Editor’s Choice Articles

Editor’s Choice articles are based on recommendations by the scientific editors of MDPI journals from around the world. Editors select a small number of articles recently published in the journal that they believe will be particularly interesting to readers, or important in the respective research area. The aim is to provide a snapshot of some of the most exciting work published in the various research areas of the journal.

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
15 pages, 1897 KB  
Article
Sources and Reactivity of Ambient VOCs on the Tibetan Plateau: Insights from a Multi-Site Campaign (2012–2014) for Assessing Decadal Change
by Fangkun Wu, Jie Sun, Yinghong Wang and Zirui Liu
Atmosphere 2025, 16(10), 1148; https://doi.org/10.3390/atmos16101148 - 30 Sep 2025
Cited by 1 | Viewed by 342
Abstract
Investigating atmospheric volatile organic compounds (VOCs) is critical for understanding their sources, chemical reactivity, and impacts on air quality, climate, and human health, especially in remote regions like the Tibetan Plateau where baseline data remains scarce. In this study, ambient VOCs species were [...] Read more.
Investigating atmospheric volatile organic compounds (VOCs) is critical for understanding their sources, chemical reactivity, and impacts on air quality, climate, and human health, especially in remote regions like the Tibetan Plateau where baseline data remains scarce. In this study, ambient VOCs species were simultaneously measured at four remote background sites on the Tibetan Plateau (Nyingchi, Namtso, Ngari, and Mount Everest) from 2012 to 2014 to investigate their concentration, composition, sources, and chemical reactivity. Weekly integrated samples were collected and analyzed using a Gas Chromatograph-Mass Spectrometer/Flame Ionization Detector (GC-MS/FID) system. The total VOC mixing ratios exhibited site-dependent variability, with the highest levels observed in Nyingchi, followed by Mount Everest, Ngari and Namtso. The VOC composition in those remote sites was dominated by alkanes (25.7–48.5%) and aromatics (11.4–34.7%), followed by halocarbons (19.1–28.1%) and alkenes (11.5–18.5%). A distinct seasonal trend was observed, with higher VOC concentrations in summer and lower levels in spring and autumn. Source analysis based on correlations between specific VOC species suggests that combustion emissions (e.g., biomass burning or residential heating) were a major contributor during winter and spring, while traffic-related emissions influenced summer VOC levels. In addition, long-range transport of pollutants from South Asia also significantly impacted VOC concentrations across the plateau. Furthermore, reactivity assessments indicated that alkenes were the dominant contributors to OH radical loss rates, whereas aromatics were the largest drivers of ozone formation potential (OFP). These findings highlight the complex interplay of local emissions and regional transport in shaping VOC chemistry in this high-altitude background environment, with implications for atmospheric oxidation capacity and secondary pollutant formation. Full article
Show Figures

Figure 1

19 pages, 15250 KB  
Article
Responses of the East Asian Winter Climate to Global Warming in CMIP6 Models
by Yuxi Jiang, Yutao Chi, Weidong Wang, Wenshan Li, Hui Wang and Jianxiang Sun
Atmosphere 2025, 16(10), 1143; https://doi.org/10.3390/atmos16101143 - 29 Sep 2025
Viewed by 523
Abstract
Global warming has been altering the East Asian climate at an unprecedented rate since the 20th century. In order to evaluate the changes in the East Asian winter climate (EAWC) and support policy-making for climate mitigation and adaptation strategies, this paper utilizes the [...] Read more.
Global warming has been altering the East Asian climate at an unprecedented rate since the 20th century. In order to evaluate the changes in the East Asian winter climate (EAWC) and support policy-making for climate mitigation and adaptation strategies, this paper utilizes the multimodel ensemble from the Couple Model Intercomparison Project 6 and a temperature threshold method to investigate the EAWC changes during the period 1979–2100. The results show that the EAWC has been undergoing widespread and robust changes in response to global warming. The winter length in East Asia has shortened and will continue shortening owing to later onsets and earlier withdrawals, leading to a drastic contraction in length from 100 days in 1979 to 43 days (27 days) in 2100 under SSP2-4.5 (SSP5-8.5). While most regions of the East Asian continent are projected to become warmer in winter, the Japan and marginal seas of northeastern Asia will face the risks from colder winters with more frequent extreme cold events, accompanied by less precipitation. Meanwhile, the Tibetan Plateau is very likely to have colder winters in the future, though its surface snow amounts will significantly decline. Greenhouse gas (GHG) emissions are found to be responsible for the EAWC changes. GHG traps heat inside the Earth’s atmosphere and notably increases the air temperature; moreover, its force modulates large-scale atmospheric circulation, facilitating an enhanced and northward-positioned Aleutian low together with a weakened Siberian high, East Asian trough, and East Asian jet stream. These two effects work together, resulting in a contracted winter with robust and uneven regional changes in the EAWC. This finding highlights the urgency of curbing GHG emissions and improving forecasts of the EAWC, which are crucial for mitigating their major ecological and social impacts. Full article
(This article belongs to the Section Climatology)
Show Figures

Figure 1

14 pages, 3399 KB  
Article
On the Quasi-Steady Vorticity Balance in the Mature Stage of Hurricane Irma (2017)
by Jasper de Jong, Aarnout J. van Delden and Michiel L. J. Baatsen
Atmosphere 2025, 16(10), 1146; https://doi.org/10.3390/atmos16101146 - 29 Sep 2025
Viewed by 765
Abstract
Vorticity budgets in traditional height or pressure coordinates are commonly examined to help explain how tropical cyclones evolve over time. One disadvantage of using these coordinates is that the vorticity flux due to diabatic heating cannot be easily assessed. Isentropic coordinates naturally lend [...] Read more.
Vorticity budgets in traditional height or pressure coordinates are commonly examined to help explain how tropical cyclones evolve over time. One disadvantage of using these coordinates is that the vorticity flux due to diabatic heating cannot be easily assessed. Isentropic coordinates naturally lend themselves to determine the effect of diabatic heating—the vorticity budget simplifies, and a clear-cut distinction can be made between adiabatic (advective) and diabatic vorticity fluxes. Above the boundary layer, advective vorticity fluxes alone would lead to a quick spin-down of the mature tropical cyclone. Do diabatic processes prevent this from happening? If so, how? This paper investigates the vorticity budget of Hurricane Irma (2017) in its mature quasi-steady phase. We analyse a simulation of Irma with an operational high-resolution weather forecasting model. During Irma’s remarkably long period (37 h) of steady peak intensity, the radially outward advective isentropic vorticity flux in the eyewall above the boundary layer is balanced by a radially inward diabatic isentropic vorticity flux. Frictional effects and asymmetrical flow properties are of little importance to the maintenance of cyclone intensity in its mature phase, provided enough latent heat is released in the eyewall to maintain an inward vorticity flux that balances the advective flux. Full article
(This article belongs to the Section Meteorology)
Show Figures

Figure 1

18 pages, 5196 KB  
Article
How Hydrometeors Varied with the Secondary Circulation During the Rapid Intensification of Typhoon Nangka (2015)
by Lin Wang, Hong Huang, Ju Wang, Xinjie Ouyang, Xiaolin Ma and Zhen Wang
Atmosphere 2025, 16(10), 1142; https://doi.org/10.3390/atmos16101142 - 28 Sep 2025
Viewed by 328
Abstract
A comprehensive understanding of the evolution and phase transitions of hydrometeors during the development of tropical cyclones (TCs) is essential for advancing research on the mechanisms of TC intensity change. In this study, utilizing the Weather Research and Forecasting numerical model, we simulate [...] Read more.
A comprehensive understanding of the evolution and phase transitions of hydrometeors during the development of tropical cyclones (TCs) is essential for advancing research on the mechanisms of TC intensity change. In this study, utilizing the Weather Research and Forecasting numerical model, we simulate the evolution of Super Typhoon Nangka (No. 1511), explore the relationship between the TC intensity variations and the internal hydrometeor distribution, and examine the secondary circulation characteristics. The results indicate that the total content of hydrometeor particles increased during the intensification of Typhoon Nangka. Ice-phase particles expanded outward radially as the typhoon intensified, while liquid-phase particles contracted inward. Ice-phase hydrometeor distributions varied in conjunction with TC intensity variations, whereas liquid-phase hydrometeor variations were closely related to the complex dynamic–thermodynamic–microphysical processes within the typhoon. The spatial pattern of the secondary circulation exhibits high consistency with the distribution of hydrometeor particles. Low-level radial inflow, upper-level radial outflow, and middle-level vertical updrafts played dominant roles in regulating the distribution and transport of particles at different stages. The intensification of Typhoon Nangka was primarily driven by water vapor convergence and the latent heat released by ascending liquid-phase particles near the eyewall, while the stagnation of its intensification was mainly attributed to the resistance exerted by descending ice-phase particles from upper levels and the heat consumption associated with their melting. These findings provide a foundation for better understanding how hydrometeors modulate TC intensity variations and offer valuable insights into energy conversion mechanisms during hydrometeor phase transitions under the influence of secondary circulations. Full article
(This article belongs to the Special Issue Typhoon/Hurricane Dynamics and Prediction (2nd Edition))
Show Figures

Figure 1

12 pages, 3514 KB  
Article
Evaluation of Road Dust Resuspension from Internal Combustion Engine and Electric Vehicles of the Same Model
by Worawat Songkitti, Sirasak Pong-A-Mas, Chawwanwit Boonsom, Tanet Aroonsrisopon and Ekathai Wirojsakunchai
Atmosphere 2025, 16(10), 1141; https://doi.org/10.3390/atmos16101141 - 28 Sep 2025
Viewed by 367
Abstract
As many countries transition to electric vehicles (EVs) to reduce tailpipe emissions from internal combustion engine vehicles (ICEVs), both vehicle types continue to generate non-exhaust particulate matter (PM), including tire wear, brake wear, road surface wear, and particularly road dust resuspension. Among these, [...] Read more.
As many countries transition to electric vehicles (EVs) to reduce tailpipe emissions from internal combustion engine vehicles (ICEVs), both vehicle types continue to generate non-exhaust particulate matter (PM), including tire wear, brake wear, road surface wear, and particularly road dust resuspension. Among these, road dust resuspension is a major contributor to non-exhaust PM. While factors such as vehicle weight and drivetrain configuration have been extensively studied in fleet-level research, direct comparisons between ICEVs and EVs of the same model have not been explored. This study investigates the effects of drivetrain, vehicle weight, and payload on road dust resuspension emissions from ICEV and EV models. Two experimental approaches were employed: (1) acceleration from 0 to 60 km/h, and (2) a simulated real-world driving cycle (RDC). Each test was conducted under both light and heavy payload conditions. The results show that the EV consistently emitted more PM than the ICEV during both acceleration and RDC tests, based on factory-standard vehicle weights. Under identical vehicle weight conditions, the EV demonstrated higher PM resuspension levels, likely due to its higher torque and more immediate power delivery, which increases friction between the tires and the road, particularly during rapid acceleration. Both vehicle types exhibited significant increases in PM emissions under heavy payload conditions. These findings underscore the importance of addressing non-exhaust emissions from EVs, particularly road dust resuspension, and highlight the need for further research into mitigation strategies, such as vehicle lightweighting. Full article
(This article belongs to the Special Issue Brake and Tire Non-Exhaust Emissions and Air Pollution)
Show Figures

Graphical abstract

18 pages, 7743 KB  
Article
Improved Daytime Cloud Detection Algorithm in FY-4A’s Advanced Geostationary Radiation Imager
by Xiao Zhang, Song-Ying Zhao and Rui-Xuan Tang
Atmosphere 2025, 16(9), 1105; https://doi.org/10.3390/atmos16091105 - 20 Sep 2025
Viewed by 418
Abstract
Cloud detection is an indispensable step in satellite remote sensing of cloud properties and objects under the influence of cloud occlusion. Nevertheless, interfering targets such as snow and haze pollution are easily misjudged as clouds for most of the current algorithms. Hence, a [...] Read more.
Cloud detection is an indispensable step in satellite remote sensing of cloud properties and objects under the influence of cloud occlusion. Nevertheless, interfering targets such as snow and haze pollution are easily misjudged as clouds for most of the current algorithms. Hence, a robust cloud detection algorithm is urgently needed, especially for regions with high latitudes or severe air pollution. This paper demonstrated that the passive satellite detector Advanced Geosynchronous Radiation Imager (AGRI) onboard the FY-4A satellite has a great possibility to misjudge the dense aerosols in haze pollution as clouds during the daytime, and constructed an algorithm based on the spectral information of the AGRI’s 14 bands with a concise and high-speed calculation. This study adjusted the previously proposed cloud mask rectification algorithm of Moderate-Resolution Imaging Spectroradiometer (MODIS), rectified the MODIS cloud detection result, and used it as the accurate cloud mask data. The algorithm was constructed based on adjusted Fisher discrimination analysis (AFDA) and spectral spatial variability (SSV) methods over four different underlying surfaces (land, desert, snow, and water) and two seasons (summer and winter). This algorithm divides the identification into two steps to screen the confident cloud clusters and broken clouds, which are not easy to recognize, respectively. In the first step, channels with obvious differences in cloudy and cloud-free areas were selected, and AFDA was utilized to build a weighted sum formula across the normalized spectral data of the selected bands. This step transforms the traditional dynamic-threshold test on multiple bands into a simple test of the calculated summation value. In the second step, SSV was used to capture the broken clouds by calculating the standard deviation (STD) of spectra in every 3 × 3-pixel window to quantify the spectral homogeneity within a small scale. To assess the algorithm’s spatial and temporal generalizability, two evaluations were conducted: one examining four key regions and another assessing three different moments on a certain day in East China. The results showed that the algorithm has an excellent accuracy across four different underlying surfaces, insusceptible to the main interferences such as haze and snow, and shows a strong detection capability for broken clouds. This algorithm enables widespread application to different regions and times of day, with a low calculation complexity, indicating that a new method satisfying the requirements of fast and robust cloud detection can be achieved. Full article
(This article belongs to the Section Atmospheric Techniques, Instruments, and Modeling)
Show Figures

Figure 1

14 pages, 4224 KB  
Article
High-Resolution Estimation of Cropland N2O Emissions in China Based on Machine Learning Algorithms
by Chong Liu, Zhang Wen, Jianxiao Wang and Xuejun Liu
Atmosphere 2025, 16(9), 1092; https://doi.org/10.3390/atmos16091092 - 17 Sep 2025
Viewed by 542
Abstract
Over the past two decades, agricultural nitrous oxide (N2O) emissions have increased significantly, further intensifying their impact on global warming. Accurate emission estimates are essential for developing effective N2O-mitigation strategies. However, the high-resolution, dynamic simulations of emissions and comprehensive [...] Read more.
Over the past two decades, agricultural nitrous oxide (N2O) emissions have increased significantly, further intensifying their impact on global warming. Accurate emission estimates are essential for developing effective N2O-mitigation strategies. However, the high-resolution, dynamic simulations of emissions and comprehensive analysis of their driving mechanisms in China remain unclear. In this study, we constructed a city-level agricultural N2O emission inventory covering 336 cities in China from 2000 to 2022 based on multi-source data and machine learning algorithms. Results demonstrate that China’s cropland N2O emissions averaged 390 Gg year−1 during 2000 and 2022, exhibiting sustained growth until 2016, followed by a 13% reduction driven by the nationwide Fertilizer Reduction Policy implementation. Maize, wheat, and rice are identified as the main sources of cropland N2O emissions. Spatially, higher N2O emission intensities were concentrated in eastern China, and hotspots were identified in the Huang-Huai-Hai Plain (5.23 kg ha−1) and the Middle-Lower Yangtze River Plain (2.95 kg ha−1). These emission patterns are primarily influenced by soil organic carbon, crop type, and fertilizer-management practices. This study provides robust data support and methodological basis for formulating agricultural mitigation policies. Full article
(This article belongs to the Special Issue Advanced Research on Anthropogenic Pollutant Emission Inventory)
Show Figures

Figure 1

25 pages, 1221 KB  
Article
Simulations of Drainage Flows with Topographic Shading and Surface Physics Inform Analytical Models
by Alex Connolly and Fotini Katopodes Chow
Atmosphere 2025, 16(9), 1091; https://doi.org/10.3390/atmos16091091 - 17 Sep 2025
Viewed by 329
Abstract
We perform large-eddy simulations (LESs) with realistic radiation, including topographic shading, and an advanced land surface model to investigate drainage flow dynamics in an idealized compound-slope mountain geometry. This allows an analysis not only of fully developed profiles in steady state—the subject of [...] Read more.
We perform large-eddy simulations (LESs) with realistic radiation, including topographic shading, and an advanced land surface model to investigate drainage flow dynamics in an idealized compound-slope mountain geometry. This allows an analysis not only of fully developed profiles in steady state—the subject of existing analytical solutions—but also of transient two- and three-dimensional dynamics. The evening onset of downslope flow is related to the duration of shadow front propagation along the eastern slopes, for which an analytic form is derived. We demonstrate that the flow response to this radiation pattern is mediated by the thermal inertia of the land through sensitivity to soil moisture. Onset timing differences on opposite sides of the peak are explained by convective structures that persist after sunset over the western slopes when topographic shading is considered. Although these preceding convective systems, as well as the presence of neighboring terrain, inhibit the initial development of drainage flows, the LES develops an approximately steady-state, fully developed flow over the finite slopes and finite nocturnal period. This allows a comparison to analytical models restricted to such cases. New analytical solutions based on surface heat flux boundary conditions, which can be estimated by the coupled land surface model, suggest the need for improved representation of the eddy diffusivity for analytical models of drainage flows. Full article
Show Figures

Graphical abstract

22 pages, 3175 KB  
Article
Assessing Future Heatwave-Related Mortality in Greece Using Advanced Machine Learning and Climate Projections
by Ilias Petrou, Pavlos Kassomenos and Nikolaos Kyriazis
Atmosphere 2025, 16(9), 1093; https://doi.org/10.3390/atmos16091093 - 17 Sep 2025
Viewed by 820
Abstract
Climate change has intensified the frequency and severity of heatwaves globally, posing significant public health risks, particularly in Mediterranean countries such as Greece, where rising temperatures coincide with vulnerable aging populations. This study develops a machine learning framework employing XGBoost models to predict [...] Read more.
Climate change has intensified the frequency and severity of heatwaves globally, posing significant public health risks, particularly in Mediterranean countries such as Greece, where rising temperatures coincide with vulnerable aging populations. This study develops a machine learning framework employing XGBoost models to predict monthly heatwave-attributable mortality from cardiovascular and respiratory diseases across Greek regions, stratified by age groups. Using high-resolution climate projections under RCP4.5 and RCP8.5 scenarios, the models integrate meteorological and demographic data to capture complex nonlinear relationships and regional heterogeneity. Model performance was rigorously validated with a temporally held-out dataset, demonstrating high predictive accuracy (R2 > 0.96). Projections indicate a sharp increase in elderly mortality due to heat exposure by mid-century, with marked geographic disparities emphasizing urban centers like Attica. This work advances prior studies by incorporating detailed spatial and demographic stratification and applying robust machine learning techniques beyond traditional statistical approaches. The model offers a valuable tool for public health planning and climate adaptation in Greece and similar Mediterranean contexts. Our findings highlight the urgent need for targeted mitigation strategies to address the growing burden of heatwave-related mortality under changing climate conditions. Full article
Show Figures

Figure 1

23 pages, 2122 KB  
Review
The Rectification of ENSO into the Mean State: A Review of Theory, Mechanisms, and Implications
by Jin Liang, Nan Zhou, De-Zheng Sun and Wei Liu
Atmosphere 2025, 16(9), 1087; https://doi.org/10.3390/atmos16091087 - 15 Sep 2025
Viewed by 455
Abstract
The El Niño–Southern Oscillation (ENSO) is the most consequential mode of interannual climate variability on the planet, yet its prediction has become complex due to the inability of classical paradigms to explain the observed co-evolution of the tropical mean state and interannual variability [...] Read more.
The El Niño–Southern Oscillation (ENSO) is the most consequential mode of interannual climate variability on the planet, yet its prediction has become complex due to the inability of classical paradigms to explain the observed co-evolution of the tropical mean state and interannual variability on decadal timescales. This article synthesizes the extensive research on ENSO rectification, exploring a paradigm that resolves this causality problem by recasting ENSO as an active architect of its own mean state. Tracing the intellectual development of this theory, starting from fundamental concepts such as the “dynamical thermostat” and “heat pump” hypotheses, modern analysis has identified the core physical mechanism as nonlinear dynamical heating (NDH), which is rooted in nonlinear heat advection during asymmetric ENSO cycles. The convergence of evidence from forced ocean models and observational diagnostics confirms a rectified signal characterized by an off-equatorial spatial pattern, providing a primary mechanism for tropical Pacific decadal variability (TPDV). By establishing a coherent framework linking high-frequency asymmetry with low-frequency variations, this review lays the foundation for future research and emphasizes the critical role of the rectification effect in improving decadal climate prediction. Full article
Show Figures

Graphical abstract

28 pages, 54121 KB  
Article
Effect of Friction Material on Vehicle Brake Particle Emissions
by Marie Hoff, Yan-Ming Chen, Laurent Meunier, Christophe Bressot and Martin Morgeneyer
Atmosphere 2025, 16(9), 1075; https://doi.org/10.3390/atmos16091075 - 11 Sep 2025
Cited by 2 | Viewed by 586
Abstract
This study focuses on the influence of different brake pad formulations on the emission of particulate matter coming from car braking systems. The brake particles were characterised using a pin-on-disc bench and some particle measuring devices such as CPC, APS, SMPS and a [...] Read more.
This study focuses on the influence of different brake pad formulations on the emission of particulate matter coming from car braking systems. The brake particles were characterised using a pin-on-disc bench and some particle measuring devices such as CPC, APS, SMPS and a PM10 sampling unit. Seven samples of brake pad materials of different compositions (1 NAO and 6 Low Steel) were tested against grey cast iron discs. The results presented in this work show differences in particle number concentration and PM10 emission factor between the different friction materials tested. Three friction materials, LS04, LS06 and NAO01, reduce particle number emissions by up to 71% and PM10 emissions by up to 57%. On the other hand, this reduction in particulate emissions goes along with a reduction of 20% to 27% in the coefficient of friction. The microscopic analyses carried out on the test parts (pins and discs) show differences between the most emissive and the least emissive friction pairs, which may explain the differences observed in particle emissions. Correlations between the emission of particles and the concentration of iron of the PM10, as well as the steel fibre content in the formulas, were found. Full article
Show Figures

Figure 1

25 pages, 522 KB  
Article
Artificial Intelligence-Based Methods and Algorithms in Fog and Atmospheric Low-Visibility Forecasting
by Sancho Salcedo-Sanz, David Guijo-Rubio, Jorge Pérez-Aracil, César Peláez-Rodríguez, Antonio Manuel Gomez-Orellana and Pedro Antonio Gutiérrez-Peña
Atmosphere 2025, 16(9), 1073; https://doi.org/10.3390/atmos16091073 - 11 Sep 2025
Viewed by 891
Abstract
The accurate prediction of atmospheric low-visibility events due to fog, haze or atmospheric pollution is an extremely important problem, with major consequences for transportation systems, and with alternative applications in agriculture, forest ecology and ecosystems management. In this paper, we provide a comprehensive [...] Read more.
The accurate prediction of atmospheric low-visibility events due to fog, haze or atmospheric pollution is an extremely important problem, with major consequences for transportation systems, and with alternative applications in agriculture, forest ecology and ecosystems management. In this paper, we provide a comprehensive literature review and analysis of AI-based methods applied to fog and low-visibility events forecasting. We also discuss the main general issues which arise when dealing with AI-based techniques in this kind of problem, open research questions, novel AI approaches and data sources which can be exploited. Finally, the most important new AI-based methodologies which can improve atmospheric visibility forecasting are also revised, including computational experiments on the application of ordinal classification approaches to a problem of low-visibility events prediction in two Spanish airports from METAR data. Full article
(This article belongs to the Special Issue Numerical Simulation and Forecast of Fog)
Show Figures

Figure 1

27 pages, 1025 KB  
Review
The Asymmetry of the El Niño–Southern Oscillation: Characteristics, Mechanisms, and Implications for a Changing Climate
by Jin Liang, De-Zheng Sun, Biao Jin, Yifei Yang, Cuijiao Chu and Minjia Tan
Atmosphere 2025, 16(9), 1071; https://doi.org/10.3390/atmos16091071 - 11 Sep 2025
Viewed by 711
Abstract
The El Niño–Southern Oscillation (ENSO) is inherently asymmetric, a primary characteristic where its warm phase (El Niño) and cold phase (La Niña) differ in amplitude, spatial pattern, and temporal evolution. This review synthesizes over two decades of research to provide a comprehensive overview [...] Read more.
The El Niño–Southern Oscillation (ENSO) is inherently asymmetric, a primary characteristic where its warm phase (El Niño) and cold phase (La Niña) differ in amplitude, spatial pattern, and temporal evolution. This review synthesizes over two decades of research to provide a comprehensive overview of ENSO asymmetry. It systematically examines the observed manifestations, evaluates the competing physical mechanisms, and analyzes the ongoing challenges in climate modeling. The key findings in the literature indicate that this asymmetry is driven by complex interactions of nonlinear processes, where atmospheric mechanisms such as state-dependent westerly wind bursts and threshold responses of deep convection are now considered dominant driving factors, which are subsequently amplified and modulated by oceanic feedback. The main challenge in this field is that most of the current state-of-the-art climate models underestimate ENSO asymmetry, which is related to mean-state bias and brings uncertainty to future predictions. Furthermore, a key finding from recent projection studies is that while the asymmetry in ENSO’s sea surface temperature is expected to weaken in a warmer climate, the asymmetry of its global rainfall impacts may paradoxically be amplified. Future research should focus on balanced improvements in ocean and atmospheric model components, development of new diagnostic tools to clarify the roles of different feedbacks, or establishment of a framework that clearly links asymmetry to the full spectrum of ENSO diversity. By consolidating the current state of knowledge and highlighting key unresolved questions, this work provides an essential roadmap to improve the prediction and projection of Earth’s most far-reaching mode of climate variability. Full article
Show Figures

Figure 1

29 pages, 2031 KB  
Review
Perfluorinated and Polyfluoroalkyl Compounds in the Atmosphere: A Review
by Haoran Yang, Ying Liang, Shili Tian, Xingru Li and Yanju Liu
Atmosphere 2025, 16(9), 1070; https://doi.org/10.3390/atmos16091070 - 10 Sep 2025
Viewed by 1115
Abstract
Perfluoroalkyl and polyfluoroalkyl substances (PFASs) are a class of synthetic organic compounds with extremely high chemical stability and environmental persistence that are widely used in the industrial sector and in consumer goods. Their strong C-F bonds make them difficult to degrade, meaning they [...] Read more.
Perfluoroalkyl and polyfluoroalkyl substances (PFASs) are a class of synthetic organic compounds with extremely high chemical stability and environmental persistence that are widely used in the industrial sector and in consumer goods. Their strong C-F bonds make them difficult to degrade, meaning they can migrate through the atmosphere and settle over long distances, posing long-term risks to the global ecological environment and human health. This article systematically reviews the classification, physicochemical properties, concentration levels, spatial distribution, migration and transformation behaviors, and health and ecological impacts of PFASs in the atmosphere, along with related analytical detection techniques and pollution control methods. Studies show that short-chain PFASs are more likely to migrate through the atmosphere due to their high water solubility and volatility, while long-chain PFASs tend to be adsorbed onto particulate matter and display stronger bioaccumulation. Although atmospheric research on PFASs lags behind that focused on their dynamics in water and soil, the existing data still reveal a difference in their distribution and regional pollution characteristics in the gas and particle phases. Toxicological studies have confirmed that PFAS exposure is associated with liver injury, immunosuppression, developmental toxicity, and cancer risk and can threaten ecological security through the food chain. Currently, governance technologies are confronted with the challenges of low efficiency and high cost. In the future, it will be necessary to combine multi-media models, new analytical techniques, and international collaboration to promote the development of source control and innovative governance strategies. Full article
Show Figures

Figure 1

15 pages, 1849 KB  
Article
Determining Wind Shear Threshold by Using Historical Sounding Data in Experimental Area
by Tingting Shu, Qinglin Zhu, Xiang Dong, Houcai Chen, Leke Lin and Xuan Liu
Atmosphere 2025, 16(9), 1064; https://doi.org/10.3390/atmos16091064 - 10 Sep 2025
Viewed by 486
Abstract
This paper conducts a technical study on a method for determining the occurrence threshold of wind shear based on historical sounding data. After analyzing the impact of low-altitude wind shear on aircraft flight safety, a method for determining the occurrence threshold of wind [...] Read more.
This paper conducts a technical study on a method for determining the occurrence threshold of wind shear based on historical sounding data. After analyzing the impact of low-altitude wind shear on aircraft flight safety, a method for determining the occurrence threshold of wind shear based on historical sounding data is proposed. A statistical analysis of the sounding data from the test area over a period of 15 years from 2010 to 2024 has been conducted, which includes the occurrence events and probability statistics of 1000 m wind shear for all 12 months of the year. The simulation results validate the feasibility and effectiveness of the method for determining the occurrence threshold of wind shear based on historical sounding data in the test area, forming a method that can be extended to all altitude ranges of aircraft flight and all flight regions globally. This statistical method provides a technical foundation for the efficient detection of wind shear at local airports and enhances flight safety at these airports. Full article
Show Figures

Figure 1

24 pages, 10838 KB  
Article
Assessing the Performance of the WRF Model in Simulating Squall Line Processes over the South African Highveld
by Innocent L. Mbokodo, Roelof P. Burger, Ann Fridlind, Thando Ndarana, Robert Maisha, Hector Chikoore and Mary-Jane M. Bopape
Atmosphere 2025, 16(9), 1055; https://doi.org/10.3390/atmos16091055 - 6 Sep 2025
Viewed by 878
Abstract
Squall lines are some of the most common types of mesoscale cloud systems in tropical and subtropical regions. Thunderstorms associated with these systems are among the major causes of weather-related disasters and socio-economic losses in many regions across the world. This study investigates [...] Read more.
Squall lines are some of the most common types of mesoscale cloud systems in tropical and subtropical regions. Thunderstorms associated with these systems are among the major causes of weather-related disasters and socio-economic losses in many regions across the world. This study investigates the capability of the Weather Research and Forecasting (WRF) model in simulating squall line features over the South African Highveld region. Two squall line cases were selected based on the availability of South African Weather Service (SAWS) weather radar data: 21 October 2017 (early austral summer) and 31 January–1 February 2018 (late austral summer). The European Centre for Medium-Range Weather Forecasts ERA5 datasets were used as observational proxies to analyze squall line features and compare them with WRF simulations. Mid-tropospheric perturbations were observed along westerly waves in both cases. These perturbations were coupled with surface troughs over central interior together with the high-pressure systems to the south and southeast of the country creating strong pressure gradients over the plateau, which also transports relative humidity onshore and extending to the Highveld region. The 2018 case also had a zonal structured ridging High, which was responsible for driving moisture from the southwest Indian Ocean towards the eastern parts of South Africa. Both ERA5 and WRF captured onshore near surface (800 hPa) winds and high-moisture contents over the eastern parts of the Highveld. A well-defined dryline was observed and well simulated for the 2017 event, while both ERA5 and WRF did not show any dryline for the 2018 case that was triggered by orography. While WRF successfully reproduced the synoptic-scale processes of these extreme weather events, the simulated rainfall over the area of interest exhibited a broader spatial distribution, with large-scale precipitation overestimated and convective rainfall underestimated. Our study shows that models are able to capture these systems but with some shortcomings, highlighting the need for further improvement in forecasts. Full article
(This article belongs to the Section Meteorology)
Show Figures

Figure 1

21 pages, 5213 KB  
Article
The Performance of ICON (Icosahedral Non-Hydrostatic) Regional Model for Storm Daniel with an Emphasis on Precipitation Evaluation over Greece
by Euripides Avgoustoglou, Harel B. Muskatel, Pavel Khain and Yoav Levi
Atmosphere 2025, 16(9), 1043; https://doi.org/10.3390/atmos16091043 - 2 Sep 2025
Viewed by 1220
Abstract
Storm Daniel is arguably one of the most severe Mediterranean tropical-like cyclones (medicanes) ever recorded. Greece was one of the most affected areas, especially the central part of the country. The extreme precipitation that was observed along with the subsequent extensive flooding was [...] Read more.
Storm Daniel is arguably one of the most severe Mediterranean tropical-like cyclones (medicanes) ever recorded. Greece was one of the most affected areas, especially the central part of the country. The extreme precipitation that was observed along with the subsequent extensive flooding was considered a critical challenge to validate the regional version of the ICON (Icosahedral Non-Hydrostatic) numerical weather prediction (NWP) model. From a methodological standpoint, the short-range nature of the model was realized with 48 h runs over a sequence of cases that covered the storm period. The development of the medicane was highlighted via the tracking of the minimum mean sea level pressure (MSLP) in reference to the corresponding analysis of the European Center for Medium-Range Weather Forecasts (ECMWF). In a similar fashion, snapshots regarding the 500 hPa geopotential associated with the 850 hPa temperature were addressed at the 24th forecast hour of the model runs. Although the model’s performance over the four most affected synoptic stations of the Hellenic National Meteorological Service (HNMS) was mixed, the overall accumulated forecasted precipitation was in very good agreement with the corresponding total value of the observations over all the available synoptic stations. Full article
(This article belongs to the Section Meteorology)
Show Figures

Figure 1

24 pages, 7129 KB  
Article
Numerical Investigation of the Cooling Performance of Water Mist Spray Inside an Idealized 2D Street Canyon
by Hongjie Chen, Handong Meng and Yaxing Du
Atmosphere 2025, 16(9), 1036; https://doi.org/10.3390/atmos16091036 - 31 Aug 2025
Cited by 1 | Viewed by 963
Abstract
In response to the urban heat island challenge, various mitigation measures have been explored, with water spray systems emerging as a cost-effective and efficient solution for urban outdoor cooling. However, the influential factors of a water spray system on cooling efficiency have not [...] Read more.
In response to the urban heat island challenge, various mitigation measures have been explored, with water spray systems emerging as a cost-effective and efficient solution for urban outdoor cooling. However, the influential factors of a water spray system on cooling efficiency have not been fully understood, thus hindering the application of the water spray system. This study delves into the following two questions: (1) what is the cooling performance of a water mist spray in a hot and humid urban climate? (2) What are the effects of different influencing factors? To answer these two questions, the computational fluid dynamics (CFD) simulations are used to modelthe cooling process of water mist spray inside an ideal two-dimensional street canyon with an aspect ratio of 1. A sound validation for the water spray cooling was conducted prior to the following CFD simulations. Results show that for given values of the water flow rate (i.e., 9.0 L/min) and the spray nozzle height (i.e., 3 m), a maximum temperature reduction of about 4.6 °C can be achieved at pedestrian height. Raising the installation height is more effective in maintaining the cooling zone proportion than decreasing the water flow rate. The clockwise recirculation inside the street canyon disappears with the upward airflow weakened when the spray nozzle is installed in the middle of the street canyon. Full article
(This article belongs to the Section Biometeorology and Bioclimatology)
Show Figures

Figure 1

18 pages, 3013 KB  
Article
Spatial Variation of PM10 and PM2.5 in Residential Indoor Environments in Municipalities Across Mexico City
by Elizabeth Vega, Ann Wellens, Anil Namdeo, Diana Meza-Figueroa, Octavio Ornelas, Jane Entwistle and Lindsay Bramwell
Atmosphere 2025, 16(9), 1039; https://doi.org/10.3390/atmos16091039 - 31 Aug 2025
Cited by 1 | Viewed by 1432
Abstract
Despite significant progress in controlling outdoor air pollution in Mexico City over the past three decades, indoor air pollution remains largely unaddressed. This is particularly concerning because health authorities advise people to stay indoors when outdoor pollution exceeds safe limits, yet indoor concentrations [...] Read more.
Despite significant progress in controlling outdoor air pollution in Mexico City over the past three decades, indoor air pollution remains largely unaddressed. This is particularly concerning because health authorities advise people to stay indoors when outdoor pollution exceeds safe limits, yet indoor concentrations can be higher. Two optical particle counters were deployed simultaneously indoors and outdoors in 38 homes across all municipalities in Mexico City. The average indoor 24 h PM2.5 concentration was 24.5 µg m−3, while PM10 concentration averaged 78.6 µg m−3 compared to outdoor averages of 20.5 µg m−3 and 72.0 µg m−3. The PM2.5/PM10 ratio was 0.3 both indoors and outdoors. Only 20% of the homes exhibited maximum outdoor PM2.5 concentrations 3.6 times higher than indoor; in 18%, indoor and outdoor levels were similar (0.8–1.2); and 60% of homes recorded indoor maxima up to nine times the outdoor peaks. Elevated indoor PM2.5 was primarily linked with cooking and, to a lesser extent, cleaning activities. Peaks in PM2.5 persisted for 4–8 h before returning to baseline. Ensuring adequate indoor ventilation is critical to maintain indoor air quality below outdoor levels and comply with WHO guidelines, highlighting the need for targeted strategies to reduce indoor exposure in urban homes. Full article
(This article belongs to the Section Air Quality)
Show Figures

Figure 1

24 pages, 2627 KB  
Article
Investigation of Engine Exhaust Conversion and N2O/NH3 Generation on Pd-Based Catalyst
by Chongyao Wang, Xin Wang, Jianwei Tan, Chen Dong, Liangxiao Hou, Jianyong Feng and Yunshan Ge
Atmosphere 2025, 16(9), 1038; https://doi.org/10.3390/atmos16091038 - 31 Aug 2025
Viewed by 759
Abstract
Natural gas (NG) engine catalysts face unique challenges in emission control due to their distinct raw emission characteristics. This study investigates the exhaust conversion and by-product generation of a Palladium-based catalyst of an NG engine through small-sample catalyst experiments, mainly focusing on the [...] Read more.
Natural gas (NG) engine catalysts face unique challenges in emission control due to their distinct raw emission characteristics. This study investigates the exhaust conversion and by-product generation of a Palladium-based catalyst of an NG engine through small-sample catalyst experiments, mainly focusing on the effect of feed gas composition on the conversion efficiency and N2O/NH3 emissions. Results show that N2O is generated via NO reduction by H2 (80~275 °C) and CO (275~400 °C) in the temperature range of 80~400 °C. NH3 generation occurs at 175~550 °C, mainly via NO reduction by H2 (supplied from the water–gas shift (WGS) reaction) and CO below 425 °C and exclusively by H2 (supplied from the steam reforming (SR) reaction) above 425 °C. An increase (0.9705~1.0176) in lambda enhances CO and CH4 conversion while reducing N2O and NH3 emissions, but it inhibits NO conversion and promotes NO2 formation. A lambda of 0.9941 achieves high conversion efficiency (≥90%) for CO, CH4, and NO, with reduced N2O and zero NH3 emissions. An increase in H2O (8~16%) accelerates the WGS and SR reactions, improving pollutant conversion. However, it aggravates N2O and NH3 emissions, with peak levels rising by 54% and 31%, respectively. Increased H2 (500~1500 ppm) preferentially consumes NO and reversely shifts the equilibrium of the WGS and SR reactions, reducing CO and CH4 conversion while improving NO conversion. And it promotes N2O selectivity at high temperature and NH3 selectivity at low temperature and peak emissions, with peak concentrations increasing by 58% and 15%, respectively. These findings reveal the by-product formation mechanism in the catalyst, providing valuable insights for the emission control of NG-fueled engines. Full article
(This article belongs to the Special Issue Traffic Related Emission (3rd Edition))
Show Figures

Figure 1

16 pages, 2154 KB  
Article
Estimation of Sensible and Latent Heat Fluxes from Different Ecosystems Using the Daily-Scale Flux Variance Method
by Yanhong Xie, Jingzheng Xu, Yini Pu, Lei Huang, Mi Zhang, Wei Xiao and Xuhui Lee
Atmosphere 2025, 16(9), 1030; https://doi.org/10.3390/atmos16091030 - 30 Aug 2025
Viewed by 596
Abstract
A daily-scale flux variance (FV) method, which employs low-frequency air temperature measurements, was assessed against eddy covariance (EC) measurements of sensible and latent heat fluxes at four sites representing grassland and cropland ecosystems. The sensible heat flux was estimated using two daily-scale FV [...] Read more.
A daily-scale flux variance (FV) method, which employs low-frequency air temperature measurements, was assessed against eddy covariance (EC) measurements of sensible and latent heat fluxes at four sites representing grassland and cropland ecosystems. The sensible heat flux was estimated using two daily-scale FV approaches: M1 (separating daytime and nighttime data) and M2 (integrating daily data), both derived from conventional formulations. The latent heat flux was extracted as a residual of the energy balance closure with the FV-estimated sensible heat flux and additional measurements of net radiation and soil heat flux. The results showed that the FV method performed poorly in estimating sensible heat flux across all four sites, primarily due to the negative flux values from cropland sites. In contrast, latent heat flux estimation showed reasonable agreement with EC measurements. Notably, upscaling the FV method from a half-daily (M1) to a daily (M2) scale did not improve the accuracy of sensible and latent heat flux estimations for most sites. The best performance for latent heat flux was achieved with M1 at a cropland site (YF), yielding a slope of 0.98, determination coefficient of 0.88, and root mean square error of 13.13 W m−2. Overall, the daily-scale FV method—requiring only low-frequency air temperature data from microclimate systems—offers a promising approach for evapotranspiration monitoring, particularly at basic meteorological stations lacking high-frequency instrumentations. Full article
(This article belongs to the Section Biometeorology and Bioclimatology)
Show Figures

Figure 1

18 pages, 728 KB  
Review
Systematic Review of Prenatal Exposure to PM2.5 and Its Chemical Components and Their Effects on Neurodevelopmental Outcomes in Neonates
by Gabriele Donzelli, Isabel Peraita-Costa, Nunzia Linzalone and María Morales-Suárez-Varela
Atmosphere 2025, 16(9), 1034; https://doi.org/10.3390/atmos16091034 - 30 Aug 2025
Viewed by 2052
Abstract
Particulate matter with a diameter less than 2.5 µm (PM2.5) and its chemical constituents—including ammonium (NH4+), sulfate (SO42−), nitrate (NO3), organic carbon (OC), soil dust, and black carbon (BC)—have been increasingly recognized [...] Read more.
Particulate matter with a diameter less than 2.5 µm (PM2.5) and its chemical constituents—including ammonium (NH4+), sulfate (SO42−), nitrate (NO3), organic carbon (OC), soil dust, and black carbon (BC)—have been increasingly recognized for their potential impact on fetal neurodevelopment. This systematic review aimed to synthesize current evidence on the relationship between prenatal exposure to PM2.5 and its chemical components and neurodevelopmental outcomes in neonates, focusing on diagnoses such as autism spectrum disorder (ASD) and attention deficit hyperactivity disorder (ADHD). Following PRISMA 2020 guidelines, a comprehensive literature search was conducted on PubMed and Embase databases from April to July 2025. Twenty-five studies meeting inclusion criteria were analyzed, of which sixteen addressed PM2.5 exposure generally, and nine assessed specific chemical constituents. The findings indicate that increased exposure to PM2.5, particularly during the third trimester, is associated with a higher risk of ASD. Additionally, prenatal exposure may adversely affect early neurodevelopmental domains including motor skills, problem-solving, and social interactions. Certain PM2.5 components, notably sulfate ions (SO42−), were identified as important contributors to neurological health outcomes. These results underscore the importance of reducing prenatal exposure to PM2.5 and its harmful constituents to protect neurodevelopment. Full article
(This article belongs to the Special Issue Air Pollution: Health Risks and Mitigation Strategies)
Show Figures

Figure 1

18 pages, 16048 KB  
Article
Ionospheric Variability During the 10 October 2024 Geomagnetic Storm: A Regional Analysis Across Europe
by Sharad C. Tripathi, Haris Haralambous and Trisani Biswas
Atmosphere 2025, 16(9), 1029; https://doi.org/10.3390/atmos16091029 - 30 Aug 2025
Viewed by 2210
Abstract
This study examines the ionospheric response to the intense geomagnetic storm of 9–12 October 2024 over the European sector. Digisonde data from mid-latitude European stations and in situ electron density measurements from Swarm A and B satellites were used to analyze variations in [...] Read more.
This study examines the ionospheric response to the intense geomagnetic storm of 9–12 October 2024 over the European sector. Digisonde data from mid-latitude European stations and in situ electron density measurements from Swarm A and B satellites were used to analyze variations in key ionospheric characteristics, including the critical frequency (foF2), peak height (hmF2) and plasma drift velocities. Significant uplift of the F2 layer and a corresponding reduction in foF2 were observed across latitudes, primarily driven by prompt penetration electric fields (PPEFs) and storm-induced thermospheric winds. Horizontal and vertical ion drifts showed large asymmetries and reversals, with zonal drift velocities exceeding 1000 m/s at some stations. Swarm observations confirmed plasma density enhancements during the main phase and notable depletions during recovery, particularly after 1:00 UT on 11 October. The midlatitude ionospheric trough (MIT) intensified during the recovery phase, as can be seen from Swarm B. These variations were shaped by electrodynamic forcing, compositional changes and disturbance dynamo electric fields (DDEFs). The results emphasize the role of solar wind drivers, latitude-dependent electrodynamic coupling and thermospheric dynamics in mid-latitude ionospheric variability during geomagnetic storms. Full article
Show Figures

Figure 1

28 pages, 10580 KB  
Article
A Study of the Low-Ozone Episode over Scandinavia and Northwestern Russia in March 2025
by Pavel Vargin, Sergei Smyshlyaev, Vladimir Guryanov, Natalia Chubarova, Dmitry Ionov, Tatjana Bankova, Natalya Ivanova and Anna Solomatnikova
Atmosphere 2025, 16(9), 1033; https://doi.org/10.3390/atmos16091033 - 30 Aug 2025
Viewed by 1136
Abstract
Following a very cold first half of the Arctic stratosphere winter of 2024–2025, the stratospheric polar vortex weakened from late February. The increase in the polar lower stratosphere temperature led to a decrease in the polar stratospheric cloud (PSC) type I (NAT) volume [...] Read more.
Following a very cold first half of the Arctic stratosphere winter of 2024–2025, the stratospheric polar vortex weakened from late February. The increase in the polar lower stratosphere temperature led to a decrease in the polar stratospheric cloud (PSC) type I (NAT) volume from ~80 million km3 to zero. The polar vortex weakening and temperature increase continued in early March, when major sudden stratospheric warming occurred. Although the polar cap total column ozone (TCO) significantly increased during this period, an ozone mini-hole formed over Scandinavia and northwestern Russia, with TCO values as low as 220–240 Dobson units, according to satellite observations and ground-based measurements over St. Petersburg and Moscow on 5–6 March 2025. Chemistry-transport model calculations using MERRA2 reanalysis data were performed to investigate the role of chemical ozone depletion and dynamical processes in the low TCO values in early March. Model experiments show that dynamical processes played a predominant role in the formation of low TCO values, but the role of chemical processes was not negligible. Associated with the TCO anomaly, the difference relative to the standard ozone level in the UV indices over Moscow, St. Petersburg and Helsinki reached up to 60–100%. Full article
(This article belongs to the Section Atmospheric Techniques, Instruments, and Modeling)
Show Figures

Figure 1

11 pages, 2829 KB  
Article
Low-Cost, LED-Based Photoacoustic Spectrophone Using Hemispherical Acoustic Resonant Cavity for Measurement of Hydrocarbon Gases
by Gaoxuan Wang, Lingxiao Hou, Fangjun Li, Lihui Wang, Chao Fei, Xiaojian Hong and Sailing He
Atmosphere 2025, 16(9), 1012; https://doi.org/10.3390/atmos16091012 - 28 Aug 2025
Viewed by 669
Abstract
Spherical acoustic resonant cavities have been increasingly reported in photoacoustic spectroscopy due to their small volume and enhanced effective gas absorption path length. For further reducing the acoustic cavity volume and exploiting broadband LED as a light source, this paper reports a low-cost, [...] Read more.
Spherical acoustic resonant cavities have been increasingly reported in photoacoustic spectroscopy due to their small volume and enhanced effective gas absorption path length. For further reducing the acoustic cavity volume and exploiting broadband LED as a light source, this paper reports a low-cost, LED-based photoacoustic gas-sensing system using a hemispherical acoustic resonant (HAR) cavity with a radius of 15 mm and a volume of 7.07 mL. The placement of both the excitation light source and transducer, as important elements in photoacoustic spectroscopy, was systematically optimized for improving the generation efficient of photoacoustic signal. The frequency response of the HAR cavity was thoroughly characterized for exploring an optimal operation frequency of the light source. Through positional and frequency optimization, the developed low-cost, LED-based photoacoustic spectrophone realized highly sensitive measurements of hydrocarbon gases with measurement sensitivities of 111.6 ppm (3σ) for isobutane, 140.1 ppm (3σ) for propane, and 866.4 ppm (3σ) for ethylene at an integration time of 1 s. These results demonstrate the strong potential of low-cost, LED-HAR-based PA-sensing systems in the field of gas sensing for widespread deployment in distributed sensor networks and atmospheric monitoring platforms. Full article
Show Figures

Figure 1

12 pages, 402 KB  
Article
Exploring Carbon Emission Peak and Reduction Strategies in China’s Industrial Sector: A Case Study of Wuxi City
by Xianhong Qin and Xiaoyan Xu
Atmosphere 2025, 16(9), 1010; https://doi.org/10.3390/atmos16091010 - 28 Aug 2025
Viewed by 780
Abstract
As the world’s largest manufacturing country, China’s industrial carbon emission reduction is crucial to achieving its “dual carbon” goals. This paper takes Wuxi, a national low-carbon pilot city in Jiangsu Province, as a case, using a bottom-up factor decomposition model to study industrial [...] Read more.
As the world’s largest manufacturing country, China’s industrial carbon emission reduction is crucial to achieving its “dual carbon” goals. This paper takes Wuxi, a national low-carbon pilot city in Jiangsu Province, as a case, using a bottom-up factor decomposition model to study industrial carbon peak prediction and sector-specific emission reduction strategies. Results show that under the usual-growth scenario (UG), Wuxi’s industrial emissions keep growing and will not peak before 2030, reaching 122.18 million tCO2 that year. Under the emission-controlled scenario (EC), with industrial structure optimization and energy intensity control, emissions peak in 2026 at 100.55 million tCO2, 17.7% lower than the baseline. The reinforced-mitigation scenario (RM), combining in-depth structural adjustment and technological upgrade, sees the peak in 2025 at 94.22 million tCO2, a 22.9% reduction. It is necessary to implement differentiated emission reduction strategies, focusing on high-emission and low-carbon productivity industries such as electricity and heat production, and ferrous metal smelting and rolling. Through precise management and control, the overall emission reduction efficiency can be improved, providing a reference paradigm for the low-carbon transformation of similar industrial cities. Full article
(This article belongs to the Special Issue Transport GHG Emissions)
Show Figures

Figure 1

24 pages, 4067 KB  
Article
A Hyperspectral Method for Detection of the Three-Dimensional Spatial Distribution of Aerosol in Urban Areas for Emission Source Identification and Health Risk Assessment
by Shun Xia, Qihua Li, Jian Chen, Zhiguo Zhang and Qihou Hu
Atmosphere 2025, 16(9), 999; https://doi.org/10.3390/atmos16090999 - 24 Aug 2025
Viewed by 683
Abstract
Studying the vertical and horizontal distribution of particulate matter at the hectometer scale in the atmosphere is essential for understanding its sources, transportation, and transmission and its impact on human health. In this study, a method was developed based on hyperspectral instrumentation to [...] Read more.
Studying the vertical and horizontal distribution of particulate matter at the hectometer scale in the atmosphere is essential for understanding its sources, transportation, and transmission and its impact on human health. In this study, a method was developed based on hyperspectral instrumentation to obtain both vertical and horizontal distributions of aerosol extinction by employing multiple azimuth angles, selecting optimized elevation angles, and reducing the acquisition time of individual spectra. This method employed observations from different azimuth angles to represent particulate matter concentrations in various directions. The correlation coefficient between the hyperspectral observations and in-situ measurement was 0.627. Observations indicated that the aerosol extinction profile followed an exponential decay, with most aerosols confined below 1 km, implying a likely origin from local near-surface emissions. The horizontal distribution indicated that the northeastern urban areas and the eastern rural areas were the primary regions with high concentrations of particulate matter. The observational evidence suggests the presence of two potential emission sources within the study area. Moreover, health risk results indicated that even within the same town, differences of particulate matter concentration and population density could lead to varying health exposure risks. For instance, in the 200° and 210° directions, which represent adjacent urban areas less than 1 km apart, the number of PM2.5-related illness cases in the 210° direction was 20.83% higher than that in the 200° direction. Full article
(This article belongs to the Special Issue Application of Emerging Methods in Aerosol Research)
Show Figures

Figure 1

11 pages, 875 KB  
Article
Evidence for a New Oxidation Mechanism for Sulfur Dioxide from Laboratory Measurements
by William R. Stockwell and Rosa M. Fitzgerald
Atmosphere 2025, 16(9), 1000; https://doi.org/10.3390/atmos16091000 - 24 Aug 2025
Viewed by 1083
Abstract
The oxidization of sulfur dioxide (SO2) occurs in the gas and liquid phase and this oxidation contributes to particulate matter and acid precipitation. The production of sulfate particles is significant because of their impact on climate, precipitation acidification, and human health. [...] Read more.
The oxidization of sulfur dioxide (SO2) occurs in the gas and liquid phase and this oxidation contributes to particulate matter and acid precipitation. The production of sulfate particles is significant because of their impact on climate, precipitation acidification, and human health. In this paper, the focus is on the oxidation of SO2 and on the possibility of unknown heterogeneous reactions that may occur on sulfate aerosol surfaces. These results are based on the reanalysis of a foundational set of SO2 laboratory oxidation measurements. The experiments involved two sets of photochemical studies of nitrous acid (HONO), nitrogen oxides (NOx = NO + NO2), SO2, carbon monoxide (CO), and water vapor (H2O) mixtures made in molecular nitrogen (N2) with traces of molecular oxygen or in synthetic air. The reanalysis strongly suggests that there are uncharacterized processes for the oxidation of SO2 that are nearly three times faster than the known gas-phase reactions. The uncharacterized processes may involve sulfate aerosol surface reactions in the presence of nitrogen oxides. If these processes can be included in current atmospheric chemistry models, greater conversion rates of SO2 to sulfate aerosol will be calculated and this may reduce modeling bias. Full article
(This article belongs to the Section Atmospheric Techniques, Instruments, and Modeling)
Show Figures

Figure 1

21 pages, 8381 KB  
Article
Wind-Induced Water Transport and Circulation Structure in the Laptev Sea–East Siberian Sea
by Xiangyun Liu, Yanjun Wu and Xiaoyu Wang
Atmosphere 2025, 16(9), 1001; https://doi.org/10.3390/atmos16091001 - 24 Aug 2025
Viewed by 752
Abstract
Variability in the Laptev Sea–East Siberian Sea circulation system modulates freshwater circulation in the Arctic Ocean, yet details of these wind-driven mechanisms remain poorly understood. Based on in situ observations from the 2018 Sino-Russian joint Arctic expedition, this study investigates the modulatory influence [...] Read more.
Variability in the Laptev Sea–East Siberian Sea circulation system modulates freshwater circulation in the Arctic Ocean, yet details of these wind-driven mechanisms remain poorly understood. Based on in situ observations from the 2018 Sino-Russian joint Arctic expedition, this study investigates the modulatory influence of wind on circulation structures and freshwater transport in the study area and examines the long-term variation characteristics of this circulation and its inherent connection with the Arctic wind. In situ measurements confirm two freshwater transport pathways: a coastal-current route and a geostrophic slope-current route. As the Beaufort High moves toward the Canadian Basin, it shifts wind patterns from anticyclonic to cyclonic, which regulates the transport of shelf water by influencing the prevailing wind direction. Furthermore, our analysis identifies two main modes of long-term changes in summer surface circulation: the first mode characterizes the coastal-current architecture, while the second mode delineates slope-current configurations. Crucially, large-scale modes of the Arctic wind play an important role in regulating circulation. Its first mode corresponds to the summer anticyclonic circulation pattern of the Arctic Ocean Oscillation, which drives the eastward strengthening of the coastal current, while the third mode presents a mechanism similar to the Arctic Dipole, which promotes the development of the slope current by enhancing the convergence of the polar current and wind. This has led to the long-term strengthening of the slope current. Full article
(This article belongs to the Section Biosphere/Hydrosphere/Land–Atmosphere Interactions)
Show Figures

Figure 1

19 pages, 5122 KB  
Review
An Overview of the Holocene High Sea Level Around the South China Sea: Age, Height, and Mechanisms
by Lei Zhang, Tongyan Lü, Lei Xue, Weiming Mo, Chaoqun Wang, Xitao Zhao and Daogong Hu
Atmosphere 2025, 16(8), 993; https://doi.org/10.3390/atmos16080993 - 21 Aug 2025
Viewed by 2457
Abstract
Understanding Holocene high sea levels in the South China Sea (SCS) is critical for understanding climate change and assessing future sea-level rise risks. We provide a comprehensive review of the Holocene highstand in the SCS, focusing on its age, height, and mechanisms. Records [...] Read more.
Understanding Holocene high sea levels in the South China Sea (SCS) is critical for understanding climate change and assessing future sea-level rise risks. We provide a comprehensive review of the Holocene highstand in the SCS, focusing on its age, height, and mechanisms. Records reveal a wide range for this highstand: ages span 3480–7500 cal yr BP, while elevations range from −7.40 to 7.53 m relative to the present. Positive elevations dominate (80.5% of records), with the most frequent range being 2–3 m. Regionally averaged formation times suggest a broadly synchronous mid-Holocene high-sea-level event across the SCS, potentially reflecting a global background. The observed variability is attributed to the interplay of multiple factors: global processes like glacial meltwater input and seawater thermal expansion, particularly during the Holocene warm period, and regional neotectonic movements (uplift/subsidence), which are the primary cause of spatial differences in reconstructed elevations. Significant debate persists regarding precise timing, height, and dominant mechanisms due to limitations in data coverage, dating precision, and challenges in quantifying tectonic influences. Future research priorities include obtaining high-resolution data from stable marine sediments, employing diverse dating techniques and modern crustal deformation monitoring, quantifying tectonic impacts, developing regional sea-level models, and enhancing international collaboration to refine understanding and improve predictions of future sea-level rise impacts. Full article
(This article belongs to the Special Issue The Evolution of Climate and Environment in the Holocene)
Show Figures

Figure 1

16 pages, 12472 KB  
Article
Modeling and Accuracy Evaluation of Ionospheric VTEC Across China Utilizing CMONOC GPS/GLONASS Observations
by Fu-Ying Zhu and Chen Zhou
Atmosphere 2025, 16(8), 988; https://doi.org/10.3390/atmos16080988 - 20 Aug 2025
Viewed by 644
Abstract
Accurate estimation of the regional ionospheric model (RIM) is essential for Total electron content and high-precision applications of the Global Navigation Satellite System (GNSS). Utilizing dual-frequency observations from over 250 Crustal Movement Observation Network of China (CMONOC) monitoring stations, which are equipped with [...] Read more.
Accurate estimation of the regional ionospheric model (RIM) is essential for Total electron content and high-precision applications of the Global Navigation Satellite System (GNSS). Utilizing dual-frequency observations from over 250 Crustal Movement Observation Network of China (CMONOC) monitoring stations, which are equipped with both GPS and GLONASS receivers, this study investigates the Vertical Total Electron Content (VTEC) estimation models over the China region and evaluates the estimation accuracy under both GPS-only and GPS+GLONASS configurations. Results indicate that, over the Chinese region, the spherical harmonic reginal ionospheric model (G_SH RIM) and polynomial function reginal ionospheric model (G_Poly RIM) based on single GPS observations demonstrate comparable accuracy with highly consistent spatiotemporal distribution characteristics, showing grid mean deviations of 1.60 TECu and 1.62 TECu, respectively. The combined GPS+GLONASS observation-based RIMs (GR_SH RIM and GR_Poly RIM) significantly improve the TEC modeling accuracy in the Chinese peripheral regions, though the overall average accuracy decreases compared to single-GPS models. Specifically, GR_SH RIM and GR_Poly RIM exhibit mean deviations of 2.15 TECu and 2.32 TECu, respectively. A preliminary analysis reveals that the reduced accuracy is primarily due to the systematic errors introduced by imprecise differential code biases (DCBs) of GLONASS satellites. These findings can provide valuable references for multi-GNSS regional ionospheric estimation. Full article
(This article belongs to the Special Issue Advanced GNSS for Ionospheric Sounding and Disturbances Monitoring)
Show Figures

Figure 1

34 pages, 3632 KB  
Review
Systematic Review and Meta-Analysis of Urban Air Quality in the Arabian Peninsula
by Elisephane Irankunda, Monica Menendez, Basit Khan, Francesco Paparella and Olivier Pauluis
Atmosphere 2025, 16(8), 990; https://doi.org/10.3390/atmos16080990 - 20 Aug 2025
Viewed by 2180
Abstract
Air pollution is causing a global health, climate, and environmental crisis. Air quality (AQ) in hyper-arid regions, such as the Arabian Peninsula, remains under-explored, posing significant concerns for public health and the scientific community. Both long-term and short-term exposure to high pollutant levels, [...] Read more.
Air pollution is causing a global health, climate, and environmental crisis. Air quality (AQ) in hyper-arid regions, such as the Arabian Peninsula, remains under-explored, posing significant concerns for public health and the scientific community. Both long-term and short-term exposure to high pollutant levels, whether from anthropogenic or natural sources, can pose serious health risks. This paper offers a comprehensive review and meta-analysis of urban AQ literature published in the region over the past decade (2013–June 2025). We aim to provide guidance and highlight key directions for future research in the field. This paper examines key pollutants, emission sources, implications of urban sources, and the most studied countries, methodologies, limitations, and recommendations from different case studies. Our analysis reveals a significant research gap highlighting insufficient recent literature. Saudi Arabia was the most studied country with 20 papers, followed by the broader Arabian Peninsula (sixteen), Qatar (twelve), the United Arab Emirates and Iraq (seven each), Kuwait (four), Oman (three), Jordan, and Bahrain (one each). The primary methods employed included measurements and sampling (28%) and remote sensing (24%), with a focus on pollutants such as dust (23.1%), NOx/NO2/NO (17.2%), PM2.5 (17.6%), and PM10 (12%). Industrial emissions (27%) and natural dust (24%) were identified as significant emission sources. Monitoring methods included grab sampling (19%), integrated sampling (34%), and continuous monitoring (47%). Notably, 13.3% of AQ sensors were linked to a station, 27.6% were self-referenced, and 59.1% did not specify calibration methods. The findings highlight the need for further research, regular calibration of air quality monitors, and the integration of advanced modeling approaches. Moreover, we recommend exploring the links between air pollution and urban development to ensure cleaner air and contribute to the global dialogue on sustainable and cross-border AQ solutions. Full article
(This article belongs to the Section Air Quality)
Show Figures

Figure 1

23 pages, 3742 KB  
Article
Emergency Medical Interventions in Areas with High Air Pollution: A Case Study from Małopolska Voivodeship, Poland
by Ewa Szewczyk, Michał Lupa, Mateusz Zaręba, Elżbieta Węglińska, Tomasz Danek and Amit Kumar Mishra
Atmosphere 2025, 16(8), 983; https://doi.org/10.3390/atmos16080983 - 18 Aug 2025
Viewed by 1823
Abstract
Air pollution poses a significant threat to public health, particularly in urban and industrialized regions. This study investigates the relationship between air quality and the frequency of Emergency Medical Service (EMS) calls in the Małopolska Voivodeship of Poland between 2020 and 2023. Data [...] Read more.
Air pollution poses a significant threat to public health, particularly in urban and industrialized regions. This study investigates the relationship between air quality and the frequency of Emergency Medical Service (EMS) calls in the Małopolska Voivodeship of Poland between 2020 and 2023. Data from over 190 air quality sensors (PM10) were spatially aggregated using both hexagonal grids and administrative boundaries, while EMS call records were filtered to focus on cardiovascular and respiratory incidents. During 2020–2023, a total of 305,142 EMS calls were analyzed, and months with PM10 exceedances showed an average of 1.50 respiratory calls per 1000 residents compared to 1.19 in months without exceedances. Statistical analyses, including Kolmogorov-Smirnov tests and Pearson correlation, were applied to explore temporal and spatial associations. Results indicate a statistically significant increase in EMS calls during periods of elevated air pollution, with the strongest correlation observed for respiratory-related incidents. Comparative analyses between high- and low-pollution municipalities supported the observed relationships. Further analysis indicated that the COVID-19 pandemic may have partially confounded these associations, particularly for respiratory cases, though significant patterns remained even after accounting for pandemic peaks. While limitations related to data gaps and seasonal biases exist, the findings suggest that real-time air pollution data could inform better EMS resource allocation. This research highlights the potential of integrating environmental data into public health strategies to improve emergency response and reduce health risks in polluted regions. Full article
Show Figures

Figure 1

19 pages, 3981 KB  
Article
Dataset Construction for Radiative Transfer Modeling: Accounting for Spherical Curvature Effect on the Simulation of Radiative Transfer Under Diverse Atmospheric Scenarios
by Qingyang Gu, Kun Wu, Xinyi Wang, Qijia Xin and Luyao Chen
Atmosphere 2025, 16(8), 977; https://doi.org/10.3390/atmos16080977 - 17 Aug 2025
Viewed by 756
Abstract
Conventional radiative transfer (RT) models often adopt the plane-parallel (PP) approximation, which neglects Earth’s curvature and leads to significant optical path errors under large solar or sensor zenith angles, particularly for high-latitude regions and twilight conditions. The spherical Monte Carlo method offers high [...] Read more.
Conventional radiative transfer (RT) models often adopt the plane-parallel (PP) approximation, which neglects Earth’s curvature and leads to significant optical path errors under large solar or sensor zenith angles, particularly for high-latitude regions and twilight conditions. The spherical Monte Carlo method offers high accuracy but is computationally expensive, and the commonly used pseudo-spherical (PSS) approximation fails when the viewing zenith angle exceeds 80°. With the increasing application of machine learning in atmospheric science, the efficiency and angular limitations of spherical RT simulations may be overcome. This study provides a physical and quantitative foundation for developing a hybrid RT framework that integrates physical modeling with machine learning. By systematically quantifying the discrepancies between PP and spherical RT models under diverse atmospheric scenarios, key influencing factors—including wavelength, solar and viewing zenith angles, aerosol properties (e.g., single scattering albedo and asymmetry factor), and PP-derived radiance—were identified. These variables significantly affect spherical radiative transfer and serve as effective input features for data-driven models. Using the corresponding spherical radiance as the target variable, the proposed framework enables rapid and accurate inference of spherical radiative outputs based on computationally efficient PP simulations. Full article
(This article belongs to the Section Atmospheric Techniques, Instruments, and Modeling)
Show Figures

Figure 1

24 pages, 8188 KB  
Article
Top of the Atmosphere Reflected Shortwave Radiative Fluxes from ABI on GOES-18
by Yingtao Ma, Rachel T. Pinker, Wen Chen, Istvan Laszlo, Hye-Yun Kim, Hongqing Liu and Jaime Daniels
Atmosphere 2025, 16(8), 979; https://doi.org/10.3390/atmos16080979 - 17 Aug 2025
Viewed by 710
Abstract
In this study, we describe the derivation and evaluation of Top of the Atmosphere (TOA) Shortwave Radiative (SWR) Fluxes from the Advanced Baseline Imager (ABI) sensor on the GOES-18 satellite. The TOA estimates use narrowband observations from ABI that are transformed to broadband [...] Read more.
In this study, we describe the derivation and evaluation of Top of the Atmosphere (TOA) Shortwave Radiative (SWR) Fluxes from the Advanced Baseline Imager (ABI) sensor on the GOES-18 satellite. The TOA estimates use narrowband observations from ABI that are transformed to broadband (NTB), based on simulations and adjusted to total fluxes using Angular Distribution Models (ADMs). Subsequently, the GOES-18 estimates are evaluated against the Clouds and the Earth’s Radiant Energy System (CERES) data, the only observed SWR broadband flux dataset. The importance of agreement at the TOA is that most methodologies to derive surface SWR start with the satellite observation at the TOA. Moreover, information needed to compute radiative fluxes at both boundaries (TOA and surface) is needed for estimating the energy absorbed by the atmosphere. The methodology described was comprehensively evaluated, and possible sources of errors were identified. The results of the evaluation for the four seasonal months indicate that by using the best available auxiliary data, the accuracy achieved in estimating TOA SWR at the instantaneous scale ranges between 0.55 and 17.14 W m−2 for the bias and 22.21 to 30.64 W m−2 for the standard deviation of biases (differences are ABI minus CERES). It is believed that the high bias of 17.14 for July is related to the predominantly cloudless sky conditions, when the used ADMs do not perform as well as for cloudy conditions. Full article
(This article belongs to the Section Atmospheric Techniques, Instruments, and Modeling)
Show Figures

Figure 1

24 pages, 3586 KB  
Article
Energy Sustainability of Urban Areas by Green Systems: Applied Thermodynamic Entropy and Strategic Modeling Means
by Carla Balocco, Giacomo Pierucci, Michele Baia, Costanza Borghi, Saverio Francini, Gherardo Chirici and Stefano Mancuso
Atmosphere 2025, 16(8), 975; https://doi.org/10.3390/atmos16080975 - 17 Aug 2025
Cited by 1 | Viewed by 936
Abstract
Global warming, anthropogenic pressure, and urban expansion at the expense of green spaces are leading to an increase in the incidence of urban heat islands, creating discomfort and health issue for citizens. This present research aimed at quantifying the impact of nature-based solutions [...] Read more.
Global warming, anthropogenic pressure, and urban expansion at the expense of green spaces are leading to an increase in the incidence of urban heat islands, creating discomfort and health issue for citizens. This present research aimed at quantifying the impact of nature-based solutions to support decision-making processes in sustainable energy action plans. A simple method is provided, linking applied thermodynamics to physics-informed modeling of urban built-up and green areas, high-resolution climate models at urban scale, greenery modeling, spatial georeferencing techniques for energy, and entropy exchanges evaluation in urban built-up areas, with and without vegetation. This allows the outdoor climate conditions and thermo-hygrometric well-being to improve, reducing the workload of cooling plant-systems in buildings and entropy flux to the environment. The finalization and post-processing of obtained results allows the definition of entropy footprints. The main findings show a decrease in greenery’s contribution for different scenarios, referring to a different climatological dataset, but an increase in entropy that becomes higher for the scenario with higher emissions. The comparison between the entropy footprint values for different urban zones can be a useful support to public administrations, stakeholders, and local governments for planning proactive resilient cities and anthropogenic impact reduction and climate change mitigation. Full article
Show Figures

Figure 1

14 pages, 2723 KB  
Article
Real-Time Insights into Indoor Air Quality in University Environments: PM and CO2 Monitoring
by Dan-Marius Mustață, Daniel Bisorca, Ioana Ionel, Ahmed Adjal and Ramon-Mihai Balogh
Atmosphere 2025, 16(8), 972; https://doi.org/10.3390/atmos16080972 - 16 Aug 2025
Viewed by 1341
Abstract
This study presents real-time measurements of particulate matter (PM1, PM2.5, PM10) and carbon dioxide (CO2) concentrations across five university indoor environments with varying occupancy levels and natural ventilation conditions. CO2 concentrations frequently exceeded the [...] Read more.
This study presents real-time measurements of particulate matter (PM1, PM2.5, PM10) and carbon dioxide (CO2) concentrations across five university indoor environments with varying occupancy levels and natural ventilation conditions. CO2 concentrations frequently exceeded the 1000 ppm guideline, with peak values reaching 3018 ppm and 2715 ppm in lecture spaces, whereas one workshop environment maintained levels well below limits (mean = 668 ppm). PM concentrations varied widely: PM10 reached 541.5 µg/m3 in a carpeted amphitheater, significantly surpassing the 50 µg/m3 legal daily limit, while a well-ventilated classroom exhibited lower levels despite moderate occupancy (PM10 max = 116.9 µg/m3). Elevated PM values were strongly associated with flooring type and occupant movement, not just activity type. Notably, window ventilation during breaks reduced CO2 concentrations by up to 305 ppm (p < 1 × 10−47) and PM10 by over 20% in rooms with favorable layouts. These findings highlight the importance of ventilation strategy, spatial orientation, and surface materials in shaping indoor air quality. The study emphasizes the need for targeted, non-invasive interventions to reduce pollutant exposure in historic university buildings where mechanical ventilation upgrades are often restricted. Full article
Show Figures

Figure 1

17 pages, 2613 KB  
Article
Synergistic Effects of Ambient PM2.5 and O3 with Natural Temperature Variability on Non-Accidental and Cardiovascular Mortality: A Historical Time Series Analysis in Urban Taiyuan, China
by Huan Zhou, Hong Geng, Jingjing Tian, Li Wu, Zhihong Zhang and Daizhou Zhang
Atmosphere 2025, 16(8), 971; https://doi.org/10.3390/atmos16080971 - 15 Aug 2025
Viewed by 806
Abstract
Climate change and air pollution are associated with a range of health outcomes, including cardiovascular and respiratory disease. Evaluation of the synergic effects of air pollution and increasing natural temperature on mortality is important for understanding their potential joint health effects. In this [...] Read more.
Climate change and air pollution are associated with a range of health outcomes, including cardiovascular and respiratory disease. Evaluation of the synergic effects of air pollution and increasing natural temperature on mortality is important for understanding their potential joint health effects. In this study, the modification effects of air temperature on the short-term association of ambient fine particulate matter (PM2.5) and ozone (O3) with non-accidental death (NAD) and cardiovascular disease (CVD) mortality were evaluated by using the generalized additive model (GAM) combined with the distributed lag nonlinear model (DLNM) in urban areas of Taiyuan, a representative of energy and heavy industrial cities in Northern China. The data on the daily cause-specific death numbers, air pollutants concentrations, and meteorological factors were collected from January 2013 to December 2019, and the temperature was divided into low (<25th percentile), medium (25–75th percentile), and high (>75th percentile) categories. Significant associations of PM2.5 and O3 with NAD and CVD mortality were observed in single-effect analysis. A statistically significant increase in the effect estimates of PM2.5 and O3 on NAD and CVD mortality was also observed on high-temperature days. But the associations of those were not statistically significant on medium- and low-temperature days. At the same temperature level, the effects of PM2.5 and O3 on the CVD mortality were larger than those on NAD (1.74% vs. 1.21%; 1.67% vs. 0.57%), and the elderly and males appeared to be more vulnerable to both higher temperatures and air pollution. The results suggest that the acute effect of PM2.5 and O3 on NAD and CVD mortality in urban Taiyuan was enhanced by increasing temperatures, particularly for the elderly and males. It highlights the importance of reducing PM2.5 and O3 exposure in urban areas to reduce the public health burden under the situation of global warming. Full article
Show Figures

Figure 1

19 pages, 7660 KB  
Article
The Impact of Photochemical Loss on the Source Apportionment of Ambient Volatile Organic Compounds (VOCs) and Their Ozone Formation Potential in the Fenwei Plain, Northern China
by Yanan Tao, Qi Xiong, Yawei Dong, Jiayin Zhang, Lei Cao, Min Zhu, Qiaoqiao Wang and Jianwei Gu
Atmosphere 2025, 16(8), 970; https://doi.org/10.3390/atmos16080970 - 15 Aug 2025
Viewed by 989
Abstract
The Fenwei Plain (FWP), one of China’s most polluted regions, has experienced severe ozone (O3) pollution in recent years. Volatile organic compounds (VOCs), key O3 precursors, undergo significant photochemical degradation, yet their loss and the implications for source apportionment and [...] Read more.
The Fenwei Plain (FWP), one of China’s most polluted regions, has experienced severe ozone (O3) pollution in recent years. Volatile organic compounds (VOCs), key O3 precursors, undergo significant photochemical degradation, yet their loss and the implications for source apportionment and ozone formation potential (OFP) in this region remain unclear. This study conducted summertime VOC measurements in two industrial cities in the FWP, Hancheng (HC) and Xingping (XP), to quantify photochemical losses of VOCs and assessed their impact on source attribution and OFP with photochemical age-based parameterization methods. Significant VOC photochemical losses were observed, averaging 3.6 ppbv (7.1% of initial concentrations) in HC and 1.9 ppbv (5.6%) in XP, with alkenes experiencing the highest depletion (22–30%). Source apportionment based on both initial (corrected) and observed concentrations revealed that industrial sources (e.g., coking, coal washing, and rubber manufacturing) dominated ambient VOCs. Ignoring photochemical losses underestimated contributions from natural gas combustion and biogenic sources, while it overestimated the secondary source. OFP calculated with lost VOCs (OFPloss) reached 34 ppbv in HC and 15 ppbv in XP, representing 20% and 25% of OFP based on observed concentrations, respectively, with reactive alkenes accounting for over 90% of OFPloss. The results highlight the importance of accounting for VOC photochemical losses for accurate source identification and developing effective O3 control strategies in the FWP. Full article
(This article belongs to the Section Air Quality)
Show Figures

Figure 1

24 pages, 9802 KB  
Article
Threshold Dynamics of Vegetation Carbon Sink Loss Under Multiscale Droughts in the Mongolian Plateau
by Hongguang Chen, Mulan Wang, Fanhao Meng, Chula Sa, Min Luo, Wenfeng Chi and Sonomdagva Chonokhuu
Atmosphere 2025, 16(8), 964; https://doi.org/10.3390/atmos16080964 - 14 Aug 2025
Viewed by 683
Abstract
Gross primary productivity (GPP) is a key carbon flux in the global carbon cycle, and understanding the inhibitory effects of drought on GPP and its underlying mechanisms is crucial for understanding carbon–climate feedback. However, current research has not sufficiently addressed the threshold dynamics [...] Read more.
Gross primary productivity (GPP) is a key carbon flux in the global carbon cycle, and understanding the inhibitory effects of drought on GPP and its underlying mechanisms is crucial for understanding carbon–climate feedback. However, current research has not sufficiently addressed the threshold dynamics and regional differentiation of GPP responses to the synergistic effects of meteorological drought (MD) and soil moisture drought (SD), particularly in the drought-sensitive Mongolian Plateau. This study focuses on the Mongolian Plateau from 1982 to 2021, using the standardized precipitation index (SPI) and standardized soil moisture index (SSI) to characterize MD and SD, respectively. The study combines the three-threshold run theory, cross-wavelet analysis, Spearman correlation analysis, and copula models to systematically investigate the variation characteristics, propagation patterns, and the probability and thresholds for triggering GPP loss under different time scales (monthly, seasonal, semi-annual, and annual). The results show that (1) both types of droughts exhibited significant intensification trends, with SD intensifying at a faster rate (annual scale SSI12 trend: −0.34/10a). The intensification trend strengthened with increasing time scales. MD exhibited high frequency, short duration, and low intensity, while SD showed the opposite characteristics. The most significant aridification occurred in the central region. (2) The average propagation time from MD to SD was 11.22 months. The average response time of GPP to MD was 10.46 months, while the response time to SD was significantly shorter (approximately 2 months on average); the correlation between SSI and GPP was significantly higher than that between SPI and GPP. (3) The conditional probability of triggering mild GPP loss (e.g., <40th percentile) was relatively high for both drought types, and the probability of loss increased as the time scales extended. Compared to MD, SD was more likely to induce severe GPP loss. Additionally, the drought intensity threshold for triggering mild loss was lower (i.e., mild drought could trigger it), while higher drought intensity was required to trigger severe and extreme losses. Therefore, this study provides practical guidance for regional drought early-warning systems and ecosystem adaptive management, while laying an important theoretical foundation for a deeper understanding of drought response mechanisms. Full article
Show Figures

Figure 1

17 pages, 7328 KB  
Article
Coastal Wind in East Iceland Using Sentinel-1 and Model Data Reanalysis
by Eduard Khachatrian, Yngve Birkelund and Andrea Marinoni
Atmosphere 2025, 16(8), 962; https://doi.org/10.3390/atmos16080962 - 12 Aug 2025
Cited by 1 | Viewed by 790
Abstract
This study evaluates three wind data sources in East Iceland’s coastal environment: the high-resolution Synthetic Aperture Radar (SAR)-based Sentinel-1, the regional reanalysis Copernicus Arctic Regional Reanalysis (CARRA), and the global reanalysis ECMWF Reanalysis v5 (ERA5). We focus on assessing the advantages and limitations [...] Read more.
This study evaluates three wind data sources in East Iceland’s coastal environment: the high-resolution Synthetic Aperture Radar (SAR)-based Sentinel-1, the regional reanalysis Copernicus Arctic Regional Reanalysis (CARRA), and the global reanalysis ECMWF Reanalysis v5 (ERA5). We focus on assessing the advantages and limitations of each dataset, especially considering their differences in spatial and temporal resolutions. While ERA5 aligns well with CARRA and Sentinel-1 offshore, it tends to underestimate wind speeds and misrepresent wind directions near complex coastlines and fjords, with Root Mean Squared Difference (RMSD) values reaching up to 3.98 m/s in these areas. CARRA’s higher resolution allows it to better capture coastal wind dynamics and shows strong agreement with Sentinel-1. Sentinel-1 excels in revealing detailed local wind features, such as katabatic winds in fjords, highlighting the value of satellite observations in complex terrain. By combining these complementary datasets, this study enhances understanding of coastal wind variability and supports improved hazard assessment in Iceland’s challenging coastal environments. Full article
(This article belongs to the Special Issue Satellite Remote Sensing Applied in Atmosphere (3rd Edition))
Show Figures

Figure 1

13 pages, 2696 KB  
Article
Chemistry of Precipitation Acidity at Irkutsk, Russia
by Hiroshi Hara and Izumi Noguchi
Atmosphere 2025, 16(8), 959; https://doi.org/10.3390/atmos16080959 - 12 Aug 2025
Viewed by 714
Abstract
Precipitation pH at a Russin EANET site, Irkutsk, was discussed and explained from the viewpoint of acid–base chemical equilibrium theory. The datasets employed were the wet-only daily basis observations at a subarctic climate urban site from 1999 to 2020. A distinct seasonal variation [...] Read more.
Precipitation pH at a Russin EANET site, Irkutsk, was discussed and explained from the viewpoint of acid–base chemical equilibrium theory. The datasets employed were the wet-only daily basis observations at a subarctic climate urban site from 1999 to 2020. A distinct seasonal variation in pH was discovered for the monthly means over the entire period, from pH5.24 in July to pH6.66 in February, bracketing pH5.6, a criterion for acid rain. Monthly concentration variations in major ions, nss-SO42−, NO3, NH4+, and nss-Ca2+, divulged that nss-Ca2+ and nss-SO42− were predominant species and that nss-Ca2+ dominated nss-SO42− during winter months and vice versa in summer. Individual pHs were explored with the concentration difference between two ions, ([nss-SO42−] − [nss-Ca2+]), defined as D2, as well as two other differences in selected ion groups, D4 = ([nss-SO42−] + [NO3]) − ([NH4+] + [nss-Ca2+]) and D6 = ([nss-SO42−] + [NO3]) − ([NH4+] + [nss-Ca2+] + [nss-Mg2+] + [nss-K+]), to show some clear relationships with pH. The observed results were compared with theoretical calculations, Dn = [H+] − HPCO2Ka1/[H+], where n is 2, 4, or 6. The distribution of ΔpH (=pHcalc − pHobs) for D2 demonstrated the most reasonable pattern with a median of zero among the three Dns. These quantitative results conclude that the Irkutsk pH was controlled dominantly by sulfuric acid and calcium carbonate. Full article
(This article belongs to the Section Air Quality)
Show Figures

Figure 1

11 pages, 2212 KB  
Article
Vertical Evolution of Volatile Organic Compounds from Unmanned Aerial Vehicle Measurements in the Pearl River Delta, China
by Meng-Xue Tang, Bi-Xuan Wang, Yong Cheng, Hui Zeng and Xiao-Feng Huang
Atmosphere 2025, 16(8), 955; https://doi.org/10.3390/atmos16080955 - 10 Aug 2025
Viewed by 684
Abstract
The vertical distribution of volatile organic compounds (VOCs) within the planetary boundary layer (PBL) is critical for understanding ozone (O3) formation, yet knowledge remains limited in complex urban environments. In this study, vertical measurements of 117 VOC species were conducted using [...] Read more.
The vertical distribution of volatile organic compounds (VOCs) within the planetary boundary layer (PBL) is critical for understanding ozone (O3) formation, yet knowledge remains limited in complex urban environments. In this study, vertical measurements of 117 VOC species were conducted using an unmanned aerial vehicle (UAV) equipped with a VOC multi-channel sampling system, up to a height of 500 m in Shenzhen, China. Results showed that total VOC (TVOC) concentrations decreased with altitude in the morning, reflecting the influence of surface-level local emissions, but increased with height at midday, likely driven by regional transport and potentially stronger photochemical processes. Source apportionment revealed substantial industrial emissions across all altitudes, vehicular emissions concentrated near the surface, and biomass burning primarily impacting higher layers. Clear evidence of enhanced secondary formation of oxygenated VOCs (OVOCs) was observed along the vertical gradient, particularly at midday, indicating intensified photochemical processes at higher altitudes. These findings underscore the importance of considering vertical heterogeneity in VOC distributions when modeling O3 formation or developing measures to reduce emissions at different altitudes, and also demonstrate the potential of UAV platforms to provide high-resolution atmospheric chemical data in complex urban environments. Full article
(This article belongs to the Special Issue Biogenic Volatile Organic Compound: Measurement and Emissions)
Show Figures

Figure 1

22 pages, 7438 KB  
Article
Expanding Continuous Carbon Isotope Measurements of CO2 and CH4 in the Italian ICOS Atmospheric Consortium: First Results from the Continental POT Station in Potenza (Basilicata)
by Antonella Buono, Isabella Zaccardo, Francesco D’Amico, Emilio Lapenna, Francesco Cardellicchio, Teresa Laurita, Davide Amodio, Canio Colangelo, Gianluca Di Fiore, Aldo Giunta, Michele Volini, Claudia Roberta Calidonna, Alcide Giorgio di Sarra, Serena Trippetta and Lucia Mona
Atmosphere 2025, 16(8), 951; https://doi.org/10.3390/atmos16080951 - 8 Aug 2025
Cited by 2 | Viewed by 1216
Abstract
Carbon isotope fractionation is an efficient tool used for the discrimination and differentiation of sinks and emission sources. Carbon dioxide (CO2) and methane (CH4) are among the key drivers of climate change, and a detailed evaluation of variations in [...] Read more.
Carbon isotope fractionation is an efficient tool used for the discrimination and differentiation of sinks and emission sources. Carbon dioxide (CO2) and methane (CH4) are among the key drivers of climate change, and a detailed evaluation of variations in the 13C/12C ratio in either compound provides vital information for the field of atmospheric sciences. The Italian atmospheric ICOS (Integrated Carbon Observation System) consortium is currently implementing δ13C-CO2 and δ13C-CH4 measurements, with four observation sites now equipped with Picarro G2201-i CRDS (Cavity Ring-Down Spectrometry) analyzers. In this work, results from the first two months of measurements performed at the Potenza station in southern Italy between 20 February and 20 April 2025 are presented and constitute the first evaluation of continuous atmospheric δ13C-CO2 and δ13C-CH4 measurements from an Italian station. These results provide a first insight on how these measurements can improve the current understanding of CO2 and CH4 variability in the Italian peninsula and the central Mediterranean sector. Although preliminary in nature, the findings of these measurements indicate that fossil fuel burning is responsible for the observed peaks in CO2 concentrations. CH4 has a generally stable pattern; however, abrupt peaks in its isotopic delta, observed during March, may constitute the first direct evidence in Italy of Saharan dust intrusion affecting carbon isotope fractionation in the atmosphere. This study also introduces an analysis of the weekly behavior in isotopic deltas. Full article
(This article belongs to the Section Air Pollution Control)
Show Figures

Figure 1

16 pages, 18507 KB  
Article
Spatiotemporal Ionospheric TEC Prediction with Deformable Convolution for Long-Term Spatial Dependencies
by Jie Li, Jian Xiao, Haijun Liu, Xiaofeng Du and Shixiang Liu
Atmosphere 2025, 16(8), 950; https://doi.org/10.3390/atmos16080950 - 7 Aug 2025
Viewed by 514
Abstract
SA-ConvLSTM is a recently proposed spatiotemporal model for total electron content (TEC) prediction, which effectively catches long-term temporal evolution and global-scale spatial correlations in TEC. However, its reliance on standard convolution limits spatial feature extraction to fixed regular regions, reducing the flexibility for [...] Read more.
SA-ConvLSTM is a recently proposed spatiotemporal model for total electron content (TEC) prediction, which effectively catches long-term temporal evolution and global-scale spatial correlations in TEC. However, its reliance on standard convolution limits spatial feature extraction to fixed regular regions, reducing the flexibility for irregular TEC variations. To address this limitation, we enhance SA-ConvLSTM by incorporating deformable convolution, proposing SA-DConvLSTM. This achieves adaptive spatial feature extraction through learnable offsets in convolutional kernels. Building on this improvement, we design ED-SA-DConvLSTM, a TEC spatiotemporal prediction model based on an encoder–decoder architecture with SA-DConvLSTM as its fundamental block. Firstly, the effectiveness of the model improvement was verified through an ablation experiment. Subsequently, a comprehensive quantitative comparison was conducted between ED-SA-DConvLSTM and baseline models (C1PG, ConvLSTM, and ConvGRU) in the region of 12.5° S–87.5° N and 25° E–180° E. The experimental results showed that the ED-SA-DConvLSTM exhibited superior performance compared to C1PG, ConvGRU, and ConvLSTM, with prediction accuracy improvements of 10.27%, 7.65%, and 7.16% during high solar activity and 11.46%, 4.75%, and 4.06% during low solar activity, respectively. To further evaluate model performance under extreme conditions, we tested the ED-SA-DConvLSTM during four geomagnetic storms. The results showed that the proportion of its superiority over the baseline models exceeded 58%. Full article
(This article belongs to the Section Upper Atmosphere)
Show Figures

Figure 1

23 pages, 11564 KB  
Article
Cloud-Based Assessment of Flash Flood Susceptibility, Peak Runoff, and Peak Discharge on a National Scale with Google Earth Engine (GEE)
by Ivica Milevski, Bojana Aleksova, Aleksandar Valjarević and Pece Gorsevski
Atmosphere 2025, 16(8), 945; https://doi.org/10.3390/atmos16080945 - 7 Aug 2025
Cited by 3 | Viewed by 1743
Abstract
Flash floods, exacerbated by climate change and land use alterations, are among the most destructive natural hazards globally, leading to significant damage and loss of life. In this context, the Flash Flood Potential Index (FFPI), which is a terrain and land surface-based model, [...] Read more.
Flash floods, exacerbated by climate change and land use alterations, are among the most destructive natural hazards globally, leading to significant damage and loss of life. In this context, the Flash Flood Potential Index (FFPI), which is a terrain and land surface-based model, and Google Earth Engine (GEE) were used to assess flood-prone zones across North Macedonia’s watersheds. The presented GEE-based assessment was accomplished by a custom script that automates the FFPI calculation process by integrating key factors derived from publicly available sources. These factors, which define susceptibility to torrential floods, include slope (Copernicus GLO-30 DEM), land cover (Copernicus GLO-30 DEM), soil type (SoilGrids), vegetation (ESA World Cover), and erodibility (CHIRPS). The spatial distribution of average FFPI values across 1396 small catchments (10–100 km2) revealed that a total of 45.4% of the area exhibited high to very high susceptibility, with notable spatial variability. The CHIRPS rainfall data (2000–2024) that combines satellite imagery and in situ measurements was used to estimate peak 24 h runoff and discharge. To improve the accuracy of CHIRPS, the data were adjusted by 30–50% to align with meteorological station records, along with normalized FFPI values as runoff coefficients. Validation against 328 historical river flood and flash flood records confirmed that 73.2% of events aligned with moderate to very high flash flood susceptibility catchments, underscoring the model’s reliability. Thus, the presented cloud-based scenario highlights the potential of the GEE’s efficacy in scalability and robustness for flash flood modeling and regional risk management at national scale. Full article
(This article belongs to the Section Biosphere/Hydrosphere/Land–Atmosphere Interactions)
Show Figures

Figure 1

12 pages, 1678 KB  
Article
Fine-Scale Spatial Distribution of Indoor Radon and Identification of Potential Ingress Pathways
by Dobromir Pressyanov and Dimitar Dimitrov
Atmosphere 2025, 16(8), 943; https://doi.org/10.3390/atmos16080943 - 6 Aug 2025
Viewed by 542
Abstract
A new generation of compact radon detectors with high sensitivity and fine spatial resolution (1–2 cm scale) was used to investigate indoor radon distribution and identify potential entry pathways. Solid-state nuclear track detectors (Kodak-Pathe LR-115 type II, Dosirad, France), combined with activated carbon [...] Read more.
A new generation of compact radon detectors with high sensitivity and fine spatial resolution (1–2 cm scale) was used to investigate indoor radon distribution and identify potential entry pathways. Solid-state nuclear track detectors (Kodak-Pathe LR-115 type II, Dosirad, France), combined with activated carbon fabric (ACC-5092-10), enabled sensitive, spatially resolved radon measurements. Two case studies were conducted: Case 1 involves a room with elevated radon levels suspected to originate from the floor. Case 2 involves a house with persistently high indoor radon concentrations despite active basement ventilation. In the first case, radon emission from the floor was found to be highly inhomogeneous, with concentrations varying by more than a factor of four. In the second, unexpectedly high radon levels were detected at electrical switches and outlets on walls in the living space, suggesting radon transport through wall voids and entry via non-hermetic electrical fittings. These novel detectors facilitate fine-scale mapping of indoor radon concentrations, revealing ingress routes that were previously undetectable. Their use can significantly enhance radon diagnostics and support the development of more effective mitigation strategies. Full article
Show Figures

Figure 1

30 pages, 9610 KB  
Article
Can the Building Make a Difference to User’s Health in Indoor Environments? The Influence of PM2.5 Vertical Distribution on the IAQ of a Student House over Two Periods in Milan in 2024
by Yong Yu, Marco Gola, Gaetano Settimo and Stefano Capolongo
Atmosphere 2025, 16(8), 936; https://doi.org/10.3390/atmos16080936 - 4 Aug 2025
Viewed by 861
Abstract
This study investigates indoor and outdoor air quality monitoring in a student dormitory located in northern Milan (Italy) using low-cost sensors. This research compares two monitoring periods in June and October 2024 to examine common PM2.5 vertical patterns and differences at the [...] Read more.
This study investigates indoor and outdoor air quality monitoring in a student dormitory located in northern Milan (Italy) using low-cost sensors. This research compares two monitoring periods in June and October 2024 to examine common PM2.5 vertical patterns and differences at the building level, as well as their influence on the indoor spaces at the corresponding positions. In each period, around 30 sensors were installed at various heights and orientations across indoor and outdoor spots for 2 weeks to capture spatial variations around the building. Meanwhile, qualitative surveys on occupation presence, satisfaction, and well-being were distributed in selected rooms. The analysis of PM2.5 data reveals that the building’s lower floors tended to have slightly higher outdoor PM2.5 concentrations, while the upper floors generally had lower PM2.5 indoor/outdoor (I/O) ratios, with the top-floor rooms often below 1. High outdoor humidity reduced PM infiltration, but when outdoor PM fell below 20 µg/m3 in these two periods, indoor sources became dominant, especially on the lower floors. Air pressure I/O differences had minimal impact on PM2.5 I/O ratios, though slightly positive indoor pressure might help prevent indoor PM infiltration. Lower ventilation in Period-2 possibly contributed to more reported symptoms, especially in rooms with higher PM from shared kitchens. While outdoor air quality affects IAQ, occupant behavior—especially window opening and ventilation management—remains crucial in minimizing indoor pollutants. Users can also manage exposure by ventilating at night based on comfort and avoiding periods of high outdoor PM. Full article
(This article belongs to the Special Issue Air Quality in Metropolitan Areas and Megacities (Second Edition))
Show Figures

Figure 1

23 pages, 5566 KB  
Article
Response Mechanisms of Vegetation Productivity to Water Variability in Arid and Semi-Arid Areas of China: A Decoupling Analysis of Soil Moisture and Precipitation
by Zijian Liu, Hao Lin, Hongrui Li, Mengyang Li, Peng Zhou, Ziyu Wang and Jiqiang Niu
Atmosphere 2025, 16(8), 933; https://doi.org/10.3390/atmos16080933 - 3 Aug 2025
Cited by 1 | Viewed by 705
Abstract
Arid and semi-arid areas serve a critical regulatory function within the global carbon cycle. Understanding the response mechanisms of vegetation productivity to variations in moisture availability represents a fundamental scientific challenge in elucidating terrestrial carbon dynamics. This study systematically disentangled the respective influences [...] Read more.
Arid and semi-arid areas serve a critical regulatory function within the global carbon cycle. Understanding the response mechanisms of vegetation productivity to variations in moisture availability represents a fundamental scientific challenge in elucidating terrestrial carbon dynamics. This study systematically disentangled the respective influences of summer surface soil moisture (RSM) and precipitation (PRE) on gross primary productivity (GPP) across arid and semi-arid regions of China from 2000 to 2022. Utilizing GPP datasets alongside correlation analysis, ridge regression, and data binning techniques, the investigation yielded several key findings: (1) Both GPP and RSM exhibited significant upward trends within the study area, whereas precipitation showed no statistically significant trend; notably, GPP demonstrated the highest rate of increase at 0.455 Cg m−2 a−1. (2) Decoupling analysis indicated a coupled relationship between RSM and PRE; however, their individual effects on GPP were not merely a consequence of this coupling. Controlling for evapotranspiration and root-zone soil moisture interference, the analysis revealed that under conditions of elevated RSM, the average increase in summer–autumn GPP (SAGPP) was 0.249, significantly surpassing the increase observed under high-PRE conditions (−0.088). Areas dominated by RSM accounted for 62.13% of the total study region. Furthermore, examination of the aridity gradient demonstrated that the predominance of RSM intensified with increasing aridity, reaching its peak influence in extremely arid zones. This research provides a quantitative assessment of the differential impacts of RSM and PRE on vegetation productivity in China’s arid and semi-arid areas, thereby offering a vital theoretical foundation for improving predictions of terrestrial carbon sink dynamics under future climate change scenarios. Full article
Show Figures

Figure 1

18 pages, 3114 KB  
Article
Heavy Rainfall Induced by Typhoon Yagi-2024 at Hainan and Vietnam, and Dynamical Process
by Venkata Subrahmanyam Mantravadi, Chen Wang, Bryce Chen and Guiting Song
Atmosphere 2025, 16(8), 930; https://doi.org/10.3390/atmos16080930 - 1 Aug 2025
Viewed by 2482
Abstract
Typhoon Yagi (2024) was a rapidly moving storm that lasted for eight days and made landfall in three locations, producing heavy rainfall over Hainan and Vietnam. This study aims to investigate the dynamical processes contributing to the heavy rainfall, concentrating on enthalpy flux [...] Read more.
Typhoon Yagi (2024) was a rapidly moving storm that lasted for eight days and made landfall in three locations, producing heavy rainfall over Hainan and Vietnam. This study aims to investigate the dynamical processes contributing to the heavy rainfall, concentrating on enthalpy flux (EF) and moisture flux (MF). The results indicate that both EF and MF increased significantly during the typhoon’s intensification stage and were high at the time of landfall. Before landfalling at Hainan, latent heat flux (LHF) reached 600 W/m2, while sensible heat flux (SHF) was recorded as 80 W/m2. Landfall at Hainan resulted in a decrease in LHF and SHF. LHF and SHF subsequently increased to 700 W/m2 and 100 W/m2, respectively, as noted prior to the landfall in Vietnam. The increased LHF led to higher evaporation, which subsequently elevated moisture flux (MF) following the landfall in Vietnam, while the region’s topography further intensified the rainfall. The mean daily rainfall observed over Philippines is 75 mm on 2 September (landfall and passing through), 100 mm over Hainan (landfall and passing through) on 6 September, and 95 mm at over Vietnam on 7 September (landfall and after), respectively. Heavy rainfall was observed over the land while the typhoon was passing and during the landfall. This research reveals that Typhoon Yagi’s intensity was maintained by a well-organized and extensive circulation system, supported by favorable weather conditions, including high sea surface temperatures (SST) exceeding 30.5 °C, substantial low-level moisture convergence, and elevated EF during the landfall in Vietnam. Full article
(This article belongs to the Section Meteorology)
Show Figures

Figure 1

Back to TopTop