Differential Effects of Non-Microbial Biostimulants on Secondary Metabolites and Nitrate Content in Organic Arugula Leaves
Abstract
1. Introduction
2. Materials and Methods
2.1. Experimental Design, Treatments, and Sample Collection
2.2. Determination of Nitrate and Organic Acid Content
Reagents and Chemicals
2.3. Extraction Method
2.3.1. GLSs
2.3.2. Phenolic Compounds
2.3.3. UHPLC-Q-Orbitrap HRMS Analysis
2.4. GLSs
2.5. Phenolic Compounds
2.6. Data Analysis
3. Results and Discussion
3.1. Nitrate Content: Influence of Non-Microbial Biostimulants
3.2. Biostimulant-Specific Enhancement of Glucosinolate Content in Organic Arugula
3.3. Targeted Enhancement of Phenolic Compound Content in Organic Arugula by Biostimulants
3.4. Organic Acid Content: Influence of Non-Microbial Biostimulants
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Galanakis, C.M.; Rizou, M.; Aldawoud, T.M.; Ucak, I.; Rowan, N.J. Innovations and technology disruptions in the food sector within the COVID-19 pandemic and post-lockdown era. Trends Food Sci. Technol. 2021, 110, 193–200. [Google Scholar] [CrossRef] [PubMed]
- Bodirsky, B.L.; Dietrich, J.P.; Martinelli, E.; Stenstad, A.; Pradhan, P.; Gabrysch, S.; Mishra, A.; Weindl, I.; Le Mouël, C.; Rolinski, S. The ongoing nutrition transition thwarts long-term targets for food security, public health and environmental protection. Sci. Rep. 2020, 10, 19778. [Google Scholar] [CrossRef]
- Kris-Etherton, P.M.; Petersen, K.S.; Després, J.-P.; Anderson, C.A.; Deedwania, P.; Furie, K.L.; Lear, S.; Lichtenstein, A.H.; Lobelo, F.; Morris, P.B. Strategies for promotion of a healthy lifestyle in clinical settings: Pillars of ideal cardiovascular health: A science advisory from the American Heart Association. Circulation 2021, 144, e495–e514. [Google Scholar] [CrossRef] [PubMed]
- Rasines, L.; Morera, S.; San Miguel, G.; Aguayo, E. Exploring the total cost of whole fresh, fresh-cut and pre-cooked vegetables. Int. J. Life Cycle Assess. 2024, 29, 967–982. [Google Scholar] [CrossRef]
- Caruso, G.; Parrella, G.; Giorgini, M.; Nicoletti, R. Crop systems, quality and protection of Diplotaxis tenuifolia. Agriculture 2018, 8, 55. [Google Scholar] [CrossRef]
- Giordano, M.; El-Nakhel, C.; Caruso, G.; Cozzolino, E.; De Pascale, S.; Kyriacou, M.C.; Colla, G.; Rouphael, Y. Stand-alone and combinatorial effects of plant-based biostimulants on the production and leaf quality of perennial wall rocket. Plants 2020, 9, 922. [Google Scholar] [CrossRef]
- Rana, M.K. Vegetable Crop Science; CRC Press: Boca Raton, FL, USA, 2017. [Google Scholar]
- Renna, M.; Montesano, F.F.; Serio, F.; Gonnella, M. The Mediterranean diet between traditional foods and human health through culinary examples. In Gastronomy and Food Science; Elsevier: Amsterdam, The Netherlands, 2021; pp. 75–99. [Google Scholar]
- Motti, R.; Bonanomi, G.; Lanzotti, V.; Sacchi, R. The contribution of wild edible plants to the Mediterranean Diet: An ethnobotanical case study along the coast of Campania (Southern Italy). Econ. Bot. 2020, 74, 249–272. [Google Scholar] [CrossRef]
- Brender, J.D. Human health effects of exposure to nitrate, nitrite, and nitrogen dioxide. In Just Enough Nitrogen: Perspectives on How to Get There for Regions with Too Much and Too Little Nitrogen; Springer Nature: Cham, Switzerland, 2020; pp. 283–294. [Google Scholar]
- Karwowska, M.; Kononiuk, A. Nitrates/nitrites in food—Risk for nitrosative stress and benefits. Antioxidants 2020, 9, 241. [Google Scholar] [CrossRef]
- Orouji, N.; Asl, S.K.; Taghipour, Z.; Habtemariam, S.; Nabavi, S.M.; Rahimi, R. Glucosinolates in cancer prevention and treatment: Experimental and clinical evidence. Med. Oncol. 2023, 40, 344. [Google Scholar] [CrossRef]
- Gasmi, A.; Gasmi Benahmed, A.; Shanaida, M.; Chirumbolo, S.; Menzel, A.; Anzar, W.; Arshad, M.; Cruz-Martins, N.; Lysiuk, R.; Beley, N. Anticancer activity of broccoli, its organosulfur and polyphenolic compounds. Crit. Rev. Food Sci. Nutr. 2024, 64, 8054–8072. [Google Scholar] [CrossRef]
- Pasini, F.; Verardo, V.; Caboni, M.F.; D’Antuono, L.F. Determination of glucosinolates and phenolic compounds in rocket salad by HPLC-DAD–MS: Evaluation of Eruca sativa Mill. and Diplotaxis tenuifolia L. genetic resources. Food Chem. 2012, 133, 1025–1033. [Google Scholar] [CrossRef]
- Ketnawa, S.; Reginio Jr, F.C.; Thuengtung, S.; Ogawa, Y. Changes in bioactive compounds and antioxidant activity of plant-based foods by gastrointestinal digestion: A review. Crit. Rev. Food Sci. Nutr. 2022, 62, 4684–4705. [Google Scholar] [CrossRef] [PubMed]
- Sharif, M.; Ejaz, M.; Nawaz, A.; Saeeda, U.H.; Naeem, S.; Khan, S. Impact of Dietary Flavonoid Metabolism on Gut Microbiome: A Key Therapeutic Approach for the Management of Type 2 Diabetes Mellitus. In Role of Flavonoids in Chronic Metabolic Diseases: From Bench to Clinic; Scrivener: Austin, TX, USA, 2024; pp. 189–225. [Google Scholar]
- Singh, S.; Singh, R.; Thakur, P.; Kumar, R. Phytochemicals, functionality and breeding for enrichment of cole vegetables (Brassica oleracea L.). In Phytochemicals in Vegetables: A Valuable Source of Bioactive Compounds; Bentham Science Publishers: Singapore, 2018; pp. 256–295. [Google Scholar]
- Khare, S.; Singh, N.; Singh, A.; Hussain, I.; Niharika, K.; Yadav, V.; Bano, C.; Yadav, R.K.; Amist, N. Plant secondary metabolites synthesis and their regulations under biotic and abiotic constraints. J. Plant Biol. 2020, 63, 203–216. [Google Scholar] [CrossRef]
- Aguirre-Becerra, H.; Vazquez-Hernandez, M.C.; Saenz de la O, D.; Alvarado-Mariana, A.; Guevara-Gonzalez, R.G.; Garcia-Trejo, J.F.; Feregrino-Perez, A.A. Role of stress and defense in plant secondary metabolites production. In Bioactive Natural Products for Pharmaceutical Applications; Springer: Cham, Switzerland, 2021; pp. 151–195. [Google Scholar]
- Nephali, L.; Piater, L.A.; Dubery, I.A.; Patterson, V.; Huyser, J.; Burgess, K.; Tugizimana, F. Biostimulants for plant growth and mitigation of abiotic stresses: A metabolomics perspective. Metabolites 2020, 10, 505. [Google Scholar] [CrossRef] [PubMed]
- Ramakrishnan, B.; Maddela, N.R.; Venkateswarlu, K.; Megharaj, M. Organic farming: Does it contribute to contaminant-free produce and ensure food safety? Sci. Total Environ. 2021, 769, 145079. [Google Scholar] [CrossRef]
- Soltaniband, V.; Brégard, A.; Gaudreau, L.; Dorais, M. Biostimulants promote plant development, crop productivity, and fruit quality of protected strawberries. Agronomy 2022, 12, 1684. [Google Scholar] [CrossRef]
- Quintarelli, V.; Borgatti, D.; Baretta, M.; Stazi, S.R.; Allevato, E.; Pancaldi, S.; Baldisserotto, C.; Mancinelli, R.; Tedeschi, P.; Radicetti, E. Microbial biofertilizers and algae-based biostimulant affect fruit yield characteristics of organic processing tomato. J. Sci. Food Agric. 2025, 105, 530–539. [Google Scholar] [CrossRef]
- Farruggia, D.; Tortorici, N.; Iacuzzi, N.; Alaimo, F.; Leto, C.; Tuttolomondo, T. Biostimulants improve plant performance of rosemary growth in agricultural organic system. Agronomy 2024, 14, 158. [Google Scholar] [CrossRef]
- Gavelienė, V.; Šocik, B.; Jankovska-Bortkevič, E.; Jurkonienė, S. Plant microbial biostimulants as a promising tool to enhance the productivity and quality of carrot root crops. Microorganisms 2021, 9, 1850. [Google Scholar] [CrossRef]
- Ganugi, P.; Fiorini, A.; Tabaglio, V.; Capra, F.; Zengin, G.; Bonini, P.; Caffi, T.; Puglisi, E.; Trevisan, M.; Lucini, L. The functional profile and antioxidant capacity of tomato fruits are modulated by the interaction between microbial biostimulants, soil properties, and soil nitrogen status. Antioxidants 2023, 12, 520. [Google Scholar] [CrossRef]
- Li, J.; Lardon, R.; Mangelinckx, S.; Geelen, D. A practical guide to the discovery of biomolecules with biostimulant activity. J. Exp. Bot. 2024, 75, 3797–3817. [Google Scholar] [CrossRef] [PubMed]
- Ciriello, M.; Campana, E.; Colla, G.; Rouphael, Y. An Appraisal of Nonmicrobial Biostimulants’ Impact on the Productivity and Mineral Content of Wild Rocket (Diplotaxis tenuifolia (L.) DC.) Cultivated under Organic Conditions. Plants 2024, 13, 1326. [Google Scholar] [CrossRef] [PubMed]
- Colla, G.; Cardarelli, M.; Bonini, P.; Rouphael, Y. Foliar applications of protein hydrolysate, plant and seaweed extracts increase yield but differentially modulate fruit quality of greenhouse tomato. HortScience 2017, 52, 1214–1220. [Google Scholar] [CrossRef]
- Formisano, L.; Ciriello, M.; El-Nakhel, C.; De Pascale, S.; Rouphael, Y. Dataset on the effects of anti-insect nets of different porosity on mineral and organic acids profile of Cucurbita pepo L. fruits and leaves. Data 2021, 6, 50. [Google Scholar] [CrossRef]
- Izzo, L.; Castaldo, L.; Lombardi, S.; Gaspari, A.; Grosso, M.; Ritieni, A. Bioaccessibility and antioxidant capacity of bioactive compounds from various typologies of canned tomatoes. Front. Nutr. 2022, 9, 849163. [Google Scholar] [CrossRef] [PubMed]
- Santamaria, P.; Elia, A.; Serio, F. Effect of solution nitrogen concentration on yield, leaf element content, and water and nitrogen use efficiency of three hydroponically-grown rocket salad genotypes. J. Plant Nutr. 2002, 25, 245–258. [Google Scholar] [CrossRef]
- Weightman, R.; Huckle, A.; Roques, S.; Ginsburg, D.; Dyer, C. Factors influencing tissue nitrate concentration in field-grown wild rocket (Diplotaxis tenuifolia) in southern England. Food Addit. Contam. Part A 2012, 29, 1425–1435. [Google Scholar] [CrossRef]
- Bell, L.; Wagstaff, C. Rocket science: A review of phytochemical & health-related research in Eruca & Diplotaxis species. Food Chem. X 2019, 1, 100002. [Google Scholar]
- Jonvik, K.L.; Nyakayiru, J.; Pinckaers, P.J.; Senden, J.M.; van Loon, L.J.; Verdijk, L.B. Nitrate-rich vegetables increase plasma nitrate and nitrite concentrations and lower blood pressure in healthy adults. J. Nutr. 2016, 146, 986–993. [Google Scholar] [CrossRef]
- Htwe, N.M.P.S.; Ruangrak, E. A review of sensing, uptake, and environmental factors influencing nitrate accumulation in crops. J. Plant Nutr. 2021, 44, 1054–1065. [Google Scholar] [CrossRef]
- Raffo, A.; Masci, M.; Moneta, E.; Nicoli, S.; Del Pulgar, J.S.; Paoletti, F. Characterization of volatiles and identification of odor-active compounds of rocket leaves. Food Chem. 2018, 240, 1161–1170. [Google Scholar] [CrossRef]
- Bell, L.; Wagstaff, C. Glucosinolates, myrosinase hydrolysis products, and flavonols found in rocket (Eruca sativa and Diplotaxis tenuifolia). J. Agric. Food Chem. 2014, 62, 4481–4492. [Google Scholar] [CrossRef] [PubMed]
- Kamal, M.M.; Akter, S.; Lin, C.-N.; Nazzal, S. Sulforaphane as an anticancer molecule: Mechanisms of action, synergistic effects, enhancement of drug safety, and delivery systems. Arch. Pharmacal Res. 2020, 43, 371–384. [Google Scholar] [CrossRef] [PubMed]
- Xu, L.; Nagata, N.; Ota, T. Glucoraphanin: A broccoli sprout extract that ameliorates obesity-induced inflammation and insulin resistance. Adipocyte 2018, 7, 218–225. [Google Scholar] [CrossRef] [PubMed]
- Wagner, A.E.; Sturm, C.; Piegholdt, S.; Wolf, I.M.; Esatbeyoglu, T.; De Nicola, G.R.; Iori, R.; Rimbach, G. Myrosinase-treated glucoerucin is a potent inducer of the Nrf2 target gene heme oxygenase 1—Studies in cultured HT-29 cells and mice. J. Nutr. Biochem. 2015, 26, 661–666. [Google Scholar] [CrossRef]
- Genah, S.; Ciccone, V.; Filippelli, A.; Simonis, V.; Martelli, A.; Piragine, E.; Pagnotta, E.; Pecchioni, N.; Calderone, V.; Morbidelli, L. Erucin, a natural isothiocyanate, exerts pro-angiogenic properties in cultured endothelial cells and reverts angiogenic impairment induced by high glucose. Phytother. Res. 2024, 38, 2641–2655. [Google Scholar] [CrossRef]
- Tran, T.L.C.; Callahan, D.L.; Islam, M.T.; Wang, Y.; Arioli, T.; Cahill, D. Comparative metabolomic profiling of Arabidopsis thaliana roots and leaves reveals complex response mechanisms induced by a seaweed extract. Front. Plant Sci. 2023, 14, 1114172. [Google Scholar] [CrossRef]
- Martínez-Lorente, S.E.; Martí-Guillén, J.M.; Pedreño, M.Á.; Almagro, L.; Sabater-Jara, A.B. Higher plant-derived biostimulants: Mechanisms of action and their role in mitigating plant abiotic stress. Antioxidants 2024, 13, 318. [Google Scholar] [CrossRef]
- Lephatsi, M.; Nephali, L.; Meyer, V.; Piater, L.A.; Buthelezi, N.; Dubery, I.A.; Opperman, H.; Brand, M.; Huyser, J.; Tugizimana, F. Molecular mechanisms associated with microbial biostimulant-mediated growth enhancement, priming and drought stress tolerance in maize plants. Sci. Rep. 2022, 12, 10450. [Google Scholar] [CrossRef]
- Bell, L.; Oruna-Concha, M.J.; Wagstaff, C. Identification and quantification of glucosinolate and flavonol compounds in rocket salad (Eruca sativa, Eruca vesicaria and Diplotaxis tenuifolia) by LC–MS: Highlighting the potential for improving nutritional value of rocket crops. Food Chem. 2015, 172, 852–861. [Google Scholar] [CrossRef]
- Manach, C.; Scalbert, A.; Morand, C.; Rémésy, C.; Jiménez, L. Polyphenols: Food sources and bioavailability. Am. J. Clin. Nutr. 2004, 79, 727–747. [Google Scholar] [CrossRef] [PubMed]
- Shen, N.; Wang, T.; Gan, Q.; Liu, S.; Wang, L.; Jin, B. Plant flavonoids: Classification, distribution, biosynthesis, and antioxidant activity. Food Chem. 2022, 383, 132531. [Google Scholar] [CrossRef] [PubMed]
- Tao, Y.; Zhang, H.; Wang, Y. Revealing and predicting the relationship between the molecular structure and antioxidant activity of flavonoids. LWT 2023, 174, 114433. [Google Scholar] [CrossRef]
- Zheng, Y.-Z.; Deng, G.; Liang, Q.; Chen, D.-F.; Guo, R.; Lai, R.-C. Antioxidant activity of quercetin and its glucosides from propolis: A theoretical study. Sci. Rep. 2017, 7, 7543. [Google Scholar] [CrossRef]
- Olszowy-Tomczyk, M.; Wianowska, D. Antioxidant properties of selected flavonoids in binary mixtures—Considerations on myricetin, kaempferol and quercetin. Int. J. Mol. Sci. 2023, 24, 10070. [Google Scholar] [CrossRef]
- Flores, P.; Pedreño, M.; Almagro, L.; Hernández, V.; Fenoll, J.; Hellín, P. Increasing nutritional value of broccoli with seaweed extract and trilinolein. J. Food Compos. Anal. 2021, 98, 103834. [Google Scholar] [CrossRef]
- Ali, O.; Ramsubhag, A.; Jayaraman, J. Biostimulatory activities of Ascophyllum nodosum extract in tomato and sweet pepper crops in a tropical environment. PLoS ONE 2019, 14, e0216710. [Google Scholar] [CrossRef]
- Ciriello, M.; Fusco, G.M.; Woodrow, P.; Carillo, P.; Rouphael, Y. Unravelling the nexus of plant response to non-microbial biostimulants under stress conditions. Plant Stress 2024, 11, 100421. [Google Scholar] [CrossRef]
- Rashmi, H.B.; Negi, P.S. Phenolic acids from vegetables: A review on processing stability and health benefits. Food Res. Int. 2020, 136, 109298. [Google Scholar] [CrossRef]
- Bourne, L.C.; Rice-Evans, C. Bioavailability of ferulic acid. Biochem. Biophys. Res. Commun. 1998, 253, 222–227. [Google Scholar] [CrossRef]
- Pannico, A.; Kyriacou, M.C.; El-Nakhel, C.; Graziani, G.; Carillo, P.; Corrado, G.; Ritieni, A.; Rouphael, Y.; De Pascale, S. Hemp microgreens as an innovative functional food: Variation in the organic acids, amino acids, polyphenols, and cannabinoids composition of six hemp cultivars. Food Res. Int. 2022, 161, 111863. [Google Scholar] [CrossRef] [PubMed]
- Mitchell, T.; Kumar, P.; Reddy, T.; Wood, K.D.; Knight, J.; Assimos, D.G.; Holmes, R.P. Dietary oxalate and kidney stone formation. Am. J. Physiol.-Ren. Physiol. 2019, 316, F409–F413. [Google Scholar] [CrossRef] [PubMed]
- Flores, P.; Hellín, P.; Fenoll, J. Determination of organic acids in fruits and vegetables by liquid chromatography with tandem-mass spectrometry. Food Chem. 2012, 132, 1049–1054. [Google Scholar] [CrossRef]
- Bell, L.; Chadwick, M.; Puranik, M.; Tudor, R.; Methven, L.; Wagstaff, C. Quantitative trait loci analysis of glucosinolate, sugar, and organic acid concentrations in Eruca vesicaria subsp. sativa. Mol. Hortic. 2022, 2, 23. [Google Scholar] [CrossRef] [PubMed]
Compounds | Glucosinolate Classification | Adduct Ion | Chemical Formula | Theoretical Mass (m/z) | Measured Mass (m/z) | Accuracy | LOD (mg kg−1) | LOQ (mg kg−1) |
---|---|---|---|---|---|---|---|---|
(Δ mg kg−1) | ||||||||
Glucotropaeolin * | Aromatic | [M-H]− | C14H19NO9S2 | 408.04285 | 408.04269 | −0.39212 | 0.052 | 0.156 |
Sinigrin * | Aliphatic | [M-H]− | C10H17NO9S2 | 358.02719 | 358.02747 | 0.78206 | 0.052 | 0.156 |
Glucoraphenin | Aliphatic | [M-H]− | C12H21NO10S3 | 434.02548 | 434.04515 | 45.31992 | - | - |
Glucoraphanin | Aliphatic | [M-H]− | C12H23NO10S3 | 436.04113 | 436.04095 | −0.41281 | - | - |
Glucoiberin | Aliphatic | [M-H]− | C11H21NO10S3 | 422.02548 | 422.02515 | −0.78194 | - | - |
Progoitrin | Aliphatic | [M-H]− | C11H19NO10S2 | 388.03776 | 388.03751 | −0.64427 | - | - |
Sinalbin | Aliphatic | [M-H]− | C14H19NO10S2 | 424.03776 | 424.03778 | 0.04717 | - | - |
Glucoerucin | Aliphatic | [M-H]− | C12H23NO9S3 | 420.04622 | 420.04599 | −0.54756 | - | - |
Glucobrassicin | Indole | [M-H]− | C16H20N2O9S2 | 447.05374 | 447.05389 | 0.33553 | - | - |
Gluconasturtiin | Aromatic | [M-H]− | C15H21NO9S2 | 422.05850 | 422.05960 | 2.60627 | - | - |
Glucoberteroin | Aliphatic | [M-H]− | C13H25NO9S3 | 434.06187 | 434.06198 | 0.25342 | - | - |
Glucobarbarin | Aliphatic | [M-H]− | C15H21NO10S2 | 438.05341 | 438.04999 | −7.80727 | - | - |
Glucocheirolin | Aliphatic | [M-H]− | C11H21NO11S3 | 438.02039 | 438.01996 | −0.98169 | - | - |
Glucoalyssin | Aliphatic | [M-H]− | C13H25NO10S3 | 450.05678 | 450.05704 | 0.57770 | - | - |
Treatment | Glucosinalbin | Glucoerucin | Glucobrassicin | Gluconasturtin | Glucoalyssin | Glucoraphenin | Glucoiberin | Progoitrin | Glucoraphanin | Glucocheirolin |
---|---|---|---|---|---|---|---|---|---|---|
µg g−1 DW | ||||||||||
Control | 7.2 ± 0.213 | 74.7 ± 2.75 b | 4.23 ± 0.09 | 3.65 ± 0.03 | 3.25 ± 0.10 | - | 2.72 ± 0.17 ab | 12.17 ± 1.02 a | 202.25 ± 1.73 ab | 5.27 ± 0.33 b |
PE | 6.95 ± 0.159 | 85.7 ± 1.97 a | 4.08 ± 0.16 | 3.67 ± 0.01 | 2.97 ± 0.20 | - | 2.51 ± 0.07 b | 8.43 ± 0.52 b | 212.48 ± 3.99 a | 4.15 ± 0.18 b |
V-PH | 6.58 ± 0.233 | 91.83 ± 2.1 a | 4.21 ± 0.23 | 3.73 ± 0.06 | 2.75 ± 0.40 | 1.82 ± 0.01 | 3.17 ± 0.17 ab | 10.87 ± 0.71 ab | 197.45 ± 2.34 b | 9.32 ± 0.47 a |
SWE | 7.17 ± 0.142 | 85.78 ± 2.5 a | 4.72 ± 0.23 | 3.95 ± 0.17 | 3.09 ± 0.16 | 1.77 ± 0.01 | 3.77 ± 0.48 a | 11.7 ± 1.07 ab | 191.77 ± 1.95 b | 8.67 ± 0.27 a |
n.s | ** | n.s | n.s | n.s | n.s | * | * | *** | *** |
Compounds | Adduct Ion | Chemical Formula | Theoretical Mass (m/z) | Measured Mass (m/z) | Accuracy (Δ mg kg−1) | LOD (mg kg−1) | LOQ (mg kg−1) |
---|---|---|---|---|---|---|---|
Quinic acid * | [M-H]− | C7H12O6 | 191.05531 | 191.05611 | 4.18727 | 0.013 | 0.039 |
Protocatechuic acid * | [M-H]− | C7H6O4 | 153.01930 | 153.01857 | −4.77064 | 0.013 | 0.039 |
Chlorogenic acid * | [M-H]− | C16H18O9 | 353.08780 | 353.08798 | 0.50979 | 0.013 | 0.039 |
Caffeic acid * | [M-H]− | C9H8O4 | 179.03498 | 179.03455 | −2.40177 | 0.013 | 0.039 |
p-Coumaric acid * | [M-H]− | C9H8O3 | 163.04001 | 163.03937 | −3.92542 | 0.013 | 0.039 |
Genistein * | [M-H]− | C15H10O5 | 269.04554 | 269.04562 | 0.29735 | 0.013 | 0.039 |
Ferulic acid * | [M-H]− | C10H10O4 | 193.05063 | 193.05016 | −2.43459 | 0.026 | 0.078 |
Naringin * | [M-H]− | C27H32O14 | 579.17193 | 579.17212 | 0.32805 | 0.013 | 0.-039 |
Rutin * | [M-H]− | C27H30O16 | 609.14611 | 609.14673 | 1.01782 | 0.013 | 0.039 |
Myricitrin * | [M-H]− | C21H20O12 | 463.08820 | 463.08701 | −2.56970 | 0.013 | 0.039 |
Quercetin * | [M-H]− | C15H10O7 | 301.03538 | 301.03508 | −0.29735 | 0.019 | 0.057 |
Kaempferol * | [M-H]− | C15H10O6 | 285.04046 | 285.04086 | 1.40330 | 0.013 | 0.039 |
Apigenin * | [M-H]− | C15H10O5 | 269.04555 | 269.04572 | 0.63190 | 0.013 | 0.039 |
Luteolin * | [M-H]− | C15H10O6 | 285.04046 | 285.04086 | 1.40331 | 0.026 | 0.078 |
Quercetin 3-galattoside * | [M-H]− | C21H20O12 | 463.08820 | 463.08884 | 1.38203 | 0.026 | 0.078 |
Quercetin-3-o-feruloyyl-sophoros | [M-H]− | C37H38O20 | 801.18836 | 801.18781 | −0.68648 | - | - |
Treatment | Chlorogenic Acid | Caffeic Acid | Ferulic Acid | Myricitrin | Rutin | Quercetin 3 Galactoside | Quercetin-3-o-Feruloyyl-Sophoros |
---|---|---|---|---|---|---|---|
mg g−1 DW | |||||||
Control | 2.08 ± 0.07 a | 85.74 ± 1.76 ab | 10.78 ± 0.65 c | 11.79 ± 0.66 b | 81.07 ± 2.03 a | 12.35 ± 1.28 b | 47.11 ± 0.83 a |
PE | 1.35 ± 0.14 b | 76.02 ± 1.35 c | 15.55 ± 0.70 b | 7.62 ± 1.15 c | 65.89 ± 1.60 b | 8.92 ± 0.61 b | 51.66 ± 1.46 a |
V-PH | 0.98 ± 0.07 b | 90.67 ± 3.71 a | 20.92 ± 0.9 a | 3.37 ± 0.83 d | 70.04 ± 0.35 b | 4.29 ± 0.84 c | 37.08 ± 2.62 b |
SWE | 2.11 ± 0.06 a | 79.71 ± 0.89 bc | 17.29 ± 0.69 b | 17.12 ± 0.98 a | 86.55 ± 1.39 a | 17.22 ± 0.29 a | 52.14 ± 1.38 a |
*** | ** | *** | *** | *** | *** | *** |
Treatment | Malate | Oxalate | Citrate |
---|---|---|---|
g kg−1 DW | |||
Control | 23.66 ± 0.91 a | 1.43 ± 0.01 a | 19.72 ± 1.11 ab |
PE | 23.39 ± 0.27 a | 0.99 ± 0.07 b | 20.69 ± 0.25 ab |
V-PH | 19.39 ± 0.27 b | 0.94 ± 0.03 b | 22.53 ± 0.67 a |
SWE | 20.09 ± 0.85 b | 0.96 ± 0.07 b | 17.87 ± 0.25 b |
*** | *** | ** |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Ciriello, M.; Izzo, L.; Dopazo, A.N.; Campana, E.; Colla, G.; Corrado, G.; De Pascale, S.; Rouphael, Y.; El-Nakhel, C. Differential Effects of Non-Microbial Biostimulants on Secondary Metabolites and Nitrate Content in Organic Arugula Leaves. Foods 2025, 14, 2489. https://doi.org/10.3390/foods14142489
Ciriello M, Izzo L, Dopazo AN, Campana E, Colla G, Corrado G, De Pascale S, Rouphael Y, El-Nakhel C. Differential Effects of Non-Microbial Biostimulants on Secondary Metabolites and Nitrate Content in Organic Arugula Leaves. Foods. 2025; 14(14):2489. https://doi.org/10.3390/foods14142489
Chicago/Turabian StyleCiriello, Michele, Luana Izzo, Abel Navarré Dopazo, Emanuela Campana, Giuseppe Colla, Giandomenico Corrado, Stefania De Pascale, Youssef Rouphael, and Christophe El-Nakhel. 2025. "Differential Effects of Non-Microbial Biostimulants on Secondary Metabolites and Nitrate Content in Organic Arugula Leaves" Foods 14, no. 14: 2489. https://doi.org/10.3390/foods14142489
APA StyleCiriello, M., Izzo, L., Dopazo, A. N., Campana, E., Colla, G., Corrado, G., De Pascale, S., Rouphael, Y., & El-Nakhel, C. (2025). Differential Effects of Non-Microbial Biostimulants on Secondary Metabolites and Nitrate Content in Organic Arugula Leaves. Foods, 14(14), 2489. https://doi.org/10.3390/foods14142489