Ionospheric Variability During the 10 October 2024 Geomagnetic Storm: A Regional Analysis Across Europe
Abstract
1. Introduction
- Section 1 introduces the storm and reviews the existing literature.
- Section 2 outlines data sources and methodology.
- Section 3 details solar and geomagnetic activity.
- Section 4 presents the analysis results.
- Section 5 discusses the findings in terms of the physical drivers of ionospheric variability.
- Section 6 concludes with a summary of the key observations and implications.
2. Datasets and Methodology
3. Solar and Geomagnetic Activity in October 2024 Storm
4. Results
4.1. Ionospheric Effects over the European Sector
4.2. Storm Effects on Swarm Electron Density
5. Discussion
6. Conclusions
- Nature of Solar Driver and Electrodynamic Coupling: Variability is strongly governed by the nature of the solar driver, latitude-dependent electrodynamic coupling and the interplay between electric fields and thermospheric winds.
- Main Phase Dynamics: The observed uplift of the F2 layer, coupled with pronounced drift reversals and plasma density enhancements during the main phase, underscores the critical roles of prompt penetration electric fields (PPEFs) and magnetospheric energy input. These enhancements were particularly pronounced during the storm’s peak, further highlighting the complex dynamics at play.
- Recovery Phase Disparities: The subsequent recovery phase revealed significant latitudinal disparities, influenced by varying thermosphere–ionosphere interactions, compositional changes and the displacement of the mid-latitude ionospheric trough (MIT).
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
Abbreviations
IMF | Interplanetary magnetic field |
CME | Coronal mass ejection |
ICME | Interplanetary coronal mass ejection |
MC | Magnetic cloud |
CIR | Co-rotating interaction region |
SH | Sheath |
TEC | Total electron content |
FAC | Field-aligned current |
PEJ | Polar electrojets |
LEO | Low Earth orbit |
EIA | Equatorial ionization anomaly |
References
- Kiplinger, A.L. Comparative Studies of Hard X-Ray Spectral Evolution in Solar Flares with High-Energy Proton Events Observed at Earth. Astrophys. J. 1995, 453, 973. [Google Scholar] [CrossRef]
- Tripathi, S.C.; Khan, P.A.; Aslam, A.M.; Gwal, A.K.; Purohit, P.K.; Jain, R. Investigation on spectral behavior of Solar transients and their interrelationship. Astrophys. Space Sci. 2013, 347, 227–233. [Google Scholar] [CrossRef]
- Richardson, I.G.; Cane, H.V. Solar wind drivers of geomagnetic storms during more than four solar cycles. J. Space Weather Space Clim. 2012, 2, A01. [Google Scholar] [CrossRef]
- Khan, P.A.; Tripathi, S.C.; Troshichev, O.A.; Waheed, M.A.; Aslam, A.M.; Gwal, A.K. Solar transients disturbing the terrestrial magnetic environment at higher latitudes. Astrophys. Space Sci. 2014, 349, 647–656. [Google Scholar] [CrossRef]
- Gonzalez, W.D.; Joselyn, J.A.; Kamide, Y.; Kroehl, H.W.; Rostoker, G.; Tsurutani, B.T.; Vasyliunas, V.M. What is a geomagnetic storm? J. Geophys. Res. Space Phys. 1994, 99, 5771–5792. [Google Scholar] [CrossRef]
- Wei, Y.; Zhao, B.; Li, G.; Wan, W. Electric field penetration into Earth’s ionosphere: A brief review for 2000–2013. Sci. Bull. 2015, 60, 748–761. [Google Scholar] [CrossRef]
- Timoçin, E.; Ünal, İ.; Tulunay, Y.; Deniz Göker, Ü. The effect of geomagnetic activity changes on the ionospheric critical frequencies (foF2) at magnetic conjugate points. Adv. Space Res. 2018, 62, 821–828. [Google Scholar] [CrossRef]
- de Abreu, A.; Martin, I.; Fagundes, P.; Venkatesh, K.; Batista, I.; de Jesus, R.; Rockenback, M.; Coster, A.; Gende, M.; Alves, M.; et al. Ionospheric F-region observations over American sector during an intense space weather event using multi-instruments. J. Atmos. Sol.-Terr. Phys. 2017, 156, 1–14. [Google Scholar] [CrossRef]
- Purohit, P.K.; Mansoori, A.A.; Khan, P.A.; Atulkar, R.; Bhawre, P.; Tripathi, S.C.; Khatarkar, P.; Bhardwaj, S.; Aslam, A.M.; Waheed, M.A.; et al. Evaluation of geomagnetic storm effects on the GPS derived Total Electron Content (TEC). J. Phys. Conf. Ser. 2015, 640, 012072. [Google Scholar] [CrossRef]
- Zhao, B.; Wan, W.; Liu, L.; Igarashi, K.; Yumoto, K.; Ning, B. Ionospheric response to the geomagnetic storm on 13–17 April 2006 in the West Pacific region. J. Atmos. Sol.-Terr. Phys. 2009, 71, 88–100. [Google Scholar] [CrossRef]
- Basciftci, F.; Bulbul, S. Statistical analysis of the regional and global ionosphere model on intense geomagnetic storm. Indian J. Phys. 2023, 97, 3395–3409. [Google Scholar] [CrossRef]
- Tsurutani, B.; Mannucci, A.; Iijima, B.; Abdu, M.A.; Sobral, J.H.A.; Gonzalez, W.; Guarnieri, F.; Tsuda, T.; Saito, A.; Yumoto, K.; et al. Global dayside ionospheric uplift and enhancement associated with interplanetary electric fields. J. Geophys. Res. Space Phys. 2004, 109, a010342. [Google Scholar] [CrossRef]
- Mannucci, A.J.; Tsurutani, B.T.; Iijima, B.A.; Komjathy, A.; Saito, A.; Gonzalez, W.D.; Guarnieri, F.L.; Kozyra, J.U.; Skoug, R. Dayside global ionospheric response to the major interplanetary events of October 29–30, 2003 “Halloween Storms”. Geophys. Res. Lett. 2005, 32, l021467. [Google Scholar] [CrossRef]
- Paul, K.S.; Haralambous, H.; Oikonomou, C.; Paul, A.; Belehaki, A.; Ioanna, T.; Kouba, D.; Buresova, D. Multi-station investigation of spread F over Europe during low to high solar activity. J. Space Weather Space Clim. 2018, 8, A27. [Google Scholar] [CrossRef]
- da Silva Picanço, G.A.; Fagundes, P.R.; Moro, J.; Nogueira, P.A.B.; Muella, M.T.A.H.; Denardini, C.M.; Resende, L.C.A.; Silva, L.A.D.; Laranja, S. Dynamics of Polar-Equatorial Ionospheric Irregularities During the 10–13 October 2024 Superstorm. ESSOAr Preprints, 2024; preprint. [Google Scholar] [CrossRef]
- Pierrard, V.; Verhulst, T.G.W.; Chevalier, J.M.; Bergeot, N.; Winant, A. Effects of the Geomagnetic Superstorms of 10–11 May 2024 and 7–11 October 2024 on the Ionosphere and Plasmasphere. Atmosphere 2025, 16, 299. [Google Scholar] [CrossRef]
- Singh, R.; Scipión, D.E.; Kuyeng, K.; Condor, P.; Flores, R.; Pacheco, E.; Jara, C.D.L.; Manay, E. Ionospheric Responses to an Extreme (G5-Level) Geomagnetic Storm Using Multi-Instrument Measurements at the Jicamarca Radio Observatory on 10–11 October 2024. J. Geophys. Res. Space Phys. 2025, 130, e2024JA033642. [Google Scholar] [CrossRef]
- Oliveira, D.M.; Zesta, E.; Nandy, D. The 10 October 2024 Geomagnetic Storm May Have Caused the Premature Reentry of a Starlink Satellite. Front. Astron. Space Sci. 2025, 11, 1522139. [Google Scholar] [CrossRef]
- Xia, X.; Hu, X.; Wang, H.; Zhang, K. Correlation Study of Auroral Currents with External Parameters During 10–12 October 2024 Superstorm. Remote Sens. 2025, 17, 394. [Google Scholar] [CrossRef]
- Jeong, S.H.; Kim, Y.H.; Kim, K.N. Manual Scaling of Ionograms Measured at Jeju (33.4°N, 126.3°E) Throughout 2012. J. Astron. Space Sci. 2018, 35, 143–149. [Google Scholar] [CrossRef]
- Xiong, C.; Jiang, H.; Yan, R.; Lühr, H.; Stolle, C.; Yin, F.; Smirnov, A.; Piersanti, M.; Liu, Y.; Wan, X.; et al. Solar Flux Influence on the In-Situ Plasma Density at Topside Ionosphere Measured by Swarm Satellites. J. Geophys. Res. Space Phys. 2022, 127, e2022JA030275. [Google Scholar] [CrossRef]
- Kouba, D.; Mošna, Z.; Koucká Knížová, P. Apparent vertical ionospheric drift: A Comparative Assessment of Digisonde and Ionogram-Based Methods. EGUsphere 2025, 2025, 1–18. [Google Scholar] [CrossRef]
- Ponomarev, E.; Sedykh, P.; Urbanovich, V. Bow shock as a power source for magnetospheric processes. J. Atmos. Sol.-Terr. Phys. 2006, 68, 685–690. [Google Scholar] [CrossRef]
- Kilpua, E.; Koskinen, H.E.J.; Pulkkinen, T.I. Coronal mass ejections and their sheath regions in interplanetary space. Living Rev. Sol. Phys. 2017, 14, 5. [Google Scholar] [CrossRef]
- Kilpua, E.K.J.; Pomoell, J.; Price, D.; Sarkar, R.; Asvestari, E. Estimating the Magnetic Structure of an Erupting CME Flux Rope From AR12158 Using Data-Driven Modeling. Front. Astron. Space Sci. 2021, 8, 631582. [Google Scholar] [CrossRef]
- Song, H.; Li, L.; Zhou, Z.; Xia, L.; Cheng, X.; Chen, Y. The Structure of Coronal Mass Ejections Recorded by the K-Coronagraph at Mauna Loa Solar Observatory. Astrophys. J. Lett. 2023, 952, L22. [Google Scholar] [CrossRef]
- Kamide, Y.; Yokoyama, N.; Gonzalez, W.; Tsurutani, B.T.; Daglis, I.A.; Brekke, A.; Masuda, S. Two-step development of geomagnetic storms. J. Geophys. Res. Space Phys. 1998, 103, 6917–6921. [Google Scholar] [CrossRef]
- Paul, K.S.; Haralambous, H.; Moses, M.; Oikonomou, C.; Potirakis, S.M.; Bergeot, N.; Chevalier, J.M. Investigation of the Ionospheric Response on Mother’s Day 2024 Geomagnetic Superstorm over the European Sector. Atmosphere 2025, 16, 180. [Google Scholar] [CrossRef]
- Hayakawa, H.; Ebihara, Y.; Mishev, A.; Koldobskiy, S.; Kusano, K.; Bechet, S.; Yashiro, S.; Iwai, K.; Shinbori, A.; Mursula, K.; et al. The Solar and Geomagnetic Storms in 2024 May: A Flash Data Report. Astrophys. J. 2025, 979, 49. [Google Scholar] [CrossRef]
- Stauning, P. The Polar Cap (PC) index combination, PCC: Relations to solar wind properties and global magnetic disturbances. J. Space Weather. Space Clim. 2021, 11, 19. [Google Scholar] [CrossRef]
- Lockwood, M. Northern and Southern Hemisphere Polar Cap Indices: To What Extent Do They Agree and to What Extent Should They Agree? J. Geophys. Res. Space Phys. 2023, 128, e2023JA031464. [Google Scholar] [CrossRef]
- Bell, J.T.; Gussenhoven, M.S.; Mullen, E.G. Super storms. J. Geophys. Res. Space Phys. 1997, 102, 14189–14198. [Google Scholar] [CrossRef]
- Mannucci, A.J.; Tsurutani, B.T. Chapter 20—Ionosphere and Thermosphere Responses to Extreme Geomagnetic Storms. In Extreme Events in Geospace; Buzulukova, N., Ed.; Elsevier: Amsterdam, The Netherlands, 2018; pp. 493–511. ISBN 9780128127001. [Google Scholar] [CrossRef]
- Vlasov, M.N.; Kelley, M.C.; Makela, J.J.; Nicolls, M.J. Intense nighttime flux from the plasmasphere during a modest magnetic storm. J. Atmos. Sol.-Terr. Phys. 2003, 65, 1099–1105. [Google Scholar] [CrossRef]
- Greenspan, M.E.; Rasmussen, C.E.; Burke, W.J.; Abdu, M.A. Equatorial density depletions observed at 840 km during the great magnetic storm of March 1989. J. Geophys. Res. Space Phys. 1991, 96, 13931–13942. [Google Scholar] [CrossRef]
- Oikonomou, C.; Haralambous, H.; Paul, A.; Ray, S.; Alfonsi, L.; Cesaroni, C.; Sur, D. Investigation of the negative ionospheric response of the 8 September 2017 geomagnetic storm over the European sector. Adv. Space Res. 2022, 70, 1104–1120. [Google Scholar] [CrossRef]
- Berényi, K.A.; Heilig, B.; Urbář, J.; Kouba, D.; Kis, A.; Barta, V. Comprehensive analysis of the ionospheric response to the largest geomagnetic storms from solar cycle 24 over Europe. Front. Astron. Space Sci. 2023, 10, 1092850. [Google Scholar] [CrossRef]
- Paul, K.S.; Haralambous, H.; Oikonomou, C. Ionospheric response of the March 2023 geomagnetic storm over European latitudes. Adv. Space Res. 2024, 73, 6029–6040. [Google Scholar] [CrossRef]
- Mošna, Z.; Barta, V.; Berényi, K.A.; Mielich, J.; Verhulst, T.; Kouba, D.; Urbář, J.; Chum, J.; Koucká Knížová, P.; Marew, H.; et al. The March and April 2023 ionospheric storms over Europe. Front. Astron. Space Sci. 2024, 11, 1462160. [Google Scholar] [CrossRef]
- Abdu, M.A.; Maruyama, T.; Batista, I.S.; Saito, S.; Nakamura, M. Ionospheric responses to the October 2003 superstorm: Longitude/local time effects over equatorial low and middle latitudes. J. Geophys. Res. Space Phys. 2007, 112, A012228. [Google Scholar] [CrossRef]
- Foster, J.C.; Buonsanto, M.J.; Mendillo, M.; Nottingham, D.; Rich, F.J.; Denig, W. Coordinated stable auroral red arc observations: Relationship to plasma convection. J. Geophys. Res. Space Phys. 1994, 99, 11429–11439. [Google Scholar] [CrossRef]
- Southwood, D.J.; Wolf, R.A. An assessment of the role of precipitation in magnetospheric convection. J. Geophys. Res. Space Phys. 1978, 83, 5227–5232. [Google Scholar] [CrossRef]
- Karpachev, A. Advanced separation and classification of ionospheric troughs in midnight conditions. Sci. Rep. 2022, 12, 13434. [Google Scholar] [CrossRef]
- Liu, Y.; Li, Z.; Fu, L.; Wang, J.; Zhang, C. Studying the ionospheric responses induced by a geomagnetic storm in September 2017 with multiple observations in America. GPS Solut. 2019, 24, 3. [Google Scholar] [CrossRef]
- Aa, E.; Zou, S.; Ridley, A.; Zhang, S.; Coster, A.J.; Erickson, P.J.; Liu, S.; Ren, J. Merging of storm time midlatitude traveling ionospheric disturbances and equatorial plasma bubbles. Space Weather 2019, 17, 285–298. [Google Scholar] [CrossRef]
- Zhang, K.; Li, X.; Xiong, C.; Meng, X.; Li, X.; Yuan, Y.; Zhang, X. The influence of geomagnetic storm of 7-8 September 2017 on the Swarm precise orbit determination. J. Geophys. Res. Space Phys. 2019, 124, 6971–6984. [Google Scholar] [CrossRef]
- Schunk, R.W.; Banks, P.M.; Raitt, W.J. Effects of electric fields and other processes upon the nighttime high-latitude F layer. J. Geophys. Res. 1976, 81, 3271–3282. [Google Scholar] [CrossRef]
Satellite | Condition | Date | Time Interval (UT) | Latitude Range | Longitude Range |
---|---|---|---|---|---|
Swarm A | Quiet | Oct 9 | 15:39–15:49 | N– N | E– E |
Swarm A | Disturbed | Oct 10 | 15:07–15:17 | N– N | E– E |
Swarm A | Quiet | Oct 9 | 17:13–17:23 | N– N | E– E |
Swarm A | Disturbed | Oct 10 | 16:41–16:51 | N– N | E– E |
Swarm B | Quiet | Oct 9 | 20:38–20:48 | N– N | E– E |
Swarm B | Disturbed | Oct 10 | 20:18–20:28 | N– N | E– E |
Swarm B | Quiet | Oct 9 | 22:13–22:23 | N– N | W– W |
Swarm B | Disturbed | Oct 10 | 21:53–22:03 | N– N | W– W |
Swarm A | Quiet | Oct 10 | 2:56–3:06 | N– N | E– E |
Swarm A | Disturbed | Oct 11 | 2:24–2:34 | N– N | E– E |
Swarm A | Quiet | Oct 10 | 4:30–4:40 | N– N | E– E |
Swarm A | Disturbed | Oct 11 | 3:58–4:08 | N– N | E– E |
Swarm B | Quiet | Oct 10 | 8:55–9:05 | N– N | E– E |
Swarm B | Disturbed | Oct 11 | 8:35–8:45 | N– N | E– E |
Swarm B | Quiet | Oct 10 | 10:30–10:40 | N– N | W– W |
Swarm B | Disturbed | Oct 11 | 10:10–10:20 | N– N | W– W |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Tripathi, S.C.; Haralambous, H.; Biswas, T. Ionospheric Variability During the 10 October 2024 Geomagnetic Storm: A Regional Analysis Across Europe. Atmosphere 2025, 16, 1029. https://doi.org/10.3390/atmos16091029
Tripathi SC, Haralambous H, Biswas T. Ionospheric Variability During the 10 October 2024 Geomagnetic Storm: A Regional Analysis Across Europe. Atmosphere. 2025; 16(9):1029. https://doi.org/10.3390/atmos16091029
Chicago/Turabian StyleTripathi, Sharad C., Haris Haralambous, and Trisani Biswas. 2025. "Ionospheric Variability During the 10 October 2024 Geomagnetic Storm: A Regional Analysis Across Europe" Atmosphere 16, no. 9: 1029. https://doi.org/10.3390/atmos16091029
APA StyleTripathi, S. C., Haralambous, H., & Biswas, T. (2025). Ionospheric Variability During the 10 October 2024 Geomagnetic Storm: A Regional Analysis Across Europe. Atmosphere, 16(9), 1029. https://doi.org/10.3390/atmos16091029