The Asymmetry of the El Niño–Southern Oscillation: Characteristics, Mechanisms, and Implications for a Changing Climate
Abstract
1. Introduction
2. The Manifestations of ENSO Asymmetry
2.1. Amplitude Asymmetry
2.2. Spatial and Propagational Asymmetry
2.3. Temporal Asymmetry
2.4. Asymmetric Teleconnections and Global Impacts
3. Physical Mechanisms Driving ENSO Asymmetry
3.1. The Central Role of Nonlinearity
3.2. Atmospheric Drivers of Asymmetry
3.3. Oceanic Drivers of Asymmetry
3.4. The Influence of the Mean State
4. The Challenge of Simulating ENSO Asymmetry in Climate Models
4.1. A Historical Perspective on Model Biases (CMIP3 & CMIP5)
4.2. Current Status in CMIP6 Models
4.3. Linking Model Biases to Physical Processes
4.4. Pathways to Improvement: The Role of Resolution and Parameterization
5. Asymmetry in ENSO Diversity
5.1. Asymmetry Within EP and CP El Niño Diversity
5.2. The Phenomenon of Multi-Year La Niña
5.3. Modulation by External and Decadal Variability
6. ENSO Asymmetry in a Changing Climate
6.1. Projected Changes in ENSO Asymmetry and Amplitude
6.2. The Role of a Warming Mean State
6.3. Implications for Future Teleconnections and Regional Climate Impacts
7. Synthesis and Future Directions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- McPhaden, M.J.; Zebiak, S.E.; Glantz, M.H. ENSO as an integrating concept in Earth science. Science 2006, 314, 1740–1745. [Google Scholar] [CrossRef]
- Zhou, T.; Wu, B.; Dong, L. Advances in research of ENSO changes and the associated impacts on Asian-Pacific climate. Asia-Pac. J. Atmos. Sci. 2014, 50, 405–422. [Google Scholar] [CrossRef]
- Jin, F.-F. An equatorial ocean recharge paradigm for ENSO. Part I: Conceptual model. J. Atmos. Sci. 1997, 54, 811–829. [Google Scholar] [CrossRef]
- Suarez, M.J.; Schopf, P.S. A delayed action oscillator for ENSO. J. Atmos. Sci. 1988, 45, 3283–3287. [Google Scholar] [CrossRef]
- An, S.-I. A review of interdecadal changes in the nonlinearity of the El Niño-Southern Oscillation. Theor. Appl. Climatol. 2009, 97, 29–40. [Google Scholar] [CrossRef]
- Jin, F.-F. Toward Understanding El Niño Southern-Oscillation’s Spatiotemporal Pattern Diversity. Front. Earth Sci. 2022, 10, 899139. [Google Scholar] [CrossRef]
- Timmermann, A.; An, S.-I.; Kug, J.-S.; Jin, F.-F.; Cai, W.; Capotondi, A.; Cobb, K.M.; Lengaigne, M.; McPhaden, M.J.; Stuecker, M.F.; et al. El Niño-Southern Oscillation complexity. Nature 2018, 559, 535–545. [Google Scholar] [CrossRef]
- Duan, W.; Xu, H.; Mu, M. Decisive role of nonlinear temperature advection in El Niño and La Niña amplitude asymmetry. J. Geophys. Res.-Ocean. 2008, 113, C01014. [Google Scholar] [CrossRef]
- Okumura, Y.M.; Deser, C. Asymmetry in the Duration of El Niño and La Niña. J. Clim. 2010, 23, 5826–5843. [Google Scholar] [CrossRef]
- Gao, Z.; Hu, Z.; Zheng, F.; Li, X.; Li, S.; Zhang, B. Single-year and double-year El Niños. Clim. Dyn. 2023, 60, 2235–2243. [Google Scholar] [CrossRef]
- Wang, B.; Sun, W.; Jin, C.; Luo, X.; Yang, Y.-M.; Li, T.; Xiang, B.; McPhaden, M.J.; Cane, M.A.; Jin, F.; et al. Understanding the recent increase in multiyear La Niñas. Nat. Clim. Change 2023, 13, 1075–1081. [Google Scholar] [CrossRef]
- An, S.-I.; Kim, J.-W. Role of nonlinear ocean dynamic response to wind on the asymmetrical transition of El Niño and La Niña. Geophys. Res. Lett. 2017, 44, 393–400. [Google Scholar] [CrossRef]
- McPhaden, M.J.; Zhang, X. Asymmetry in zonal phase propagation of ENSO sea surface temperature anomalies. Geophys. Res. Lett. 2009, 36, L13703. [Google Scholar] [CrossRef]
- Rasmusson, E.M.; Carpenter, T.H. Variations in tropical sea surface temperature and surface wind fields associated with the Southern Oscillation/El Niño. Mon. Weather Rev. 1982, 110, 354–384. [Google Scholar] [CrossRef]
- Zhang, T.; Sun, D.-Z.; Neale, R.; Rasch, P.J. An Evaluation of ENSO Asymmetry in the Community Climate System Models: A View from the Subsurface. J. Clim. 2009, 22, 5933–5961. [Google Scholar] [CrossRef]
- Wang, X.; Yang, X.-Q. Amplified Asymmetric Impact of ENSO Events on the Wintertime Pacific-North American Teleconnection Pattern. Geophys. Res. Lett. 2023, 50, e2022GL100996. [Google Scholar] [CrossRef]
- Rao, J.; Ren, R. Asymmetry and nonlinearity of the influence of ENSO on the northern winter stratosphere: 1. Observations. J. Geophys. Res.-Atmos. 2016, 121, 9000–9016. [Google Scholar] [CrossRef]
- Hu, Z.; Kumar, A.; Huang, B.; Zhu, J.; Zhang, R.; Jin, F. Asymmetric evolution of El Niño and La Niña: The recharge/discharge processes and role of the off-equatorial sea surface height anomaly. Clim. Dyn. 2017, 49, 2737–2748. [Google Scholar] [CrossRef]
- Hayashi, M.; Jin, F.-F. Subsurface Nonlinear Dynamical Heating and ENSO Asymmetry. Geophys. Res. Lett. 2017, 44, 12427–12435. [Google Scholar] [CrossRef]
- Levine, A.; Jin, F.F.; McPhaden, M.J. Extreme Noise-Extreme El Niño: How State-Dependent Noise Forcing Creates El Niño-La Niña Asymmetry. J. Clim. 2016, 29, 5483–5499. [Google Scholar] [CrossRef]
- Chen, D.; Lian, T.; Fu, C.; Cane, M.A.; Tang, Y.; Murtugudde, R.; Song, X.; Wu, Q.; Zhou, L. Strong influence of westerly wind bursts on El Niño diversity. Nat. Geosci. 2015, 8, 339–345. [Google Scholar] [CrossRef]
- Geng, T.; Cai, W.; Wu, L.; Yang, Y. Atmospheric Convection Dominates Genesis of ENSO Asymmetry. Geophys. Res. Lett. 2019, 46, 8387–8396. [Google Scholar] [CrossRef]
- Srinivas, G.; Vialard, J.; Liu, F.; Voldoire, A.; Izumo, T.; Guilyardi, E.; Lengaigne, M. Dominant contribution of atmospheric nonlinearities to ENSO asymmetry and extreme El Niño events. Sci. Rep. 2024, 14, 8122. [Google Scholar] [CrossRef]
- Fang, S.-W.; Yu, J.-Y. Contrasting Transition Complexity Between El Niño and La Niña: Observations and CMIP5/6 Models. Geophys. Res. Lett. 2020, 47, e2020GL088926. [Google Scholar] [CrossRef]
- Zhang, T.; Sun, D.-Z. ENSO Asymmetry in CMIP5 Models. J. Clim. 2014, 27, 4070–4093. [Google Scholar] [CrossRef]
- Zhao, Y.; Sun, D.-Z. ENSO Asymmetry in CMIP6 Models. J. Clim. 2022, 35, 5555–5572. [Google Scholar] [CrossRef]
- Sun, Y.; Sun, D.-Z.; Wu, L.; Wang, F. Western Pacific warm pool and ENSO asymmetry in CMIP3 models. Adv. Atmos. Sci. 2013, 30, 940–953. [Google Scholar] [CrossRef]
- Sun, Y.; Wang, F.; Sun, D.-Z. Weak ENSO Asymmetry Due to Weak Nonlinear Air-Sea Interaction in CMIP5 Climate Models. Adv. Atmos. Sci. 2016, 33, 352–364. [Google Scholar] [CrossRef]
- Liu, B.; Gan, B.; Cai, W.; Wu, L.; Geng, T.; Wang, H.; Wang, S.; Jing, Z.; Jia, F. Will increasing climate model resolution be beneficial for ENSO simulation? Geophys. Res. Lett. 2022, 49, e2021GL096932. [Google Scholar] [CrossRef]
- Imada, Y.; Kimoto, M. Parameterization of Tropical Instability Waves and Examination of Their Impact on ENSO Characteristics. J. Clim. 2012, 25, 4568–4581. [Google Scholar] [CrossRef]
- Karamperidou, C.; Jin, F.-F.; Conroy, J.L. The importance of ENSO nonlinearities in tropical pacific response to external forcing. Clim. Dyn. 2017, 49, 2695–2704. [Google Scholar] [CrossRef]
- Ham, Y.-G. A reduction in the asymmetry of ENSO amplitude due to global warming: The role of atmospheric feedback. Geophys. Res. Lett. 2017, 44, 8576–8584. [Google Scholar] [CrossRef]
- Geng, T.; Cai, W. Enhanced Eastern Pacific Warming Weakens ENSO Asymmetry Post-2100 Under Persistent Greenhouse Warming. Geophys. Res. Lett. 2025, 52, e2025GL115407. [Google Scholar] [CrossRef]
- An, S.-I.; Jin, F.-F. Nonlinearity and asymmetry of ENSO. J. Clim. 2004, 17, 2399–2412. [Google Scholar] [CrossRef]
- An, S.-I.; Ham, Y.-G.; Kug, J.-S.; Jin, F.-F.; Kang, I.-S. El Niño–La Niña asymmetry in the coupled model intercomparison project simulations. J. Clim. 2005, 18, 2617–2627. [Google Scholar] [CrossRef]
- Dommenget, D.; Bayr, T.; Frauen, C. Analysis of the non-linearity in the pattern and time evolution of El Nio southern oscillation. Clim. Dyn. 2013, 40, 2825–2847. [Google Scholar] [CrossRef]
- Su, J.; Zhang, R.; Li, T.; Rong, X.; Kug, J.-S.; Hong, C.-C. Causes of the El Niño and La Niña Amplitude Asymmetry in the Equatorial Eastern Pacific. J. Clim. 2010, 23, 605–617. [Google Scholar] [CrossRef]
- Burgers, G.; Stephenson, D.B. The “normality” of el niño. Geophys. Res. Lett. 1999, 26, 1027–1030. [Google Scholar] [CrossRef]
- Choi, K.-Y.; Vecchi, G.A.; Wittenberg, A.T. ENSO Transition, Duration, and Amplitude Asymmetries: Role of the Nonlinear Wind Stress Coupling in a Conceptual Model. J. Clim. 2013, 26, 9462–9476. [Google Scholar] [CrossRef]
- Srinivas, G.; Vialard, J.; Lengaigne, M.; Izumo, T.; Guilyardi, E. Relative Contributions of Sea Surface Temperature and Atmospheric Nonlinearities to ENSO Asymmetrical Rainfall Response. J. Clim. 2022, 35, 3725–3745. [Google Scholar] [CrossRef]
- Feng, J.; Chen, W.; Li, Y. Asymmetry of the winter extra-tropical teleconnections in the Northern Hemisphere associated with two types of ENSO. Clim. Dyn. 2017, 48, 2135–2151. [Google Scholar] [CrossRef]
- Ren, Q.; Li, Y.; Zheng, F.; Wang, F.; Duan, J.; Li, R. Asymmetry of Interannual Sea Level Variability in the Western Tropical Pacific: Responses to El Niño and La Niña. J. Geophys. Res.-Ocean. 2020, 125, e2020JC016616. [Google Scholar] [CrossRef]
- Santoso, A.; McGregor, S.; Jin, F.-F.; Cai, W.; England, M.H.; An, S.-I.; McPhaden, M.J.; Guilyardi, E. Late-twentieth-century emergence of the El Niño propagation asymmetry and future projections. Nature 2013, 504, 126–130. [Google Scholar] [CrossRef]
- An, S.-I.; Kim, J.-W. ENSO Transition Asymmetry: Internal and External Causes and Intermodel Diversity. Geophys. Res. Lett. 2018, 45, 5095–5104. [Google Scholar] [CrossRef]
- Hoerling, M.P.; Kumar, A.; Zhong, M. El Niño, La Niña, and the nonlinearity of their teleconnections. J. Clim. 1997, 10, 1769–1786. [Google Scholar] [CrossRef]
- Cai, W.; van Rensch, P.; Cowan, T.; Hendon, H.H. An Asymmetry in the IOD and ENSO Teleconnection Pathway and Its Impact on Australian Climate. J. Clim. 2012, 25, 6318–6329. [Google Scholar] [CrossRef]
- King, A.D.; Alexander, L.V.; Donat, M.G. Asymmetry in the response of eastern Australia extreme rainfall to low-frequency Pacific variability. Geophys. Res. Lett. 2013, 40, 2271–2277. [Google Scholar] [CrossRef]
- Tan, X.; Tang, Y.; Lian, T.; Yao, Z.; Li, X.; Chen, D. A study of the effects of westerly wind bursts on ENSO based on CESM. Clim. Dyn. 2020, 54, 885–899. [Google Scholar] [CrossRef]
- Huang, P.; Chen, D. Enlarged Asymmetry of Tropical Pacific Rainfall Anomalies Induced by El Niño and La Niña under Global Warming. J. Clim. 2017, 30, 1327–1343. [Google Scholar] [CrossRef]
- Chen, L.; Sun, D.-Z.; Wang, L.; Li, T. A Further Study on the Simulation of Cloud-Radiative Feedbacks in the ENSO Cycle in the Tropical Pacific with a Focus on the Asymmetry. Asia-Pac. J. Atmos. Sci. 2019, 55, 303–316. [Google Scholar] [CrossRef]
- Hayashi, M.; Jin, F.-F.; Stuecker, M.F. Dynamics for El Niño-La Niña asymmetry constrain equatorial-Pacific warming pattern. Nat. Commun. 2020, 11, 4230. [Google Scholar] [CrossRef]
- Guan, C.; McPhaden, M.J.; Wang, F.; Hu, S. Quantifying the Role of Oceanic Feedbacks on ENSO Asymmetry. Geophys. Res. Lett. 2019, 46, 2140–2148. [Google Scholar] [CrossRef]
- Im, S.-H.; An, S.-I.; Kim, S.T.; Jin, F.-F. Feedback processes responsible for El Niño-La Niña amplitude asymmetry. Geophys. Res. Lett. 2015, 42, 5556–5563. [Google Scholar] [CrossRef]
- Dewitte, B.; Yeh, S.-W.; Thual, S. Reinterpreting the thermocline feedback in the western-central equatorial Pacific and its relationship with the ENSO modulation. Clim. Dyn. 2013, 41, 819–830. [Google Scholar] [CrossRef]
- An, S.-I. Interannual variations of the Tropical Ocean instability wave and ENSO. J. Clim. 2008, 21, 3680–3686. [Google Scholar] [CrossRef]
- Guan, C.; Tian, F.; McPhaden, M.J.; Wang, F.; Hu, S.; Zhang, R.-H. Zonal Structure of Tropical Pacific Surface Salinity Anomalies Affects ENSO Intensity and Asymmetry. Geophys. Res. Lett. 2022, 49, e2021GL096197. [Google Scholar] [CrossRef]
- Zhu, J.; Huang, B.; Zhang, R.; Hu, Z.; Kumar, A.; Balmaseda, M.; Marx, L.; Kinter, J. Salinity anomaly as a trigger for ENSO events. Sci. Rep. 2014, 4, 6821. [Google Scholar] [CrossRef]
- Bayr, T.; Luebbecke, J.F.; Vialard, J.; Latif, M. Equatorial Pacific Cold Tongue Bias Degrades Simulation of ENSO Asymmetry due to Underestimation of Strong Eastern Pacific El Niños. J. Clim. 2024, 37, 6167–6182. [Google Scholar] [CrossRef]
- Schopf, P.S.; Burgman, R.J. A simple mechanism for ENSO residuals and asymmetry. J. Clim. 2006, 19, 3167–3179. [Google Scholar] [CrossRef]
- Liang, J.; Yang, X.-Q.; Sun, D.-Z. The Effect of ENSO Events on the Tropical Pacific Mean Climate: Insights from an Analytical Model. J. Clim. 2012, 25, 7590–7606. [Google Scholar] [CrossRef]
- Huang, P.; Chen, Y.; Li, J.; Yan, H. Redefined background state in the tropical Pacific resolves the entanglement between the background state and ENSO. npj Clim. Atmos. Sci. 2024, 7, 147. [Google Scholar] [CrossRef]
- Douglass, D.H. El Niño-Southern Oscillation: Magnitudes and asymmetry. J. Geophys. Res.-Atmos. 2010, 115, D15111. [Google Scholar] [CrossRef]
- Sengupta, A.; King, A.D.; Brown, J.R. Do CMIP6 Models Capture Seasonal and Regional Differences in the Asymmetry of ENSO-Precipitation Teleconnections? J. Geophys. Res. Atmos. 2025, 130, e2024JD041031. [Google Scholar] [CrossRef]
- Wang, L.-C.; Lin, Y.-S. A Potential Reason for a More CP El Niño-Like SSTA Performance in CMIP6 Simulations. Geophys. Res. Lett. 2023, 50, e2023GL105092. [Google Scholar] [CrossRef]
- Lin, Y.-S.; Wang, L.-C.; Li, J.-L.F. Effects of Equatorial Ocean Current Bias on Simulated El Niño Pattern in CMIP6 Models. Geophys. Res. Lett. 2023, 50, e2023GL102890. [Google Scholar] [CrossRef]
- Liang, J.; Yang, X.-Q.; Sun, D.-Z. Factors Determining the Asymmetry of ENSO. J. Clim. 2017, 30, 6098–6107. [Google Scholar] [CrossRef]
- Chen, M.; Li, T. ENSO evolution asymmetry: EP versus CP El Niño. Clim. Dyn. 2021, 56, 3569–3579. [Google Scholar] [CrossRef]
- Zhu, J.; Kumar, A.; Wang, W.; Hu, Z.; Huang, B.; Balmaseda, M. Importance of convective parameterization in ENSO predictions. Geophys. Res. Lett. 2017, 44, 6334–6342. [Google Scholar] [CrossRef]
- Duan, W.; Mu, M. Investigating decadal variability of El Niño-Southern Oscillation asymmetry by conditional nonlinear optimal perturbation. J. Geophys. Res.-Ocean. 2006, 111, C07015. [Google Scholar] [CrossRef]
- Dong, B.; Dai, A.; Vuille, M.; Timm, O.E. Asymmetric Modulation of ENSO Teleconnections by the Interdecadal Pacific Oscillation. J. Clim. 2018, 31, 7337–7361. [Google Scholar] [CrossRef]
- Cai, W.; Cowan, T. La Niña Modoki impacts Australia autumn rainfall variability. Geophys. Res. Lett. 2009, 36, L12805. [Google Scholar] [CrossRef]
- Li, Z.; Xu, H.; Zhang, W. Asymmetric features for two types of ENSO. J. Meteorol. Res. 2015, 29, 896–916. [Google Scholar] [CrossRef]
- Hu, Z.; Kumar, A.; Jha, B.; Wang, W.; Huang, B.; Huang, B. An analysis of warm pool and cold tongue El Nios: Air-sea coupling processes, global influences, and recent trends. Clim. Dyn. 2012, 38, 2017–2035. [Google Scholar] [CrossRef]
- Zhang, W.; Yu, Z.; Jiang, F.; Geng, X.; Zhang, R. Important role of the ENSO combination mode in the maintenance of the anomalous anticyclone over the western North Pacific in boreal summer. Sci. China-Earth Sci. 2022, 65, 1379–1387. [Google Scholar] [CrossRef]
- Wang, X.; Li, T.; Chen, M. Mechanism for asymmetric atmospheric responses in the western North Pacific to El Niño and La Niña. Clim. Dyn. 2019, 53, 3957–3969. [Google Scholar] [CrossRef]
- Choi, Y.; Ha, K.-J.; Jin, F.-F. Seasonality and El Niño Diversity in the Relationship between ENSO and Western North Pacific Tropical Cyclone Activity. J. Clim. 2019, 32, 8021–8045. [Google Scholar] [CrossRef]
- Zhang, R.; Li, T.; Wen, M.; Liu, L. Role of intraseasonal oscillation in asymmetric impacts of El Niño and La Niña on the rainfall over southern China in boreal winter. Clim. Dyn. 2015, 45, 559–567. [Google Scholar] [CrossRef]
- Liu, Y.; Hu, Z.; Wu, R.; Ding, Y.; Jha, B. Evolution of ENSO-related seasonal precipitation anomalies in East Asia: A robustness revisit. Int. J. Climatol. 2024, 44, 269–285. [Google Scholar] [CrossRef]
- Fang, X.; Zheng, F.; Li, K.; Hu, Z.-Z.; Ren, H.; Wu, J.; Chen, X.; Lan, W.; Yuan, Y.; Feng, L.; et al. Will the Historic Southeasterly Wind over the Equatorial Pacific in March 2022 Trigger a Third-year La Niña Event? Adv. Atmos. Sci. 2023, 40, 6–13. [Google Scholar] [CrossRef]
- Hasan, N.A.; Chikamoto, Y.; McPhaden, M.J. The influence of tropical basin interactions on the 2020–2022 double-dip La Niña. Front. Clim. 2022, 4, 1001174. [Google Scholar] [CrossRef]
- Li, X.; Hu, Z.; Mcphaden, M.; Zhu, C.; Liu, Y. Triple-Dip La Niñas in 1998-2001 and 2020-2023: Impact of Mean State Changes. J. Geophys. Res.-Atmos. 2023, 128, e2023JD038843. [Google Scholar] [CrossRef]
- Li, X.; Hu, Z.Z.; Tseng, Y.h.; Liu, Y.; Liang, P. A historical perspective of the La Niña event in 2020/2021. J. Geophys. Res. Atmos. 2022, 127, e2021JD035546. [Google Scholar] [CrossRef]
- Dong, X.; Zhang, R.; Hu, J.; Gao, C.; Chen, M. Thermodynamic processes prolong triple La Niña events in a hybrid coupled ocean-atmosphere model. Clim. Dyn. 2025, 63, 92. [Google Scholar] [CrossRef]
- Fasullo, J.; Rosenbloom, N.; Buchholz, R. A multiyear tropical Pacific cooling response to recent Australian wildfires in CESM2. Sci. Adv. 2023, 9, eadg1213. [Google Scholar] [CrossRef]
- Park, J.-H.; An, S.-I.; Kug, J.-S.; Yang, Y.-M.; Li, T.; Jo, H.-S. Mid-latitude leading double-dip La Niña. Int. J. Climatol. 2021, 41, E1353–E1370. [Google Scholar] [CrossRef]
- Liu, F.; Zhang, W.; Jin, F.-f.; Jiang, F.; Boucharel, J.; Hua, S. New Insights into Multiyear La Niña Dynamics from the Perspective of a Near-Annual Ocean Process. J. Clim. 2023, 36, 7435–7450. [Google Scholar] [CrossRef]
- Jia, F.; Cai, W.; Geng, T.; Gan, B.; Zhong, W.; Wu, L.; Mcphaden, M.J. Transition from multi-year La Niña to strong El Niño rare but increased under global warming. Sci. Bull. 2025, 70, 756–764. [Google Scholar] [CrossRef]
- Chen, H.; Jin, Y.; Shen, X.; Lin, X.; Hu, R. El Niño and La Niña asymmetry in short-term predictability on springtime initial condition. npj Clim. Atmos. Sci. 2023, 6, 121. [Google Scholar] [CrossRef]
- Lin, R.; Zheng, F.; Dong, X. ENSO Frequency Asymmetry and the Pacific Decadal Oscillation in Observations and 19 CMIP5 Models. Adv. Atmos. Sci. 2018, 35, 495–506. [Google Scholar] [CrossRef]
- Okumura, Y.M.; Sun, T.; Wu, X. Asymmetric Modulation of El Niño and La Niña and the Linkage to Tropical Pacific Decadal Variability. J. Clim. 2017, 30, 4705–4733. [Google Scholar] [CrossRef]
- Rao, J.; Ren, R.; Xia, X.; Shi, C.; Guo, D. Combined Impact of El Niño-Southern Oscillation and Pacific Decadal Oscillation on the Northern Winter Stratosphere. Atmosphere 2019, 10, 211. [Google Scholar] [CrossRef]
- Gershunov, A.; Barnett, T.P. Interdecadal modulation of ENSO teleconnections. Bull. Am. Meteorol. Soc. 1998, 79, 2715–2726. [Google Scholar] [CrossRef]
- Sung, M.-K.; An, S.-I.; Kim, B.-M.; Kug, J.-S. Asymmetric impact of Atlantic Multidecadal Oscillation on El Niño and La Niña characteristics. Geophys. Res. Lett. 2015, 42, 4998–5004. [Google Scholar] [CrossRef]
- Fan, L.; Liu, Q.; Wang, C.; Guo, F. Indian Ocean Dipole Modes Associated with Different Types of ENSO Development. J. Clim. 2017, 30, 2233–2249. [Google Scholar] [CrossRef]
- Weller, E.; Cai, W. Asymmetry in the IOD and ENSO Teleconnection in a CMIP5 Model Ensemble and Its Relevance to Regional Rainfall. J. Clim. 2013, 26, 5139–5149. [Google Scholar] [CrossRef]
- Fan, H.; Huang, B.; Yang, S.; Dong, W. Influence of the Pacific Meridional Mode on ENSO Evolution and Predictability: Asymmetric Modulation and Ocean Preconditioning. J. Clim. 2021, 34, 1881–1901. [Google Scholar] [CrossRef]
- Fan, H.; Wang, C.; Yang, S. Asymmetry Between Positive and Negative Phases of the Pacific Meridional Mode: A Contributor to ENSO Transition Complexity. Geophys. Res. Lett. 2023, 50, e2023GL104000. [Google Scholar] [CrossRef]
- Collins, M.; An, S.-I.; Cai, W.; Ganachaud, A.; Guilyardi, E.; Jin, F.-F.; Jochum, M.; Lengaigne, M.; Power, S.; Timmermann, A.; et al. The impact of global warming on the tropical Pacific ocean and El Niño. Nat. Geosci. 2010, 3, 391–397. [Google Scholar] [CrossRef]
- Latif, M.; Keenlyside, N.S. El Niño/Southern Oscillation response to global warming. Proc. Natl. Acad. Sci. USA 2009, 106, 20578–20583. [Google Scholar] [CrossRef]
- Cai, W.; Borlace, S.; Lengaigne, M.; van Rensch, P.; Collins, M.; Vecchi, G.; Timmermann, A.; Santoso, A.; McPhaden, M.J.; Wu, L.; et al. Increasing frequency of extreme El Niño events due to greenhouse warming. Nat. Clim. Change 2014, 4, 111–116. [Google Scholar] [CrossRef]
- Cai, W.; Wang, G.; Santoso, A.; McPhaden, M.J.; Wu, L.; Jin, F.-F.; Timmermann, A.; Collins, M.; Vecchi, G.; Lengaigne, M.; et al. Increased frequency of extreme La Niña events under greenhouse warming. Nat. Clim. Change 2015, 5, 132–137. [Google Scholar] [CrossRef]
- Cai, W.; Wang, G.; Dewitte, B.; Wu, L.; Santoso, A.; Takahashi, K.; Yang, Y.; Carreric, A.; McPhaden, M.J. Increased variability of eastern Pacific El Niño under greenhouse warming. Nature 2018, 564, 201–206. [Google Scholar] [CrossRef]
- Tuckman, P.J. Understanding ENSO Weakening in Warmer Climates. Geophys. Res. Lett. 2025, 52, e2024GL113124. [Google Scholar] [CrossRef]
- Callahan, C.W.; Chen, C.; Rugenstein, M.; Bloch-Johnson, J.; Yang, S.; Moyer, E.J. Robust decrease in El Niño/Southern Oscillation amplitude under long-term warming. Nat. Clim. Change 2021, 11, 752–757. [Google Scholar] [CrossRef]
- Peng, Q.; Xie, S.-P.; Deser, C. Collapsed upwelling projected to weaken ENSO under sustained warming beyond the twenty-first century. Nat. Clim. Change 2024, 14, 815–822. [Google Scholar] [CrossRef]
- Beobide-Arsuaga, G.; Bayr, T.; Reintges, A.; Latif, M. Uncertainty of ENSO-amplitude projections in CMIP5 and CMIP6 models. Clim. Dyn. 2021, 56, 3875–3888. [Google Scholar] [CrossRef]
- Stevenson, S.; Wittenberg, A.T.; Fasullo, J.; Coats, S.; Otto-Bliesner, B. Understanding Diverse Model Projections of Future Extreme El Niño. J. Clim. 2021, 34, 449–464. [Google Scholar] [CrossRef]
- Kohyama, T.; Hartmann, D.L.; Battisti, D.S. Weakening of Nonlinear ENSO Under Global Warming. Geophys. Res. Lett. 2018, 45, 8557–8567. [Google Scholar] [CrossRef]
- Xie, S.-P.; Deser, C.; Vecchi, G.A.; Ma, J.; Teng, H.; Wittenberg, A.T. Global Warming Pattern Formation: Sea Surface Temperature and Rainfall. J. Clim. 2010, 23, 966–986. [Google Scholar] [CrossRef]
- Vecchi, G.A.; Soden, B.J. Global warming and the weakening of the tropical circulation. J. Clim. 2007, 20, 4316–4340. [Google Scholar] [CrossRef]
- Thual, S.; Dewitte, B.; An, S.-I.; Ayoub, N. Sensitivity of ENSO to Stratification in a Recharge-Discharge Conceptual Model. J. Clim. 2011, 24, 4332–4349. [Google Scholar] [CrossRef]
- Dewitte, B.; Thual, S.; Yeh, S.-W.; An, S.-I.; Moon, B.-K.; Giese, B.S. Low-Frequency Variability of Temperature in the Vicinity of the Equatorial Pacific Thermocline in SODA: Role of Equatorial Wave Dynamics and ENSO Asymmetry. J. Clim. 2009, 22, 5783–5795. [Google Scholar] [CrossRef]
- Armour, K.C.; Marshall, J.; Scott, J.R.; Donohoe, A.; Newsom, E.R. Southern Ocean warming delayed by circumpolar upwelling and equatorward transport. Nat. Geosci. 2016, 9, 549–554. [Google Scholar] [CrossRef]
- Swart, N.C.; Gille, S.T.; Fyfe, J.C.; Gillett, N.P. Recent Southern Ocean warming and freshening driven by greenhouse gas emissions and ozone depletion. Nat. Geosci. 2018, 11, 836–841. [Google Scholar] [CrossRef]
- Fedorov, A.V.; Dekens, P.S.; McCarthy, M.; Ravelo, A.C.; deMenocal, P.B.; Barreiro, M.; Pacanowski, R.C.; Philander, S.G. The Pliocene paradox (mechanisms for a permanent El Niño). Science 2006, 312, 1485–1489. [Google Scholar] [CrossRef]
- Wara, M.W.; Ravelo, A.C.; Delaney, M.L. Permanent El Niño-like conditions during the Pliocene warm period. Science 2005, 309, 758–761. [Google Scholar] [CrossRef]
- Lee, S.; L’Heureux, M.; Wittenberg, A.; Seager, R.; O’Gorman, P.; Johnson, N. On the future zonal contrasts of equatorial Pacific climate: Perspectives from Observations, Simulations, and Theories. npj Clim. Atmos. Sci. 2022, 5, 82. [Google Scholar] [CrossRef]
- Lieber, R.; Brown, J.; King, A.; Freund, M. Historical and Future Asymmetry of ENSO Teleconnections with Extremes. J. Clim. 2024, 37, 5909–5924. [Google Scholar] [CrossRef]
- Lau, N.-C.; Nath, M.J. The role of the “atmospheric bridge” in linking tropical Pacific ENSO events to extratropical SST anomalies. J. Clim. 1996, 9, 2036–2057. [Google Scholar] [CrossRef]
- Alexander, M.A.; Bladé, I.; Newman, M.; Lanzante, J.R.; Lau, N.-C.; Scott, J.D. The atmospheric bridge: The influence of ENSO teleconnections on air–sea interaction over the global oceans. J. Clim. 2002, 15, 2205–2231. [Google Scholar] [CrossRef]
- King, A.D.; Donat, M.G.; Alexander, L.V.; Karoly, D.J. The ENSO-Australian rainfall teleconnection in reanalysis and CMIP5. Clim. Dyn. 2015, 44, 2623–2635. [Google Scholar] [CrossRef]
- Marathe, S.; Terray, P.; Karumuri, A. Tropical Indian Ocean and ENSO relationships in a changed climate. Clim. Dyn. 2021, 56, 3255–3276. [Google Scholar] [CrossRef]
- Sheinbaum, J. Current theories on El Niño-southern oscillation: A review. Geofísica Int. 2003, 42, 291–305. [Google Scholar] [CrossRef]
- Sun, D.-Z.; Zhang, T.; Sun, Y.; Yu, Y. Rectification of El Niño–Southern Oscillation into Climate Anomalies of Decadal and Longer Time Scales: Results from Forced Ocean GCM Experiments. J. Clim. 2014, 27, 2545–2561. [Google Scholar] [CrossRef]
- Groth, A.; Chavez, E. Efficient inference and learning of a generative model for ENSO predictions from large multi-model datasets. Clim. Dyn. 2024, 62, 5259–5282. [Google Scholar] [CrossRef]
- Vialard, J.; Jin, F.-f.; Mcphaden, M.J.; Fedorov, A.; Cai, W.; An, S.-i.; Dommenget, D.; Fang, X.; Stuecker, M.F.; Wang, C.; et al. The El Niño Southern Oscillation (ENSO) Recharge Oscillator Conceptual Model: Achievements and Future Prospects. Rev. Geophys. 2025, 63, e2024RG000843. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Liang, J.; Sun, D.-Z.; Jin, B.; Yang, Y.; Chu, C.; Tan, M. The Asymmetry of the El Niño–Southern Oscillation: Characteristics, Mechanisms, and Implications for a Changing Climate. Atmosphere 2025, 16, 1071. https://doi.org/10.3390/atmos16091071
Liang J, Sun D-Z, Jin B, Yang Y, Chu C, Tan M. The Asymmetry of the El Niño–Southern Oscillation: Characteristics, Mechanisms, and Implications for a Changing Climate. Atmosphere. 2025; 16(9):1071. https://doi.org/10.3390/atmos16091071
Chicago/Turabian StyleLiang, Jin, De-Zheng Sun, Biao Jin, Yifei Yang, Cuijiao Chu, and Minjia Tan. 2025. "The Asymmetry of the El Niño–Southern Oscillation: Characteristics, Mechanisms, and Implications for a Changing Climate" Atmosphere 16, no. 9: 1071. https://doi.org/10.3390/atmos16091071
APA StyleLiang, J., Sun, D.-Z., Jin, B., Yang, Y., Chu, C., & Tan, M. (2025). The Asymmetry of the El Niño–Southern Oscillation: Characteristics, Mechanisms, and Implications for a Changing Climate. Atmosphere, 16(9), 1071. https://doi.org/10.3390/atmos16091071