Development of Hot Trub and Coffee Silverskin Phytoextracts for Sustainable Aerosol Disinfectant Application
Abstract
1. Introduction
2. Materials and Methods
2.1. Chemicals and Reagents
2.2. Materials
2.2.1. Extraction of Phytoextract from CSS and HT
2.2.2. Phytoextract Efficacy Test Strains
2.2.3. Media and Solutions
2.2.4. Bacteria Inoculum
2.2.5. Water of Standardized Hardness (WSH)
2.2.6. Neutralization Media for Efficacy Reaction
2.2.7. Efficacy Testing of CSS and HT Phytoextracts Against Model Bacteria
2.2.8. Disinfection of a 20 m3 Room Using the Aerosol Technique for Airborne Microbes
2.2.9. Disinfection of 20 m3 Room Using the Aerosol Technique for Surface Microbes
2.3. Chemical Characterization of CSS and HT Phytoextracts
2.3.1. LC-ESI-QTOF-MS Characterization of CSS and HT Phytoextracts
2.3.2. NMR Spectral Measurements of the Phytoextracts
2.3.3. FTIR Spectroscopy of the Phytoextracts
3. Results and Discussion
3.1. Extraction Yield of Upscaled HT and CSS for Aerosol Hygiene Disinfection Test
3.2. Efficacy Testing of Food Production Waste Phytoextracts Against Pathogenic and Nonpathogenic Organisms
3.3. Aerosol Hygiene Disinfection of Room Surfaces and Airborne Microbes
3.3.1. Surface Disinfection Using H2O2-Based, HT and CSS Phytoextracts
3.3.2. Aerosol Disinfection Against Airborne Microbes
3.3.3. Monitoring Room Condition During Disinfection
3.4. FTIR Characterization of HT and CSS Extracts
3.5. H-NMR Characterization of HT and CSS Phytoextracts
3.6. LC-ESI-QTOF-MS Characterization of CSS and HT Phytoextracts
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Osorio, L.L.D.R.; Flórez-López, E.; Grande-Tovar, C.D. The potential of selected agri-food loss and waste to contribute to a circular economy: Applications in the food, cosmetic and pharmaceutical industries. Molecules 2021, 26, 515. [Google Scholar] [CrossRef] [PubMed]
- Runti, G.; Pacor, S.; Colomban, S.; Gennaro, R.; Navarini, L.; Scocchi, M. Arabica coffee extract shows antibacterial activity against Staphylococcus epidermidis and Enterococcus faecalis and low toxicity towards a human cell line. LWT-Food Sci. Technol. 2015, 62, 108–114. [Google Scholar] [CrossRef]
- Costa, S.F.; Amparo, T.R.; Seibert, J.B.; Silveira, B.M.; da Silva, R.G.; Brandão, G.C.; de Medeiros Teixeira, L.F.; de Abreu Vieira, P.M.; da Silva, R.G.; Pereira, R.G.D.I.; et al. Reuse of hot trub as an active ingredient with antioxidant and antimicrobial potential. Waste Biomass Valorization 2021, 12, 2037–2047. [Google Scholar] [CrossRef]
- Islam, M.Z.; Zheng, L. Why is it necessary to integrate circular economy practices for agri-food sustainability from a global perspective? Sustain. Dev. 2025, 33, 600–620. [Google Scholar] [CrossRef]
- Lister, J. An address on the antiseptic system of treatment in surgery. Br. Med. J. 1868, 2, 53. [Google Scholar] [CrossRef] [PubMed]
- Young, A. Surgical Hand Preparation. In Infectection Control in Small Animal Clinical Practice; CABI Digital Library: Wallingford, UK, 2023; p. 74. [Google Scholar]
- Ford, B.D.; Sopha, C. An evaluation of conventional cleaning and disinfection and electrostatic disinfectant spraying in K-12 schools. Can. J. Infect. Control. 2020, 35, 35–38. [Google Scholar] [CrossRef]
- Ganesh, V.; Hettiarachchy, N.S.; Griffis, C.L.; Martin, E.M.; Ricke, S.C. Electrostatic spraying of food-grade organic and inorganic acids and plant extracts to decontaminate Escherichia coli O157:H7 on spinach and iceberg lettuce. J. Food Sci. 2012, 77, M391–M396. [Google Scholar] [CrossRef] [PubMed]
- Meireles, A.; Giaouris, E.; Simões, M. Alternative disinfection methods to chlorine for use in the fresh-cut industry. Food Res. Int. 2016, 82, 71–85. [Google Scholar] [CrossRef]
- Bhatwalkar, S.B.; Shukla, P.; Srivastava, R.K.; Mondal, R.; Anupam, R. Validation of environmental disinfection efficiency of traditional Ayurvedic fumigation practices. J. Ayurveda Integr. Med. 2019, 10, 203–206. [Google Scholar] [CrossRef] [PubMed]
- Ortega-Ramirez, L.A.; Rodriguez-Garcia, I.; Leyva, J.M.; Cruz-Valenzuela, M.R.; Silva-Espinoza, B.A.; Gonzalez-Aguilar, G.A.; Siddiqui, W.; Ayala-Zavala, J.F. Potential of medicinal plants as antimicrobial and antioxidant agents in food industry: A hypothesis. J. Food Sci. 2014, 79, R129–R137. [Google Scholar] [CrossRef] [PubMed]
- Ziemah, J.; Ullrich, M.S.; Kuhnert, N. Antibacterial activity potential of industrial food production waste extracts against pathogenic bacteria: Comparative analysis and characterization. Foods 2024, 13, 1902. [Google Scholar] [CrossRef] [PubMed]
- Bhavya, M.; Chandu, A.G.S.; Devi, S.S.; Quirin, K.W.; Pasha, A.; Vijayendra, S.V.N. In-vitro evaluation of antimicrobial and insect repellent potential of supercritical-carbon dioxide (SCF-CO2) extracts of selected botanicals against stored product pests and foodborne pathogens. J. Food Sci. Technol. 2020, 57, 1071–1079. [Google Scholar] [CrossRef] [PubMed]
- Cermak, P.; Olsovska, J.; Mikyska, A.; Dusek, M.; Kadleckova, Z.; Vanicek, J.; Nyc, O.; Sigler, K.; Bostikova, V.; Bostik, P. Strong antimicrobial activity of xanthohumol and other derivatives from hops (Humulus lupulus L.) on gut anaerobic bacteria. Apmis 2017, 125, 1033–1038. [Google Scholar] [CrossRef] [PubMed]
- Jaiswal, R.; Eravuchira, P.J.; Kuhnert, N. Profile and characterization of the chlorogenic acids in green Robusta coffee beans by LC-MS n: Identification of seven new classes of compounds. J. Agric. Food Chem. 2010, 58, 8722–8737. [Google Scholar] [CrossRef] [PubMed]
- Shrestha, A.; Rezk, A.; Said, I.H.; von Glasenapp, V.; Smith, R.; Ullrich, M.S.; Schepker, H.; Kuhnert, N. Comparison of the polyphenolic profile and antibacterial activity of the leaves, fruits and flowers of Rhododendron ambiguum and Rhododendron cinnabarinum. BMC Res. Notes 2017, 10, 297. [Google Scholar] [CrossRef] [PubMed]
- Matharu, A.S.; de Melo, E.M.; Houghton, J.A. Opportunity for high value-added chemicals from food supply chain wastes. Bioresour. Technol. 2016, 215, 123–130. [Google Scholar] [CrossRef] [PubMed]
- Tiwari, B.K.; Valdramidis, V.P.; Donnell, C.P.O.; Muthukumarappan, K.; Bourke, P.; Cullen, P.J. Application of natural antimicrobials for food preservation. J. Agric. Food Chem. 2009, 57, 5987–6000. [Google Scholar] [CrossRef] [PubMed]
- Elshamy, S.; Kuhnert, N.; El-Shazly, M.; Ziemah, J.; Handoussa, H. Comparative metabolomic study of twelve Acacia species by UHPLC-q-tof-ESI-MS coupled with chemometrics in correlation with antibacterial activity. Fitoterapia 2025, 181, 106378. [Google Scholar] [CrossRef] [PubMed]
- Katerji, A.; Trefi, S.; Bitar, Y.; Ibrahim, A. Evaluation of new formulations for neutralizing antimicrobial preservatives in pharmaceutical preparations. Heliyon 2023, 9, e14555. [Google Scholar] [CrossRef] [PubMed]
- Hendrawati, O.; Hendrawati, O.; Yao, Q.; Kim, H.K.; Linthorst, H.J.M.; Erkelens, C.; Lefeber, A.W.M.; Choi, Y.H.; Verpoorte, R. Metabolic differentiation of Arabidopsis treated with methyl jasmonate using nuclear magnetic resonance spectroscopy. Plant Sci. 2006, 170, 1118–1124. [Google Scholar] [CrossRef]
- Van de Velde, F.; Yao, Q.; Kim, H.K.; Linthorst, H.J.M.; Erkelens, C.; Lefeber, A.W.M.; Choi, Y.H.; Verpoorte, R. Optimization of strawberry disinfection by fogging of a mixture of peracetic acid and hydrogen peroxide based on microbial reduction, color and phytochemicals retention. Food Sci. Technol. Int. 2016, 22, 485–495. [Google Scholar] [CrossRef] [PubMed]
- Steindl, G.; Fiedler, A.; Huhulescu, S.; Wewalka, G.; Allerberger, F. Effekt von gasförmigem Wasserstoffperoxid auf Sporen von Clostridium difficile. Wien. Klin. Wochenschr. 2015, 127, 421–426. [Google Scholar] [CrossRef] [PubMed]
- Vanhecke, P.; Sigwarth, V.; Moirandat, C. A potent and safe H2O2 fumigation approach. PDA J. Pharm. Sci. Technol. 2012, 66, 354–370. [Google Scholar] [CrossRef] [PubMed]
- Mahfooz, S.; Itrat, M. Effect of plant-products fumigation on airborne microbes. J. Pharm. Res. Int. 2021, 33, 124–132. [Google Scholar] [CrossRef]
- Deshpande, S.; El-Abassy, R.M.; Jaiswal, R.; Eravuchira, P.; von der Kammer, B.; Materny, A.; Kuhnert, N. Which spectroscopic technique allows the best differentiation of coffee varieties: Comparing principal component analysis using data derived from CD-, NMR-and IR-spectroscopies and LC-MS in the analysis of the chlorogenic acid fraction in green coffee beans. Anal. Methods 2014, 6, 3268–3276. [Google Scholar]
- El-Abassy, R.M.; Donfack, P.; Materny, A. Discrimination between Arabica and Robusta green coffee using visible micro Raman spectroscopy and chemometric analysis. Food Chem. 2011, 126, 1443–1448. [Google Scholar] [CrossRef]
- e Silva, K.F.C.; Rabelo, R.S.; Feltre, G.; Hubinger, M. Bitter substances recovery from hot trub: A study of polymeric membranes performance in a sequential mode with fouling investigation. Sep. Purif. Technol. 2022, 303, 122241. [Google Scholar] [CrossRef]
- Arana, V.; Medina, J.; Alarcon, R.; Moreno, E.; Heintz, L.; Schäfer, H.; Wist, J. Coffee’s country of origin determined by NMR: The Colombian case. Food Chem. 2015, 175, 500–506. [Google Scholar] [CrossRef] [PubMed]
- Wang, Y.; Wang, X.; Hu, G.; Hong, D.; Bai, X.; Guo, T.; Zhou, H.; Li, J.; Qiu, M. Chemical ingredients characterization basing on 1H NMR and SHS-GC/MS in twelve cultivars of Coffea arabica roasted beans. Food Res. Int. 2021, 147, 110544. [Google Scholar] [CrossRef] [PubMed]
- Kamal, G.M.; Uddin, J.; Muhsinah, A.B.; Wang, X.; Noreen, A.; Sabir, A.; Musharraf, S.G. 1H NMR-Based metabolomics and 13C isotopic ratio evaluation to differentiate conventional and organic soy sauce. Arab. J. Chem. 2022, 15, 103516. [Google Scholar] [CrossRef]
- Intelmann, D.; Haseleu, G.; Dunkel, A.; Lagemann, A.; Stephan, A.; Hofmann, T. Comprehensive sensomics analysis of hop-derived bitter compounds during storage of beer. J. Agric. Food Chem. 2011, 59, 1939–1953. [Google Scholar] [CrossRef] [PubMed]
- Bogdanova, K.; Röderova, M.; Kolar, M.; Langova, K.; Dusek, M.; Jost, P.; Kubelkova, K.; Bostik, P.; Olsovska, J. Antibiofilm activity of bioactive hop compounds humulone, lupulone and xanthohumol toward susceptible and resistant staphylococci. Res. Microbiol. 2018, 169, 127–134. [Google Scholar] [CrossRef] [PubMed]
- Rudrapal, M.; Khan, J.; Dukhyil, A.A.B.; Alarousy, R.M.I.I.; Attah, E.I.; Sharma, T.; Khairnar, S.J.; Bendale, A.R. Chalcone scaffolds, bioprecursors of flavonoids: Chemistry, bioactivities, and pharmacokinetics. Molecules 2021, 26, 7177. [Google Scholar] [CrossRef] [PubMed]
Disinfectant/Formulation Microbes | Swiping Surfaces Reduction (%) | Airborne Reduction (%) | ||||
---|---|---|---|---|---|---|
Sampling positions | Table | Pump | Radiator | Shelf | Shelf | Radiator |
H2O2-based | ||||||
Bacterial | 100 | 42 | 95 | 71 | 91 | 94 |
Mold and yeast | 95 | 100 | 83 | 80 | 88 | 82 |
HT phytoextract | ||||||
Bacterial | 52 | 42 | 55 | 70 | 64 | 49 |
Mold and yeast | 68 | 67 | 60 | 46 | 59 | 53 |
CSS phytoextract | ||||||
Bacterial | 61 | 60 | 64 | 71 | 62 | 89 |
Mold and yeast | 95 | 100 | 100 | 80 | 52 | 85 |
Product | Room Condition | Minimum | Average | Maximum |
---|---|---|---|---|
H2O2-based disinfectant | Temperature (°C) | 24.4 | 26.5 | 27.7 |
Humidity (%rH) | 38.4 | 50.1 | 60.2 | |
Dewpoint (°C) | 10.4 | 15.1 | 18.7 | |
HT Phytoextract | Temperature (°C) | 24.8 | 26.0 | 27.0 |
Humidity (%rH) | 36.4 | 48.1 | 60.1 | |
Dewpoint (°C) | 9.0 | 13.9 | 17.9 | |
CSS Phytoextract | Temperature (°C) | 21.6 | 23.0 | 26.4 |
Humidity (%rH) | 36.5 | 45.9 | 60.3 | |
Dewpoint (°C) | 10.1 | 14.5 | 18.3 |
Spectral Technique | Phytoextract | Key Markers | Functional Interpretation |
---|---|---|---|
FTIR | Coffee Silverskin | Chlorogenic acids (C=O ester stretch ~1724 cm−1, aromatic C=C ~1600 cm−1) | Supports the antioxidant and antimicrobial function of polyphenols |
FTIR | Hot Trub | Chalcones (C=C conjugation ~1660 cm−1, aromatic C=C ~1600 cm−1) | Indicative of antimicrobial chalcone structures |
FTIR | Hot Trub | Bitter acids (C–H bending ~1440 cm−1, phenolic O–H stretch) | Linked to hop-derived bitter acids with antimicrobial effects |
1H-NMR | Coffee Silverskin | Chlorogenic acids (aromatic protons at 6.2–7.6 ppm) | Correlates with polyphenolic activity in bacterial membrane disruption |
1H-NMR | Hot Trub | Aliphatic protons from bitter acids (multiplet at ~1.5–1.6 ppm) | Markers for hydrophobic antimicrobial components |
1H-NMR | Hot Trub | Aromatic ring protons of chalcones (7.0–7.8 ppm) | Confirms the presence of aromatic antimicrobial metabolites |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Ziemah, J.; Ullrich, M.S.; Kuhnert, N. Development of Hot Trub and Coffee Silverskin Phytoextracts for Sustainable Aerosol Disinfectant Application. Foods 2025, 14, 2496. https://doi.org/10.3390/foods14142496
Ziemah J, Ullrich MS, Kuhnert N. Development of Hot Trub and Coffee Silverskin Phytoextracts for Sustainable Aerosol Disinfectant Application. Foods. 2025; 14(14):2496. https://doi.org/10.3390/foods14142496
Chicago/Turabian StyleZiemah, James, Matthias S. Ullrich, and Nikolai Kuhnert. 2025. "Development of Hot Trub and Coffee Silverskin Phytoextracts for Sustainable Aerosol Disinfectant Application" Foods 14, no. 14: 2496. https://doi.org/10.3390/foods14142496
APA StyleZiemah, J., Ullrich, M. S., & Kuhnert, N. (2025). Development of Hot Trub and Coffee Silverskin Phytoextracts for Sustainable Aerosol Disinfectant Application. Foods, 14(14), 2496. https://doi.org/10.3390/foods14142496