Spatial Variation of PM10 and PM2.5 in Residential Indoor Environments in Municipalities Across Mexico City
Abstract
1. Introduction
2. Materials and Methods
2.1. Method
2.2. Analysis of Particle Concentration Results
3. Results and Discussion
3.1. Performance of the OPC—Co-Location with a BAM Reference Monitor
3.2. Hourly Concentration Results
3.3. Analysis of Size Fractions
3.4. Variations in Indoor and Outdoor PM2.5 Concentrations Across Mexico City Municipalities
3.5. Variations in Indoor and Outdoor PM10 Concentrations Across Mexico City Municipalities
3.6. Ratio of PM2.5/PM10 Indoors
3.7. Ratio of PM2.5/PM10 Outdoors
3.8. Basic Statistics of PM2.5 and PM10 Concentrations Indoors
3.9. Effect of Residential Location on Indoor and Outdoor PM
3.10. Specific Cases
3.11. Summary of Participating Household (n = 27) Characteristics
3.12. Type of Cooking
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Roser, M. Data Review: How Many People Die from Air Pollution? Our World in Data. OurWorldinData.org. Available online: https://ourworldindata.org/data-review-air-pollution-deaths (accessed on 4 July 2025).
- Zhang, H.; Srinivasan, R.A. Systematic review of air quality sensors, guidelines, and measurement studies for indoor air quality management. Sustainability 2020, 12, 9045. [Google Scholar] [CrossRef]
- WHO. How Air Pollution Is Destroying Our Health. Available online: https://www.who.int/news-room/spotlight/how-air-pollution-is-destroying-our-health (accessed on 4 July 2025).
- Murray, C.J.; Aravkin, A.Y.; Zheng, P.; Abbafati, C.; Abbas, K.M.; Abbasi-Kangevari, M.; Abd-Allah, F.; Abdelalim, A.; Abdollahi, M.; Abdollahpour, I.; et al. Global burden of 87 risk factors in 204 countries and territories, 1990–2019: A systematic analysis for the Global Burden of Disease Study 2019. Lancet 2020, 396, 1223–1249. [Google Scholar] [CrossRef]
- Ritchie, H.; Roser, M. Indoor Air Pollution. Our World in Data. OurWorldinData.org. Available online: https://ourworldindata.org/indoor-air-pollution (accessed on 4 July 2025).
- Ahmed, C.M.S.; Jiang, H.; Chen, J.Y.; Lin, Y.H. Traffic-Related Particulate Matter and Cardiometabolic Syndrome: A Review. Atmosphere 2018, 9, 336. [Google Scholar] [CrossRef]
- Gao, X.; Gao, X.; Coull, B.A.; Lin, X.; Vokonas, P.S.; Spiro, A.; Hou, L.; Schwartz, J.; Baccarelli, A.A. Short-term air pollution, cognitive performance and nonsteroidal anti-inflammatory drug use in the Veterans Affairs Normative Aging Study. Nat. Aging 2021, 1, 430–437. [Google Scholar] [CrossRef]
- Meo, S.A.; Shaikh, N.; Alotaibi, M.; al-Wabel, A.; AlQumaidi, H. Effect of air pollutants particulate matter (PM2.5, PM10), sulfur dioxide (SO2) and ozone (O3) on cognitive health. Sci. Rep. 2024, 14, 19616. [Google Scholar] [CrossRef]
- Abt, E.; Suh, H.H.; Koutrakis, P. Relative Contribution of Outdoor and Indoor Particle Sources to Indoor Concentrations. Environ. Sci. Technol. 2000, 34, 3579–3587. [Google Scholar] [CrossRef]
- Shehab, M.; Pope, F.D.; Delgado-Saborit, J.M. The contribution of cooking appliances and residential traffic proximity to aerosol personal exposure. J. Environ. Health Sci. Eng. 2021, 19, 307–318. [Google Scholar] [CrossRef] [PubMed]
- Abdel-Salam, M.M.M. Relationship between residential indoor air quality and socioeconomic factors in two urban areas in Alexandria, Egypt. Build. Environ. 2022, 207A, 108425. [Google Scholar] [CrossRef]
- Abdel-Salam, M.M.M. Outdoor and indoor factors influencing particulate matter and carbon dioxide levels in naturally ventilated urban homes. J. Air Waste Manag. Assoc. 2020, 71, 60–69. [Google Scholar] [CrossRef] [PubMed]
- Hussein, T.; Glytsos, T.; Ondráček, J.; Dohányosová, P.; Ždímal, V.; Hämeri, K.; Lazaridis, M.; Smolók, J.; Kulmala, M. Particle size characterization and emission rates during indoor activities in a house. Atmos. Environ. 2006, 40, 4285–4307. [Google Scholar] [CrossRef]
- Bellizzi, S.; Panu Napodano, C.M.; Pichierri, G.; Muthu, N. Indoor air quality: Persisting global issue that impacts students’ performance and health. Indoor Built Environ. 2021, 30, 1587–1588. [Google Scholar] [CrossRef]
- Diapouli, E.; Chaloulakou, A.; Koutrakis, P. Estimating the concentration of indoor particles of outdoor origin: A review. J. Air Waste Manag. Assoc. 2013, 63, 1113–1129. [Google Scholar] [CrossRef] [PubMed]
- Mata, T.M.; Felgueiras, F.; Martins, A.A.; Monteiro, H.; Ferraz, M.P.; Oliveira, G.M.; Gabriel, M.F.; Silva, G.V. Indoor Air Quality in Elderly Centers: Pollutants Emission and Health Effects. Environments 2022, 9, 86. [Google Scholar] [CrossRef]
- Mahmoud, M.M.A.; Bahl, P.; Aquino, A.F.V.A.; Maclntyre, C.R.; Bhattacharjee, S.; Green, D.; Cooper, N.; Doolan, C.; de Silva, C. A numerical framework for the analysis of indoor air quality in a classroom. J. Build. Eng. 2024, 92, 109659. [Google Scholar] [CrossRef]
- Ndlovu, N.; Nkeh-Chungag, B.N. Impact of Indoor Air Pollutants on the Cardiovascular Health Outcomes of Older Adults: Systematic Review. Clin. Interv. Aging 2024, 19, 1629–1639. [Google Scholar] [CrossRef]
- Liu, C.; Zhang, Y. Relations between indoor and outdoor PM2.5 and constituent concentrations. Front. Environ. Sci. Eng. 2019, 13, 5. [Google Scholar] [CrossRef]
- Environmental Protection Agency (EPA). Importance of Indoor Air Quality. Available online: https://www.epa.gov/report-environment/indoor-air-quality (accessed on 4 July 2025).
- Molaie, S.; Lino, P. Review of the Newly Developed, Mobile Optical Sensors for Real-Time Monitoring of Particulate Matter. Micromachines 2021, 12, 416. [Google Scholar] [CrossRef]
- INEGI. Vehículos de Motor Registrados en Circulación (Datos Por Entidad Federativa). Available online: https://www.inegi.org.mx/temas/vehiculos/#tabulados (accessed on 4 July 2025).
- SEDEMA. Secretaría del Medio Ambiente de la Ciudad de México. In Calidad del Aire en la Ciudad de México, 2020; Informe 2018; Dirección General de Calidad del Aire, Dirección de Monitoreo de Calidad del Aire: Mexico City, Mexico, 2018. [Google Scholar]
- Vega, E.; Lowenthal, D.H.; Ruiz, H.; Reyes, E.; Watson, J.G.; Chow, J.C.; Mar, V.; Querol, X.; Alastuey, A. Fine Particle Receptor Modeling in the Atmosphere of Mexico City. J. Air Waste Manag. Assoc. 2009, 59, 1417–1428. [Google Scholar] [CrossRef]
- Popoola, A.A.; Ouyang, O.; Saffell, B.; Jones, J.R. Developing a Relative Humidity Correction for Low-Cost Sensors Measuring Ambient Particulate Matter. Sensors 2018, 18, 2790. [Google Scholar] [CrossRef] [PubMed]
- Salimifard, P.; Rim, D.; Freihaut, J.D. Evaluation of low-cost optical particle counters for monitoring individual indoor aerosol sources. Aerosol Sci. Technol 2019, 54, 217–231. [Google Scholar] [CrossRef]
- Sousa, N.A.; Segalin, B.; Busse, A.L.; Filho, W.J.; Fornaro, A.; Gonçalves, F.L.T. Indoor/outdoor particulate matter and health risk in a nursing community home in São Paulo, Brazil. Atmos. Poll. Res. 2021, 12, 10. [Google Scholar] [CrossRef]
- Karagulian, F.; Barbiere, M.; Kotsev, A.; Spinelle, L.; Gerboles, M.; Lagler, F.; Redon, N.; Crunaire, S.; Borowiak, A. Review of the Performance of Low-Cost Sensors for Air Quality Monitoring. Atmosphere 2019, 10, 506. [Google Scholar] [CrossRef]
- Lewis, A.C.; von Schneidemesser, E.; Peltier, R.E. Low-Cost Sensors for the Measurement of Atmospheric Composition: Overview of Topic and Future Applications; Research Report; WMO-No. 1215; World Meteorological Organization: Geneva, Switzerland, 2018; Available online: https://eprints.whiterose.ac.uk/id/eprint/135994/ (accessed on 4 July 2025).
- R Core Team. R: A Language and Environment for Statistical Computing; R Foundation for Statistical Computing: Vienna, Austria, 2024; Available online: https://www.R-project.org/ (accessed on 15 August 2025).
- Wickham, H.; Bryan, J. readxl: Read Excel Files. R Package, Version 1.4.3; R Foundation for Statistical Computing: Vienna, Austria, 2023; Available online: https://CRAN.R-project.org/package=readxl (accessed on 15 August 2025).
- Grolemund, G.; Wickham, H. Dates and Times Made Easy with lubridate. J. Stat. Softw. 2011, 40, 1–25. [Google Scholar] [CrossRef]
- Wickham, H.; François, R.; Henry, L.; Müller, K.; Vaughan, D. dplyr: A Grammar of Data Manipulation. R Package Version 1.1.4; R Foundation for Statistical Computing: Vienna, Austria, 2023; Available online: https://CRAN.R-project.org/package=dplyr (accessed on 15 August 2025).
- Meschiari, S. latex2exp: Use LaTeX Expressions in Plots. R. Package Version 0.9.6; R Foundation for Statistical Computing: Vienna, Austria, 2022; Available online: https://CRAN.R-project.org/package=latex2exp (accessed on 15 August 2025).
- Wilke, C. cowplot: Streamlined Plot Theme and Plot Annotations for ‘ggplot2’. R Package Version 1.1.3; R Foundation for Statistical Computing: Vienna, Austria, 2024; Available online: https://CRAN.R-project.org/package=cowplot (accessed on 15 August 2025).
- Torchiano, M. Effsize—A Package for Efficient Effect Size Computation. Version 2. 2016. Available online: https://zenodo.org/records/1480624 (accessed on 15 August 2025).
- Cohen, J. Statistical Power Analysis for the Behavioral Sciences, 2nd ed.; Routledge: London, UK, 2013. [Google Scholar]
- Macías-Hernández, B.; Tello-Leal, E.; Barrios S., O.; Leiva-Guzmán, M.A.; Toro A., R. Effect of environmental conditions on the performance of a low-cost atmospheric particulate matter sensor. Urban Clim. 2023, 52, 101753. [Google Scholar] [CrossRef]
- Aquilina, N.J.; Fenech C., S. Impact of daily household activities on indoor PM2.5 and Black Carbon concentrations in Malta. Build. Environ. 2022, 207 Pt A, 108422. [Google Scholar] [CrossRef]
- Zhang, L.; Ou, C.; Magana-Arachchi, D.; Vithanage, M.; Vanka, K.S.; Palanisami, T.; Masakorala, K.; Wijesekara, H.; Yan, Y.; Bolan, N.; et al. Indoor Particulate Matter in Urban Households: Sources, Pathways, Characteristics, Health Effects, and Exposure Mitigation. Int. J. Environ. Res. Public Health 2021, 18, 11055. [Google Scholar] [CrossRef]
- Hayward, I.; Martin, N.A.; Ferracci, V.; Kazemimanesh, M.; Kumar, P. Low-Cost Air Quality Sensors: Biases, Corrections and Challenges in Their Comparability. Atmosphere 2024, 15, 1523. [Google Scholar] [CrossRef]
- Dinh, T.-V.; Park, B.-G.; Lee, S.-W.; Park, J.-H.; Baek, D.-H.; Choi, I.-Y.; Seo, Y.-B.; Choi, J.-W.; Kim, J.-C. A case study evaluating the performance of a cost-effective optical particle counter coupled with a humidity compensation approach for ambient air monitoring of particulate matter. Asian J. Atmos. Environ. 2023, 17, 15. [Google Scholar] [CrossRef]
- Diario Oficial de la Federación: NORMA Oficial Mexicana NOM-025-SSA1-2021, Salud Ambiental. Criterio Para Evaluar la Calidad del Aire Ambiente, Con Respecto a Las Partículas Suspendidas PM10 y PM2.5. Valores Normados Para la Concentración de Partículas Suspendidas PM10 y PM2.5 en el Aire Ambiente, Como Medida de Protección a la Salud de la Población. Available online: https://dof.gob.mx/nota_detalle.php?codigo=5633855&fecha=27/10/2021#gsc.tab=0 (accessed on 15 August 2025).
- Karanasiou, A.; Amato, F.; Moreno, T.; Lumbreras, J.; Borge, R.; Linares, C.; Boldo, E.; Alastuey, A.; Querol, X. Road Dust Emission Sources and Assessment of Street Washing Effect. Aerosol Air Qual. Res. 2014, 14, 734–743. [Google Scholar] [CrossRef]
- Amato, F.; Cassee, F.R.; Denier van der Gon H. A., C.; Gehrig, R.; Gustafsson, M.; Hafner, W.; Harrison, R.M.; Jozwicka, M.; Kelly, F.J.; Moreno, T.; et al. Urban air quality: The challenge of traffic non-exhaust emissions. J. Hazard. Mater. 2014, 275, 31–36. [Google Scholar] [CrossRef]
- Jorquera, H.; Montoya, L.D.; Rojas, N.Y. Urban air pollution. In Urban Climates in Latin America; Springer International Publishing: Cham, Switzerland, 2019; pp. 137–165. [Google Scholar] [CrossRef]
- WHO. Global Air Quality Guidelines: Particulate Matter (PM2.5 and PM10), Ozone, Nitrogen Dioxide, Sulfur Dioxide and Carbon Monoxide. 2021. Available online: https://www.who.int/publications/i/item/9789240034228 (accessed on 14 August 2025).
- WHO. Guidelines for Indoor Air Quality: Selected Pollutants. Bonn: World Health Organization. 2010. Available online: https://www.who.int/publications/i/item/9789289002134 (accessed on 25 August 2025).
- Gordon, S.B.; Bruce, N.G.; Grigg, J.; Hibberd, P.L.; Kurmi, O.P.; Lam, K.B.; Mortimer, K.; Asante, K.P.; Balakrishnan, K.; Balmes, J.; et al. Respiratory risks from household air pollution in low and middle income countries. Lancet Respir. Med. 2014, 2, 823–860. [Google Scholar] [CrossRef]
- Phillip, E.; Langevin, J.; Davis, M.; Kumar, N.; Walsh, A.; Jumbe, V.; Clifford, M.; Conroy, R.; Stanistreet, D. Improved cookstoves to reduce household air pollution exposure in sub-Saharan Africa: A scoping review of intervention studies. PLoS ONE 2023, 18, e0284908. [Google Scholar] [CrossRef] [PubMed]
- Youn-Suk, S. A review on indoor and outdoor factors affecting the level of particulate matter in classrooms of elementary schools. J. Build. Eng. 2023, 75, 106957. [Google Scholar] [CrossRef]
- Karri, R.R.; Vera, T.; Hassan, S.K.; Khoder, M.I.; Dehghani, M.H.; Mubarak, N.M.; Gobinath, R. Classification, sources, and occurrence of outdoor air pollutants: A comprehensive overview. In Health and Environmental Effects of Ambient Air Pollution. Volume 1: Air Pollution, Human Health, and the Environment; Deghani, M.H., Karri, R.R., Vera, T., Hassan, S.K.M., Eds.; Elsevier: Amsterdam, The Netherlands, 2024; pp. 1–34. [Google Scholar] [CrossRef]
- Putaud, J.-P.; Van Dingenen, R.; Alastuey, A.; Bauer, H.; Birmili, W.; Cyrys, J.; Flentje, H.; Fuzzi, S.; Gehrig, R.; Hansson, H.; et al. European aerosol phenomenology—3: Physical and chemical characteristics of particulate matter from 60 rural, urban, and kerbside sites across Europe. Atmos. Environ. 2010, 44, 1308–1320. [Google Scholar] [CrossRef]
- Wang, Y.; Koutrakis, P.; Michanikou, A.; Kouis, P.; Panayiotou, A.G.; Kinni, P.; Tymvios, F.; Chrysanthou, A.; Neophytou, M.; Mouzourides, P.; et al. Indoor residential and outdoor sources of PM2.5 and PM10 in Nicosia, Cyprus. Air Qual. Atmos. Health 2023, 17, 485–499. [Google Scholar] [CrossRef]
- Santos, J.E.K.; Tavella, R.A.; de Lima Brum, R.; Ramires, P.F.; da Silva, L.D.S.; Filho, W.L.F.C.; Nadaleti, W.C.; Correa, E.K.; da Silva Júnior, F.M.R. PM2.5/PM10 ratios in southernmost Brazilian cities and its relation with economic contexts and meteorological factors. Environ. Monit. Assess. 2025, 197, 191. [Google Scholar] [CrossRef]
- Sarnat, J.A.; Long, C.M.; Koutrakis, P.; Coull, B.A.; Schwartz, J.; Suh, H.H. Using sulfur as a tracer of outdoor fine particulate matter. Environ. Sci. Technol. 2002, 36, 5305–5314. [Google Scholar] [CrossRef] [PubMed]
- Seinfeld, J.H.; Pankow, J.F. Organic Atmospheric Particulate Material. Annu. Rev. Phys. Chem. 2003, 54, 121–140. [Google Scholar] [CrossRef]
- Salthammer, T. Data on formaldehyde sources, formaldehyde concentrations and air exchange rates in European housings. Data Br. 2019, 22, 400–435. [Google Scholar] [CrossRef]
- Sonntag, D.B.; Jung, H.; Harline, R.P.; Peterson, T.C.; Willis, S.E.; Christensen, T.R.; Johnston, J.D. Infiltration of Outdoor PM2.5 Pollution into Homes with Evaporative Coolers in Utah County. Sustainability 2024, 16, 177. [Google Scholar] [CrossRef]
- Su, H.; Jung, C.; Wang, J.; Chen, N.; Chang, W. Estimations of Infiltration Factors of Diurnal PM2.5 and Heavy Metals in Children’s Bedrooms. Indoor Air 2022, 32, e13037. [Google Scholar] [CrossRef] [PubMed]
- Lunderberg, D.M.; Liang, Y.; Singer, B.C.; Apte, J.S.; Nazaroff, W.W.; Goldstein, A.H. Assessing residential PM2.5 concentrations and infiltration factors with high spatiotemporal resolution using crowdsourced sensors. Proc. Natl. Acad. Sci. USA 2023, 120, e2308832120. [Google Scholar] [CrossRef]
- Jarvis, D.; Chinn, S.; Luczynska, C.; Burney, P. Association of respiratory symptoms and lung function in young adults with use of domestic gas appliances. Lancet 1996, 347, 426–431. [Google Scholar] [CrossRef]
- Long, C.M.; Suh, H.H.; Catalano, P.J.; Koutrakis, P. Using time- and size-resolved particulate data to quantify indoor penetration and deposition behavior. Environ. Sci. Technol. 2001, 35, 2089–2099, Erratum in: Environ. Sci. Technol. 2001, 35, 4584. [Google Scholar] [CrossRef] [PubMed]
- Seltenrich, N. Clearing the Air: Gas Stove Emissions and Direct Health Effects. Environ Health Perspect. 2024, 132, 22001. [Google Scholar] [CrossRef] [PubMed]
Difference | Confidence Interval | Hypothesis Test | Cohen’s d | |||||
---|---|---|---|---|---|---|---|---|
Mean | SD | CIinf | CIsup | ttest | p-Value | Value | Effect | |
PM0.5/PM10 | 0.0259 | 0.0521 | 0.0086 | 0.0433 | 3.029 | 0.005 | 0.39 | small |
PM1/PM10 | 0.0426 | 0.0720 | 0.0186 | 0.0666 | 3.596 | 0.001 | 0.45 | small |
PM2.5/PM10 | 0.0664 | 0.0993 | 0.0333 | 0.0995 | 4.067 | 0.000 | 0.63 | medium |
PM5/PM10 | 0.0759 | 0.0982 | 0.0432 | 0.1087 | 4.704 | 0.000 | 0.81 | large |
PM0.5/PM2.5 | −0.0193 | 0.0476 | −0.0351 | −0.0034 | −2.464 | 0.019 | −0.33 | small |
PM1/PM2.5 | −0.0152 | 0.0338 | −0.0265 | −0.0039 | −2.732 | 0.010 | −0.21 | small |
PM0.5/PM1 | −0.0158 | 0.0573 | −0.0349 | 0.0033 | −1.680 | 0.102 | −0.39 | small |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Vega, E.; Wellens, A.; Namdeo, A.; Meza-Figueroa, D.; Ornelas, O.; Entwistle, J.; Bramwell, L. Spatial Variation of PM10 and PM2.5 in Residential Indoor Environments in Municipalities Across Mexico City. Atmosphere 2025, 16, 1039. https://doi.org/10.3390/atmos16091039
Vega E, Wellens A, Namdeo A, Meza-Figueroa D, Ornelas O, Entwistle J, Bramwell L. Spatial Variation of PM10 and PM2.5 in Residential Indoor Environments in Municipalities Across Mexico City. Atmosphere. 2025; 16(9):1039. https://doi.org/10.3390/atmos16091039
Chicago/Turabian StyleVega, Elizabeth, Ann Wellens, Anil Namdeo, Diana Meza-Figueroa, Octavio Ornelas, Jane Entwistle, and Lindsay Bramwell. 2025. "Spatial Variation of PM10 and PM2.5 in Residential Indoor Environments in Municipalities Across Mexico City" Atmosphere 16, no. 9: 1039. https://doi.org/10.3390/atmos16091039
APA StyleVega, E., Wellens, A., Namdeo, A., Meza-Figueroa, D., Ornelas, O., Entwistle, J., & Bramwell, L. (2025). Spatial Variation of PM10 and PM2.5 in Residential Indoor Environments in Municipalities Across Mexico City. Atmosphere, 16(9), 1039. https://doi.org/10.3390/atmos16091039