A Colorimetric/Ratiometric Fluorescent Probe Based on Aggregation-Induced Emission Effect for Detecting Hypochlorous Acid in Real Samples and Bioimaging Applications
Abstract
1. Introduction
2. Experimental Section
2.1. Materials and Chemicals
2.2. Instruments and Equipment
2.3. Synthesis of Probe NYV
2.4. Real Samples Preparation
2.5. Preparation of the Portable Solid Sensor
2.6. Calculation of Detection Limits and Quantification Limits
2.7. Cytotoxicity of Probe NYV
2.8. Preparation of the Cell Imaging Experiments
2.8.1. Confocal Imaging Experiments of Probe NYV
2.8.2. LPS-Induced Confocal Imaging Experiment on Oxidative Stress
2.8.3. Changes in HClO Levels in Cells During Ferroptosishe
3. Results and Discussion
3.1. Spectral Response of Probe NYV to HClO
3.2. Selectivity and Anti-Interference Detection of Probe NYV for HClO
3.3. Time-Dependent and the Effects of pH Responses of NYV Towards HClO
3.4. AIE Characterization of Probe NYV
3.5. Solid-State Sensors for HClO Detection
3.6. Detection of HClO in Various Real Samples
3.7. Bioimaging of Probe NYV for Detecting HClO
3.8. Changes in HClO Levels in Cells During Oxidative Stress
3.9. Changes in HClO Levels in Cells During Ferroptosis
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Gennaris, A.; Ezraty, B.; Henry, C.; Agrebi, R.; Vergnes, A.; Oheix, E.; Bos, J.; Leverrier, P.; Espinosa, L.; Szewczyk, J.; et al. Repairing oxidized proteins in the bacterial envelope using respiratory chain electrons. Nature 2015, 528, 409–412. [Google Scholar] [CrossRef]
- Ortega-Ferreira, C.; Soret, P.; Robin, G.; Speca, S.; Hubert, S.; Le Gall, M.; Desvaux, E.; Jendoubi, M.; Saint-Paul, J.; Chadli, L.; et al. Antibody-mediated neutralization of galectin-3 as a strategy for the treatment of systemic sclerosis. Nat. Commun. 2023, 14, 5291. [Google Scholar] [CrossRef]
- Flouda, K.; Gammelgaard, B.; Davies, M.J.; Hawkins, C.L. Modulation of hypochlorous acid (HOCl) induced damage to vascular smooth muscle cells by thiocyanate and selenium analogues. Redox Biol. 2021, 41, 101873. [Google Scholar] [CrossRef]
- Huang, L.-Y.; Zhang, Y.-D.; Chen, J.; Fan, H.-D.; Wang, W.; Wang, B.; Ma, J.-Y.; Li, P.-P.; Pu, H.-W.; Guo, X.-Y.; et al. Maintaining moderate levels of hypochlorous acid promotes neural stem cell proliferation and differentiation in the recovery phase of stroke. Neural Regen. Res. 2025, 20, 845–857. [Google Scholar] [CrossRef]
- Rivera Antonio, A.M.; Padilla Martínez, I.I.; Torres-Ramos, M.A.; Rosales-Hernández, M.C. Myeloperoxidase as a therapeutic target for oxidative damage in Alzheimer’s disease. J. Enzym. Inhib. Med. Chem. 2025, 40, 2456282. [Google Scholar] [CrossRef]
- Kim, J.-M.; Zhang, B.-Z.; Park, J.-M. Comparison of sanitization efficacy of sodium hypochlorite and peroxyacetic acid used as disinfectants in poultry food processing plants. Food Control 2023, 152, 109865. [Google Scholar] [CrossRef]
- Li, Q.; Cui, X.; Gao, X.; Chen, X.; Zhao, H. Intelligent dosing of sodium hypochlorite in municipal wastewater treatment plants: Experimental and modeling studies. J. Water Process Eng. 2024, 64, 105662. [Google Scholar] [CrossRef]
- Usman, M.; Kuckelkorn, J.; Kämpfe, A.; Zwiener, C.; Wintgens, T.A.; Linnemann, V. Identification of disinfection byproducts (DBP) in thermal water swimming pools applying non-target screening by LC-/GC-HRMS. J. Hazard. Mater. 2023, 449, 130981. [Google Scholar] [CrossRef]
- Hosseinzadeh, M.; Postigo, C.; Porte, C. Toxicity and underlying lipidomic alterations generated by a mixture of water disinfection byproducts in human lung cells. Sci. Total Environ. 2024, 917, 170331. [Google Scholar] [CrossRef]
- Wang, C.; Zhang, B.; Rong, Y.; Shi, X.; Liu, Y. Deciphering molecular composition and summarizing control strategies of unknown disinfection byproducts in water and wastewater based on FT-ICR-MS analysis: A comprehensive review. Environ. Sci. Water Res. Technol. 2025, 11, 573–589. [Google Scholar] [CrossRef]
- Jonnalagadda, S.B.; Gengan, P. Titrimetric and photometric methods for determination of hypochlorite in commercial bleaches. J. Environ. Sci. Health Part A 2010, 45, 917–922. [Google Scholar] [CrossRef]
- Gatto, M.T.; Firuzi, O.; Agostino, R.; Grippa, E.; Borsò, A.; Spinelli, F.; Pavan, L.; Petrolati, M.; Petrucci, R.; Marrosu, G.; et al. Development of a new assay for the screening of hypochlorous acid scavengers based on reversed-phase high-performance liquid chromatography. Biomed. Chromatogr. 2002, 16, 404–411. [Google Scholar] [CrossRef]
- Dong, H.; Zhou, Y.; Zhao, L.; Hao, Y.; Zhang, Y.; Ye, B.; Xu, M. Dual-response ratiometric electrochemical microsensor for effective simultaneous monitoring of hypochlorous acid and ascorbic acid in human body fluids. Anal. Chem. 2020, 92, 15079–15086. [Google Scholar] [CrossRef]
- Cai, X.; Zhang, H.; Wei, P.; Liu, Q.; Sheng, D.; Li, Z.; Zhang, B.; Tang, G.; Zhao, W.; Ye, Z.; et al. A wireless optoelectronic probe to monitor oxygenation in deep brain tissue. Nat. Photonics 2024, 18, 492–500. [Google Scholar] [CrossRef]
- Fosnacht, K.G.; Pluth, M.D. Activity-based fluorescent probes for hydrogen sulfide and related reactive sulfur species. Chem. Rev. 2024, 124, 4124–4257. [Google Scholar] [CrossRef]
- Jia, T.-T.; Guo, D.; Meng, X.; Du, H.; Qin, F.; Chen, J.; Niu, H. Development of a fast fluorescent probe for sensitive detection of glutathione in 100% aqueous solution and its applications in real samples, oxidative stress model and ferroptosis model. Food Chem. 2025, 463, 141073. [Google Scholar] [CrossRef]
- Kim, J.; Nimse, S.B. Benzimidazole-scaffold based fluorescent probes for sensing and bioimaging applications. Coord. Chem. Rev. 2025, 537, 216690. [Google Scholar] [CrossRef]
- Wang, F.; Zhong, Y.; Bruns, O.; Liang, Y.; Dai, H. In vivo NIR-II fluorescence imaging for biology and medicine. Nat. Photonics 2024, 18, 535–547. [Google Scholar] [CrossRef]
- Zhan, J.; Cai, Y.; Cheng, P.; Zheng, L.; Pu, K. Body fluid diagnostics using activatable optical probes. Chem. Soc. Rev. 2025, 54, 3906–3929. [Google Scholar] [CrossRef]
- Debnath, S.; Ghosh, R.; Nair, R.R.; Pradhan, D.; Chatterjee, P.B. Advances in the development of water-soluble fluorogenic probes for bioimaging of hypochlorite/hypochlorous acid in cells and organisms. ACS Omega 2022, 7, 38122–38149. [Google Scholar] [CrossRef]
- Fang, Y.; Dehaen, W. Fluorescent probes for selective recognition of hypobromous acid: Achievements and future perspectives. Molecules 2021, 26, 363. [Google Scholar] [CrossRef]
- Hou, J.-T.; Kwon, N.; Wang, S.; Wang, B.; He, X.; Yoon, J.; Shen, J. Sulfur-based fluorescent probes for HOCl: Mechanisms, design, and applications. Coord. Chem. Rev. 2022, 450, 214232. [Google Scholar] [CrossRef]
- Kwon, N.; Chen, Y.; Chen, X.; Kim, M.H.; Yoon, J. Recent progress on small molecule-based fluorescent imaging probes for hypochlorous acid (HOCl)/hypochlorite (OCl−). Dye. Pigment. 2022, 200, 110132. [Google Scholar] [CrossRef]
- Zareen, W.; Ahmed, N.; Raza, S.; Ali Khan, M.; Shafiq, Z. Recent development in dual function fluorescence probes for HOCl and interaction with different bioactive molecules. Talanta 2024, 277, 126374. [Google Scholar] [CrossRef] [PubMed]
- Wu, L.; Glebe, U.; Kwok, K.T.K.; Sun, J.; Lam, J.W.Y.; Tang, B.Z. AIE bottlebrush polymers: Verification of internal crowdedness in bottlebrush polymers using the AIE effect. Angew. Chem. Int. Ed. 2025, 64, e202500850. [Google Scholar] [CrossRef]
- Yang, L.-L.; Wang, H.; Zhang, J.; Wu, B.; Li, Q.; Chen, J.-Y.; Tang, A.L.; Lam, J.W.Y.; Zhao, Z.; Yang, S.; et al. Understanding the AIE phenomenon of nonconjugated rhodamine derivatives via aggregation-induced molecular conformation change. Nat. Commun. 2024, 15, 999. [Google Scholar] [CrossRef]
- Sun, H.; Shen, S.; Li, C.; Yu, W.; Xie, Q.; Wu, D.; Zhu, L. Stimuli-responsive dual-emission property of single-luminophore-based materials. Adv. Funct. Mater. 2025, 35, 2415400. [Google Scholar] [CrossRef]
- Zhang, M.; Zhang, Y.; Huo, F.; Chao, J.; Shuang, S. A two-site fluorescent probe for Cys/Hcy and SO2 detection and its application in cells and zebrafish. J. Photochem. Photobiol. A Chem. 2022, 430, 113959. [Google Scholar] [CrossRef]
- Fan, Y.; Wu, Y.; Hou, J.; Wang, P.; Peng, X.; Ge, G. Coumarin-based near-infrared fluorogenic probes: Recent advances, challenges and future perspectives. Coord. Chem. Rev. 2023, 480, 215020. [Google Scholar] [CrossRef]
- Ayyavoo, K.; Velusamy, P. Pyrene based materials as fluorescent probes in chemical and biological fields. New J. Chem. 2021, 45, 10997–11017. [Google Scholar] [CrossRef]
- Dalapati, R.; Nandi, S.; Biswas, S. Post-synthetic modification of a metal–organic framework with a chemodosimeter for the rapid detection of lethal cyanide via dual emission. Dalton Trans. 2020, 49, 8684–8692. [Google Scholar] [CrossRef]
- Shellaiah, M.; Chen, Y.-T.; Thirumalaivasan, N.; Aazaad, B.; Awasthi, K.; Sun, K.W.; Wu, S.-P.; Lin, M.-C.; Ohta, N. Pyrene-based AIEE active nanoprobe for Zn2+ and tyrosine detection demonstrated by DFT, bioimaging, and organic thin-film transistor. ACS Appl. Mater. Interfaces 2021, 13, 28610–28626. [Google Scholar] [CrossRef]
- Chua, M.H.; Hui, B.Y.K.; Chin, K.L.O.; Zhu, Q.; Liu, X.; Xu, J. Recent advances in aggregation-induced emission (AIE)-based chemosensors for the detection of organic small molecules. Mater. Chem. Front. 2023, 7, 5561–5660. [Google Scholar] [CrossRef]
- Shellaiah, M.; Sun, K.-W. Pyrene-based AIE active materials for bioimaging and theranostics applications. Biosensors 2022, 12, 550. [Google Scholar] [CrossRef]
- Gong, S.; Qin, A.; Tian, J.; Li, M.; Liang, Y.; Meng, Z.; Xu, X.; Wang, Z.; Wang, S. Fluorescent probe for sensitive discrimination of GSH and Hcy/Cys with single-wavelength excitation in biological systems via different emission. Spectrochim. Acta Part A Mol. Biomol. Spectrosc. 2023, 302, 123128. [Google Scholar] [CrossRef]
- Hu, W.; Qiang, T.T.; Chai, L.; Liang, T.Y.; Ren, L.F.; Cheng, F.; Li, C.Y.; James, T.D. Simultaneous tracking of autophagy and oxidative stress during stroke with an ICT-TBET integrated ratiometric two-photon platform. Chem. Sci. 2022, 13, 5363–5373. [Google Scholar] [CrossRef]
- Li, X.; Liu, C.; Gao, N.; Sheng, W.; Zhu, B. A melatonin-based targetable fluorescent probe for screening of tumor cells and real-time imaging of glutathione fluctuations in tumor cells. Chin. Chem. Lett. 2022, 33, 2527–2531. [Google Scholar] [CrossRef]
- Liu, C.; Rong, X.; Li, X.; Gao, N.; Qu, L.; Peng, Y.; Shi, J.; Yu, M.; Sheng, W.; Zhu, B. Monitoring GSH dynamics under drug intervention in HepG2 cells and visualizing the engrafted liver cancer in zebrafish with a glycyrrhetinic acid-based reversible fluorescent probe. Sens. Actuators B Chem. 2023, 389, 133841. [Google Scholar] [CrossRef]
- Liu, Y.Y.; Ma, Y.Y.; Lin, W.Y. Construction of a bi-functional ratiometric fluorescent probe for detection of endoplasmic reticulum viscosity and ONOO− in cells and zebrafish. Sens. Actuators B Chem. 2022, 373, 132742. [Google Scholar] [CrossRef]
- Sreelaya, V.; Drisya, V.; Chakkumkumarath, L. A pyrene-based fluorescent sensor for the discrimination and estimation of hydrazine and hydrogen sulfide and its application in assessing food spoilage. J. Hazard. Mater. 2025, 487, 137151. [Google Scholar] [CrossRef]
- Wang, X.-D.; Fan, L.; Ge, J.-Y.; Li, F.; Zhang, C.-H.; Wang, J.-J.; Shuang, S.-M.; Dong, C. A lysosome-targetable fluorescent probe for real-time imaging cysteine under oxidative stress in living cells. Spectrochim. Acta Part A Mol. Biomol. Spectrosc. 2019, 221, 117175. [Google Scholar] [CrossRef] [PubMed]
- Patel, V.; Kruse, P.; Selvaganapathy, P.R. Review—Solid state sensors for phosphate detection in environmental and medical diagnostics. J. Electrochem. Soc. 2022, 169, 077505. [Google Scholar] [CrossRef]
- Yang, W.; Ma, Y.; Sun, H.; Huang, C.; Shen, X. Molecularly imprinted polymers based optical fiber sensors: A review. Trends Anal. Chem. 2022, 152, 116608. [Google Scholar] [CrossRef]
- Balic, J.J.; Albargy, H.; Luu, K.; Kirby, F.J.; Jayasekara, W.S.N.; Mansell, F.; Garama, D.J.; De Nardo, D.; Baschuk, N.; Louis, C.; et al. STAT3 serine phosphorylation is required for TLR4 metabolic reprogramming and IL-1β expression. Nat. Commun. 2020, 11, 3816. [Google Scholar] [CrossRef]
- Damascena, H.L.; Silveira, W.A.; Castro, M.S.; Fontes, W. Neutrophil activated by the famous and potent PMA (phorbol myristate acetate). Cells 2022, 11, 2889. [Google Scholar] [CrossRef]
- Kalyanaraman, B. NAC, NAC, Knockin’ on Heaven’s door: Interpreting the mechanism of action of N-acetylcysteine in tumor and immune cells. Redox Biol. 2022, 57, 102497. [Google Scholar] [CrossRef]
- Dixon, S.J.; Olzmann, J.A. The cell biology of ferroptosis. Nat. Rev. Mol. Cell Biol. 2024, 25, 424–442. [Google Scholar] [CrossRef]
- Hadian, K.; Stockwell, B.R. SnapShot: Ferroptosis. Cell 2020, 181, 1188. [Google Scholar] [CrossRef] [PubMed]
- Dixon, S.J.; Lemberg, K.M.; Lamprecht, M.R.; Skouta, R.; Zaitsev, E.M.; Gleason, C.E.; Patel, D.N.; Bauer, A.J.; Cantley, A.M.; Yang, W.S.; et al. Ferroptosis: An iron-dependent form of nonapoptotic cell death. Cell 2012, 149, 1060–1072. [Google Scholar] [CrossRef]
Sample | Spiked (μM) | Found (μM) | Recover (%) | RSD (n = 3, %) |
---|---|---|---|---|
Tap water | 0 | 1.37 ± 0.06 | – | – |
30.0 | 28.62 ± 0.26 | 95.30 | 0.85 | |
60.0 | 62.19 ± 1.17 | 103.61 | 0.76 | |
Luohe water | 0 | Not detected | – | – |
30.0 | 29.97 ± 0.44 | 99.91 | 1.48 | |
60.0 | 51.84 ± 2.18 | 86.41 | 4.20 | |
Yihe water | 0 | Not detected | – | – |
30.0 | 24.96 ± 1.10 | 83.21 | 4.40 | |
60.0 | 64.30 ± 1.32 | 107.17 | 2.05 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Chen, J.; Xiong, P.; Niu, H.; Cao, W.; Zhang, W.; Zhang, S. A Colorimetric/Ratiometric Fluorescent Probe Based on Aggregation-Induced Emission Effect for Detecting Hypochlorous Acid in Real Samples and Bioimaging Applications. Foods 2025, 14, 2491. https://doi.org/10.3390/foods14142491
Chen J, Xiong P, Niu H, Cao W, Zhang W, Zhang S. A Colorimetric/Ratiometric Fluorescent Probe Based on Aggregation-Induced Emission Effect for Detecting Hypochlorous Acid in Real Samples and Bioimaging Applications. Foods. 2025; 14(14):2491. https://doi.org/10.3390/foods14142491
Chicago/Turabian StyleChen, Junliang, Pingping Xiong, Huawei Niu, Weiwei Cao, Wenfen Zhang, and Shusheng Zhang. 2025. "A Colorimetric/Ratiometric Fluorescent Probe Based on Aggregation-Induced Emission Effect for Detecting Hypochlorous Acid in Real Samples and Bioimaging Applications" Foods 14, no. 14: 2491. https://doi.org/10.3390/foods14142491
APA StyleChen, J., Xiong, P., Niu, H., Cao, W., Zhang, W., & Zhang, S. (2025). A Colorimetric/Ratiometric Fluorescent Probe Based on Aggregation-Induced Emission Effect for Detecting Hypochlorous Acid in Real Samples and Bioimaging Applications. Foods, 14(14), 2491. https://doi.org/10.3390/foods14142491