Analysis of Protein Degradation and Umami Peptide Release Patterns in Stewed Chicken Based on Proteomics Combined with Peptidomics Approach
Abstract
1. Introduction
2. Materials and Methods
2.1. Materials and Reagents
2.2. Preparation of Chicken Soup
2.3. Real-Time Temperature Detection in Stew Pot
2.4. Analysis of the Taste Characteristics
2.5. Preparation of Label-Free Protein Analysis Sample
2.6. Preparation of Peptidomics Analysis Sample
2.7. LC-MS/MS Analysis
2.8. Processing Mass Spectrometry Data
2.9. Statistical Analysis
3. Results and Discussion
3.1. Determination of Sampling Time
3.2. Taste Characteristics Analysis of Chicken Soup
3.3. Proteomics Characterization Analysis
3.4. Peptidomics Characterization Analysis
3.5. Composition and Relative Abundance Analysis of Umami Peptides
3.6. Fingerprint of Umami Peptides
3.7. Release Patterns of Umami Peptides
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Yang, X.; Kong, Y.; Ding, Q.; Zhang, Y.Y.; Sun, B.G.; Chen, H.T.; Sun, Y. Impact Analysis of Salt Addition Method on Taste-active Compounds in Chicken Soup. Fine Chem. 2018, 35, 1196–1200. [Google Scholar] [CrossRef]
- Lilyblade, A.L.; Peterson, D.W. Inositol and Free Sugars in Chicken Muscle Post-Mortem. J. Food Sci. 1962, 27, 245–249. [Google Scholar] [CrossRef]
- Wang, L.H.; Qiao, K.N.; Ding, Q.; Zhang, Y.Y.; Sun, B.G.; Chen, H.T. Effects of Two Cooking Methods on the Taste Components of Sanhuang Chicken and Black-Bone Silky Fowl Meat. J. Food Process. Preserv. 2018, 42, e13772. [Google Scholar] [CrossRef]
- Aliani, M.; Farmer, L.J. Postcolumn Derivatization Method for Determination of Reducing and Phosphorylated Sugars in Chicken by High Performance Liquid Chromatography. J. Agric. Food Chem. 2002, 50, 2760–2766. [Google Scholar] [CrossRef] [PubMed]
- Aliani, M.; Farmer, L.J. Precursors of Chicken Flavor. I. Determination of Some Flavor Precursors in Chicken Muscle. J. Agric. Food Chem. 2005, 53, 6067–6072. [Google Scholar] [CrossRef] [PubMed]
- Jayasena, D.D.; Jung, S.; Kim, H.J.; Alahakoon, A.U.; Nam, K.C.; Jo, C. Effect of Sex on Flavor-Related and Functional Compounds in Freeze-Dried Broth Made from Korean Native Chicken. Korean J. Food Sci. Anim. Resour. 2014, 34, 448–456. [Google Scholar] [CrossRef] [PubMed]
- Dunkel, A.; Hofmann, T. Sensory-Directed Identification of β-Alanyl Dipeptides as Contributors to the Thick-Sour and White-Meaty Orosensation Induced by Chicken Broth. J. Agric. Food Chem. 2009, 57, 9867–9877. [Google Scholar] [CrossRef] [PubMed]
- Norris, M.B.; Noble, A.C.; Pangborn, R.M. Human Saliva and Taste Responses to Acids Varying in Anions, Titratable Acidity, and pH. Physiol. Behav. 1984, 32, 237–244. [Google Scholar] [CrossRef] [PubMed]
- Wang, L.H.; Qiao, K.N.; Ding, Q.; Zhang, Y.Y.; Sun, B.G.; Chen, H.T.; Sun, Y. Effect of Different Cooking Time on Taste Compounds in Chicken Soup. Fine Chem. 2018, 35, 1683–1690. [Google Scholar] [CrossRef]
- Zhang, Y.; Ma, Y.; Ahmed, Z.; Geng, W.; Tang, W.; Liu, Y.; Jin, H.; Jiang, F.; Wang, J.; Wang, Y. Purification and Identification of Kokumi-enhancing Peptides from Chicken Protein Hydrolysate. Int. J. Food Sci. Technol. 2019, 54, 2151–2158. [Google Scholar] [CrossRef]
- Choi, S.E. Optimization of Preparation Conditions and Analysis of Food Components for Chicken Head Soup Base. J. Korean Soc. Food Cult. 2011, 26, 468–477. [Google Scholar] [CrossRef]
- Nishimura, T.; Goto, S.; Miura, K.; Takakura, Y.; Egusa, A.S.; Wakabayashi, H. Umami Compounds Enhance the Intensity of Retronasal Sensation of Aromas from Model Chicken Soups. Food Chem. 2016, 196, 577–583. [Google Scholar] [CrossRef] [PubMed]
- Maehashi, K.; Matsuzaki, M.; Yamamoto, Y.; Udaka, S. Isolation of Peptides from an Enzymatic Hydrolysate of Food Proteins and Characterization of Their Taste Properties. Biosci. Biotechnol. Biochem. 1999, 63, 555–559. [Google Scholar] [CrossRef] [PubMed]
- Jayasena, D.D.; Jung, S.; Kim, H.J.; Yong, H.I.; Nam, K.C.; Jo, C. Taste-Active Compound Levels in Korean Native Chicken Meat: The Effects of Bird Age and the Cooking Process. Poult. Sci. 2015, 94, 1964–1972. [Google Scholar] [CrossRef] [PubMed]
- Xiao, Z.; Luo, Y.; Wang, G.; Ge, C.; Zhou, G.; Zhang, W.; Liao, G. 1H-NMR-based Water-soluble Low Molecular Weight Compound Characterization and Fatty Acid Composition of Boiled Wuding Chicken during Processing. J. Sci. Food Agric. 2019, 99, 429–435. [Google Scholar] [CrossRef] [PubMed]
- Wang, Y.F. Comparison of Flavor Difference between Totole Cooking Chicken in Suit and Commercial Chicken Powder. Food Ind. 2024, 45, 91–96. [Google Scholar]
- Wang, T.Z.; Tan, J.; Du, W.B.; Zhen, D.W.; Xie, J.C. Analysis of Taste Compounds in Stewed Chicken Broth of Beijing Youji. Food Sci. 2020, 41, 159–164. [Google Scholar]
- Yang, C.H.; Liang, S.M.; Ge, C.R.; Xiao, Z.C. Extraction and Identification of Umami Peptides from Yunnan Yanjin Black-Bone Chicken. China Condiment 2024, 49, 10–15+46. [Google Scholar]
- Xiao, N.; Xu, H.; Guo, Q.; Shi, W. Effects of Flavourzyme Addition on Protein Degradation and Flavor Formation in Grass Carp during Fermentation. J. Food Biochem. 2022, 46, e14405. [Google Scholar] [CrossRef] [PubMed]
- Li, R.; Geng, C.; Xiong, Z.; Cui, Y.; Liao, E.; Peng, L.; Jin, W.; Wang, H. Evaluation of Protein Degradation and Flavor Compounds during the Processing of Xuan’en Ham. J. Food Sci. 2022, 87, 3366–3385. [Google Scholar] [CrossRef] [PubMed]
- Chen, Q.; Zhang, Y.; Jing, L.; Xiao, N.; Wu, X.; Shi, W. Changes in Protein Degradation and Non-Volatile Flavor Substances of Swimming Crab (Portunus Trituberculatus) during Steaming. Foods 2022, 11, 3502. [Google Scholar] [CrossRef] [PubMed]
- Zhu, C.; Tian, W.; Sun, L.; Liu, Y.; Li, M.; Zhao, G. Characterization of Protein Changes and Development of Flavor Components Induced by Thermal Modulation during the Cooking of Chicken Meat. J. Food Process. Preserv. 2019, 43, e13949. [Google Scholar] [CrossRef]
- Zhang, L.; Duan, W.; Huang, Y.; Zhang, Y.; Sun, B.; Pu, D.; Tang, Y.; Liu, C. Sensory Taste Properties of Chicken (Hy-Line Brown) Soup as Prepared with Five Different Parts of the Chicken. Int. J. Food Prop. 2020, 23, 1804–1824. [Google Scholar] [CrossRef]
- Gallego, M.; Mora, L.; Toldrá, F. Differences in Peptide Oxidation between Muscles in 12 Months Spanish Dry-Cured Ham. Food Res. Int. 2018, 109, 343–349. [Google Scholar] [CrossRef] [PubMed]
- Liang, L.; Duan, W.; Zhang, J.; Huang, Y.; Zhang, Y.; Sun, B. Characterization and Molecular Docking Study of Taste Peptides from Chicken Soup by Sensory Analysis Combined with Nano-LC-Q-TOF-MS/MS. Food Chem. 2022, 383, 132455. [Google Scholar] [CrossRef] [PubMed]
- Xie, X.; Dang, Y.; Pan, D.; Sun, Y.; Zhou, C.; He, J.; Gao, X. The Enhancement and Mechanism of the Perception of Saltiness by Umami Peptide from Ruditapes Philippinarum and Ham. Food Chem. 2023, 405, 134886. [Google Scholar] [CrossRef] [PubMed]
- Khalid, W.; Maggiolino, A.; Kour, J.; Arshad, M.S.; Aslam, N.; Afzal, M.F.; Meghwar, P.; Zafar, K.W.; De Palo, P.; Korma, S.A. Dynamic Alterations in Protein, Sensory, Chemical, and Oxidative Properties Occurring in Meat during Thermal and Non-Thermal Processing Techniques: A Comprehensive Review. Front. Nutr. 2023, 9, 1057457. [Google Scholar] [CrossRef] [PubMed]
- Zhang, J.; Yao, Y.; Ye, X.; Fang, Z.; Chen, J.; Wu, D.; Liu, D.; Hu, Y. Effect of Cooking Temperatures on Protein Hydrolysates and Sensory Quality in Crucian Carp (Carassius Auratus) Soup. J. Food Sci. Technol. 2013, 50, 542–548. [Google Scholar] [CrossRef] [PubMed]
- Qi, J.; Hu, H.W.; Zhang, W.; Deng, S.; Zhou, G.; Xu, X. Identification and Characterization of the Proteins in Broth of Stewed Traditional Chinese Yellow-Feathered Chickens. Poult. Sci. 2018, 97, 1852–1860. [Google Scholar] [CrossRef] [PubMed]
- Charoenkwan, P.; Yana, J.; Nantasenamat, C.; Hasan, M.M.; Shoombuatong, W. iUmami-SCM: A Novel Sequence-Based Predictor for Prediction and Analysis of Umami Peptides Using a Scoring Card Method with Propensity Scores of Dipeptides. J. Chem. Inf. Model. 2020, 60, 6666–6678. [Google Scholar] [CrossRef] [PubMed]
- Charoenkwan, P.; Nantasenamat, C.; Hasan, M.M.; Moni, M.A.; Manavalan, B.; Shoombuatong, W. UMPred-FRL: A New Approach for Accurate Prediction of Umami Peptides Using Feature Representation Learning. Int. J. Mol. Sci. 2021, 22, 13124. [Google Scholar] [CrossRef] [PubMed]
- Cui, Z.; Zhang, Z.; Zhou, T.; Zhou, X.; Zhang, Y.; Meng, H.; Wang, W.; Liu, Y. A TastePeptides-Meta System Including an Umami/Bitter Classification Model Umami_YYDS, a TastePeptidesDB Database and an Open-Source Package Auto_Taste_ML. Food Chem. 2023, 405, 134812. [Google Scholar] [CrossRef] [PubMed]
- Tamura, M.; Nakatsuka, T.; Tada, M.; Kawasaki, Y.; Kikuchi, E.; Okai, H. The Relationship between Taste and Primary Structure of “Delicious Peptide” (Lys-Gly-Asp-Glu-Glu-Ser-Leu-Ala) from Beef Soup. Agric. Biol. Chem. 1989, 53, 319–325. [Google Scholar] [CrossRef]
- Remignon, H.; Gardahaut, M.F.; Marche, G.; Ricard, F.H. Selection for Rapid Growth Increases the Number and the Size of Muscle Fibres without Changing Their Typing in Chickens. J. Muscle Res. Cell Motil. 1995, 16, 95–102. [Google Scholar] [CrossRef] [PubMed]
- Rees, M.; Nikoopour, R.; Alexandrovich, A.; Pfuhl, M.; Lopes, L.R.; Akhtar, M.M.; Syrris, P.; Elliott, P.; Carr-White, G.; Gautel, M. Structure Determination and Analysis of Titin A-Band Fibronectin Type III Domains Provides Insights for Disease-Linked Variants and Protein Oligomerisation. J. Struct. Biol. 2023, 215, 108009. [Google Scholar] [CrossRef] [PubMed]
- Wang, Z.; Grange, M.; Pospich, S.; Wagner, T.; Kho, A.L.; Gautel, M.; Raunser, S. Structures from Intact Myofibrils Reveal Mechanism of Thin Filament Regulation through Nebulin. Science 2022, 375, eabn1934. [Google Scholar] [CrossRef] [PubMed]
- Saneyasu, T.; Tsuchihashi, T.; Kitashiro, A.; Tsuchii, N.; Kimura, S.; Honda, K.; Kamisoyama, H. The IGF-1/Akt/S6 Pathway and Expressions of Glycolytic Myosin Heavy Chain Isoforms Are Upregulated in Chicken Skeletal Muscle during the First Week after Hatching. Anim. Sci. J. 2017, 88, 1779–1787. [Google Scholar] [CrossRef] [PubMed]
- Hang, C.W.; Cui, M.M. Myomesin Gene Family and Related Diseases. Adv. Cardiovasc. Dis. 2021, 42, 314–317. [Google Scholar] [CrossRef]
- Blech-Hermoni, Y.; Subedi, K.; Silver, M.; Jensen, L.; Coscia, S.; Kates, M.M.; Zhao, Y.; Raley, C.; Edwards, N.; Tran, B.; et al. Expression of LIM Domain-Binding 3 (LDB3), a Striated Muscle Z-Band Alternatively Spliced PDZ-Motif Protein in the Nervous System. Sci. Rep. 2023, 13, 270. [Google Scholar] [CrossRef] [PubMed]
- He, L.C.; Wu, W.M.; Yang, H.Y.; Sun, X.X.; Peng, W.M.; Yue, L.L.; Jin, G.F.; Ma, M.H. Amino Acid and Polypeptide Profiles of γ-Irradiated Fresh Pork. Food Chem. 2018, 39, 26–33. [Google Scholar]
Heat Treatment Time | |||||||
---|---|---|---|---|---|---|---|
0 h | 0.5 h | 1 h | 2 h | 3 h | 4 h | 5 h | |
Protein content (mg/mL) | 34.95 ± 1.13 c | 37.52 ± 1.18 c | 61.39 ± 1.01 a | 62.68 ± 1.37 a | 37.03 ± 1.41 c | 52.48 ± 1.96 b | 60.40 ± 2.34 a |
Peptide content (mg/mL) | 26.70 ± 1.68 f | 47.10 ± 1.57 e | 52.50 ± 1.11 d | 56.60 ± 1.47 c | 57.60 ± 2.18 c | 75.00 ± 1.50 a | 66.30 ± 2.07 b |
Accession Number | Peptide Length | Molecular Weight | Protein Name | Peptides Quantity | |
---|---|---|---|---|---|
1 | A0A8V0ZZ81 | 34,378 | 3,820,161 | Titin | 557 |
2 | A0A8V0XZQ1 | 6356 | 735,970 | Nebulin | 355 |
3 | P13538 | 1939 | 223,145 | Myosin heavy chain | 165 |
4 | F1N9Z6 | 1587 | 177,328 | Myomesin-1 | 101 |
5 | A0A8V0Y5G5 | 701 | 75,370 | LIM domain binding 3 | 93 |
No. | Peptide Sequence | Abbreviations | Protein Source |
---|---|---|---|
1 | KKATAAEASSSVREVK | KK16 | A0A8V0ZUU8 |
2 | SFKKATAAEASSSVREVK | SK18 | A0A8V0ZZ81 |
3 | RVVDLMVHMASKE | RE13 | A0A8V0ZZ81 |
4 | EFGYSNRVVDLMVHMASKE | EE19 | A0A8V0ZZ14 |
5 | YEAFVKHIMSV | YV11 | P68246 |
6 | KEVDVSIKGEAVREDHLLLR | KR20 | P13538 |
7 | DWRKNIEEKSGMEGRKKMFEAG | DG22 | A0A8V0X091 |
8 | SSPHQHDQEVKSHALH | SH16 | A0A8V0Z679 |
9 | YEHHASSEEKITASEEK | YK17 | A0A8V0ZZ81 |
10 | SPHQHDQEVKSHALH | SH15 | A0A8V0XGP3 |
11 | SEKEYRKDLEEGVKGKG | SG17 | A0A8V0XZQ1 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Cai, L.; Zhu, Q.; Zhang, L.; Zheng, R.; Sun, B.; Zhang, Y. Analysis of Protein Degradation and Umami Peptide Release Patterns in Stewed Chicken Based on Proteomics Combined with Peptidomics Approach. Foods 2025, 14, 2497. https://doi.org/10.3390/foods14142497
Cai L, Zhu Q, Zhang L, Zheng R, Sun B, Zhang Y. Analysis of Protein Degradation and Umami Peptide Release Patterns in Stewed Chicken Based on Proteomics Combined with Peptidomics Approach. Foods. 2025; 14(14):2497. https://doi.org/10.3390/foods14142497
Chicago/Turabian StyleCai, Lei, Qiuyu Zhu, Lili Zhang, Ruiyi Zheng, Baoguo Sun, and Yuyu Zhang. 2025. "Analysis of Protein Degradation and Umami Peptide Release Patterns in Stewed Chicken Based on Proteomics Combined with Peptidomics Approach" Foods 14, no. 14: 2497. https://doi.org/10.3390/foods14142497
APA StyleCai, L., Zhu, Q., Zhang, L., Zheng, R., Sun, B., & Zhang, Y. (2025). Analysis of Protein Degradation and Umami Peptide Release Patterns in Stewed Chicken Based on Proteomics Combined with Peptidomics Approach. Foods, 14(14), 2497. https://doi.org/10.3390/foods14142497