll. 2022, 127, 107506. [Google Scholar] [CrossRef]
- Xiao, M.; Jiang, M.; Wu, K.; Yang, H.; Ni, X.; Yan, W.; Phillips, G.O.; Jiang, F. Investigation on curdlan dissociation by heating in water. Food Hydrocoll. 2017, 70, 57–64. [Google Scholar] [CrossRef]
- Munialo, C.D.; van der Linden, E.; Ako, K.; Nieuwland, M.; Van As, H.; de Jongh, H.H.J. The effect of polysaccharides on the ability of whey protein gels to either store or dissipate energy upon mechanical deformation. Food Hydrocoll. 2016, 52, 707–720. [Google Scholar] [CrossRef]
- Sharma, R.; Rana, V. QbD steered fabrication of Pullulan—Terminalia catappa-Carbopol®971P film forming gel for improved rheological, textural and biopharmaceutical aspects. Int. J. Biol. Macromol. 2021, 193, 1301–1312. [Google Scholar] [CrossRef] [PubMed]
- Yan, J.K.; Chen, T.T.; Wang, Z.W.; Wang, C.; Liu, C.H.; Li, L. Comparison of physicochemical characteristics and biological activities of polysaccharides from barley (Hordeum vulgare L.) grass at different growth stages. Food Chem. 2022, 389, 133083. [Google Scholar] [CrossRef] [PubMed]
- Chen, S.; Han, Y.; Sun, C.; Dai, L.; Yang, S.; Wei, Y.; Mao, L.; Yuan, F.; Gao, Y. Effect of molecular weight of hyaluronan on zein-based nanoparticles: Fabrication, structural characterization and delivery of curcumin. Carbohydr. Polym. 2018, 201, 599–607. [Google Scholar] [CrossRef] [PubMed]
- Liu, S.Y.; Lei, H.T.; Li, L.Q.; Liu, F.Y.; Li, L.; Yan, J.K. Effects of direct addition of curdlan on the gelling characteristics of thermally induced soy protein isolate gels. Int. J. Biol. Macromol. 2023, 253, 127092. [Google Scholar] [CrossRef]
- Wang, X.; Luo, K.; Liu, S.; Adhikari, B.; Chen, J. Improvement of gelation properties of soy protein isolate emulsion induced by calcium cooperated with magnesium. J. Food Eng. 2019, 244, 32–39. [Google Scholar] [CrossRef]
- Jiang, S.; Zhao, S.; Jia, X.; Wang, H.; Zhang, H.; Liu, Q.; Kong, B. Thermal gelling properties and structural properties of myofibrillar protein including thermo-reversible and thermo-irrevesible curdlan gels. Food Chem. 2020, 311, 126018. [Google Scholar] [CrossRef]
- Zhao, H.; Chen, J.; Hemar, Y.; Cui, B. Improvement of the rheological and textural properties of calcium sulfate-induced soy protein isolate gels by the incorporation of different polysaccharides. Food Chem. 2020, 310, 125983. [Google Scholar] [CrossRef]
- Ribeiro, K.O.; Rodrigues, M.I.; Sabadini, E.; Cunha, R.L. Mechanical properties of acid sodium caseinate-κ-carrageenan gels: Effect of co-solute addition. Food Hydrocoll. 2004, 18, 71–79. [Google Scholar] [CrossRef]
- Wu, C.; Yuan, C.; Chen, S.; Liu, D.; Ye, X.; Hu, Y. The effect of curdlan on the rheological properties of restructured ribbonfish (Trichiurus spp.) meat gel. Food Chem. 2015, 179, 222–231. [Google Scholar] [CrossRef]
- Ricci, L.; Umilta, E.; Righetti, M.C.; Messina, T.; Zurlini, C.; Montanari, A.; Bronco, S.; Bertoldo, M. On the thermal behavior of protein isolated from different legumes investigated by DSC and TGA. J. Sci. Food Agric. 2018, 98, 5368–5377. [Google Scholar] [CrossRef]
- Xu, Y.; Han, Y.; Chen, M.; Li, J.; Li, J.; Luo, J.; Gao, Q. A soy protein-based film by mixed covalent cross-linking and flexibilizing networks. Ind. Crops Prod. 2022, 183, 114952. [Google Scholar] [CrossRef]
- Guo, Y.; Zhang, Z.; Cai, J.; Li, W.; Chen, L.; Wu, W. Co-folding of soy protein isolates and shellac by structural interplays to induce hydrogels. Food Hydrocoll. 2023, 139, 108527. [Google Scholar] [CrossRef]
- Guerrero, P.; Kerry, J.P.; de la Caba, K. FTIR characterization of protein polysaccharide interactions in extruded blends. Carbohydr. Polym. 2014, 111, 598–605. [Google Scholar] [CrossRef]
- Kelly, S.M.; Jess, T.J.; Price, N.C. How to study proteins by circular dichroism. BBA-Proteins Proteom. 2005, 1751, 119–139. [Google Scholar] [CrossRef] [PubMed]
- Zhao, Y.; Zhou, G.; Zhang, W. Effects of regenerated cellulose fiber on the characteristics of myofibrillar protein gels. Carbohydr. Polym. 2019, 209, 276–281. [Google Scholar] [CrossRef]
- Shen, L.; Tang, C.H. Microfluidization as a potential technique to modify surface properties of soy protein isolate. Food Res. Int. 2012, 48, 108–118. [Google Scholar] [CrossRef]
- Cao, Y.G.; Xiong, Y.L. Chlorogenic acid-mediated gel formation of oxidatively stressed myofibrillar protein. Food Chem. 2015, 180, 235–243. [Google Scholar] [CrossRef]
Samples | Hardness (N) | Chewiness (N) | Springiness (%) | Cohesiveness |
---|---|---|---|---|
SPI | 0.98 ± 0.02 d | 0.84 ± 0.02 d | 83.01 ± 2.25 cd | 0.905 ± 0.004 a |
CUR-SPI40 | 3.20 ± 0.10 a | 7.10 ± 0.01 a | 97.52 ± 2.26 a | 0.93 ± 0.024 a |
CUR-SPI50 | 1.61 ± 0.07 b | 2.25 ± 0.04 b | 91.62 ± 0.47 b | 0.906 ± 0.002 a |
CUR-SPI60 | 1.28 ± 0.07 c | 1.08 ± 0.01 c | 88.10 ± 2.54 bc | 0.889 ± 0.021 a |
CUR-SPI80 | 1.09 ± 0.02 d | 0.85 ± 0.01 d | 86.50 ± 0.72 cd | 0.895 ± 0.09 a |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Long, P.-W.; Liu, S.-Y.; Lin, Y.-X.; Mo, L.-F.; Wu, Y.; Li, L.-Q.; Pan, L.-Y.; Jin, M.-Y.; Yan, J.-K. Gelling Characteristics and Mechanisms of Heat-Triggered Soy Protein Isolated Gels Incorporating Curdlan with Different Helical Conformations. Foods 2025, 14, 2484. https://doi.org/10.3390/foods14142484
Long P-W, Liu S-Y, Lin Y-X, Mo L-F, Wu Y, Li L-Q, Pan L-Y, Jin M-Y, Yan J-K. Gelling Characteristics and Mechanisms of Heat-Triggered Soy Protein Isolated Gels Incorporating Curdlan with Different Helical Conformations. Foods. 2025; 14(14):2484. https://doi.org/10.3390/foods14142484
Chicago/Turabian StyleLong, Pei-Wen, Shi-Yong Liu, Yi-Xin Lin, Lin-Feng Mo, Yu Wu, Long-Qing Li, Le-Yi Pan, Ming-Yu Jin, and Jing-Kun Yan. 2025. "Gelling Characteristics and Mechanisms of Heat-Triggered Soy Protein Isolated Gels Incorporating Curdlan with Different Helical Conformations" Foods 14, no. 14: 2484. https://doi.org/10.3390/foods14142484
APA StyleLong, P.-W., Liu, S.-Y., Lin, Y.-X., Mo, L.-F., Wu, Y., Li, L.-Q., Pan, L.-Y., Jin, M.-Y., & Yan, J.-K. (2025). Gelling Characteristics and Mechanisms of Heat-Triggered Soy Protein Isolated Gels Incorporating Curdlan with Different Helical Conformations. Foods, 14(14), 2484. https://doi.org/10.3390/foods14142484