Chemistry of Precipitation Acidity at Irkutsk, Russia
Abstract
1. Introduction
1.1. Precipitation Chemistry and Acid Rain Issue
1.2. Neutralization Factor, NF
1.3. Fractional Acidity, FA
1.4. Multi-Regression Analysis
1.5. D-Value
1.6. Acid-Base Model of pH
1.7. EANET Datasets
2. Materials and Methods
2.1. Siting
2.2. Sampling and Analysis
2.3. Data Management
2.4. Dataset
3. Results
3.1. Rainfall
3.2. Monthly pH Variation
3.3. Monthly Variations in Major Ion Concentrations
3.4. Daily pH and the Major Ion Concentrations
3.5. Daily pH and the Calcium Ion Fraction
3.6. Daily pH and Three Types of the Concentration Difference: Observation
3.7. Calculation of pH with the Concentration Differences
3.8. Evaluation of the Agreement Between the Calculation and the Observation
4. Conclusions
- (1)
- The monthly average pH over the entire period ranged from pH5.24 in July to pH6.66 in February, bracketing pH 5.6. Among the four major ions, nss-SO42−, NO3−, NH4+, and nss-Ca2+, nss-Ca2+ and nss-SO42− were the highly predominant species. Non-seasalt Ca2+ dominated nss-SO42− during winter months and vice versa in summer, which was consistent with pH seasonality.
- (2)
- The above characteristics of the two ions suggested a possible pH-controlling factor, D2 (=[nss-SO42−] − [ nss-Ca2+]), against which pH was plotted to obtain a titration curve-like pattern. Similar patterns were illustrated for two other differences, D4 and D6.
- (3)
- The consideration of acid–base chemical equilibrium gave a quantitative relationship, D2 = [H+] − HPCO2Ka1/[H+]. The observed pH was compared with the calculation over a broad range of D2 in terms of ΔpH(= pHcalc − pHobs) to demonstrate a good agreement with the theory.
- (4)
- In the light of current understanding of precipitation chemistry [3] and of Granat’s pioneering work [24], the present detailed description of the measurements and detailed chemical equilibrium approach allow us to conclude that the Irkutsk pH is evidently controlled predominantly by the relative contributions of sulfuric acid and calcium carbonate.
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References and Note
- Odén, S. The acidity problem-an outline of concepts. Water Air Soil Pollut. 1976, 6, 137–166. [Google Scholar] [CrossRef]
- Grennfelt, P.; Engleryd, A.; Hov, F.M.; Rodhe, H.; Cowling, E. Acid rain and air pollution: 50 years of progress in environmental science and policy. Ambio 2020, 49, 849–864. [Google Scholar] [CrossRef]
- Vet, R.; Artz, R.S.; Carou, S.; Shaw, M.; Ro, C.-U.; Aas, W.; Baker, A.; Bowersox, V.C.; Dentener, F.; Galy-Lacaux, C.; et al. A global assessment of precipitation chemistry and deposition of sulfur, nitrogen, sea salt, base cations, organic acids, acidity and pH, and phosphorus. Atmos. Environ. 2014, 93, 3–176. [Google Scholar] [CrossRef]
- Shah, V.; Jacob, D.J.; Moch, J.M.; Wang, X.; Zhai, S. Global modeling of cloud water acidity, precipitation acidity, and acid inputs to ecosystems. Atmos. Chem. Phys. 2020, 20, 12223–12245. [Google Scholar] [CrossRef]
- Dragomir, C.M.; Constantin, D.E.; Voiculescu, M.; Georgescu, L.P.; Merlaud, A.; Roozendael, M.V. Modeling results of atmospheric dispersion of NO2 in an urban area using METI–LIS and comparison with coincident mobile DOAS measurements. Atmos. Pollut. Res. 2015, 6, 503–510. [Google Scholar] [CrossRef]
- Meier, A.C.; Schönhardt, A.; Bösch, T.; Richter, A.; Seyler, A.; Ruhtz, T.; Constantin, D.E.; Shaiganfar, R.; Wagner, T.; Merlaud, A.; et al. High-resolution airborne imaging DOAS measurements of NO2 above Bucharest during AROMAT. Atmos. Meas. Tech. 2017, 10, 1831–1857. [Google Scholar] [CrossRef]
- Possanzini, M.; Buttine, P.; Palo, V.D. Characterization of a rural area in terms of dry and wet deposition. Sci. Total Environ. 1988, 74, 111–120. [Google Scholar] [CrossRef] [PubMed]
- Salve, P.R.; Maurya, A.; Wate, S.R.; Devotta, S. Chemical composition of major ions in rainwater. Bull. Environ. Contam. Toxicol. 2008, 80, 242–246. [Google Scholar] [CrossRef]
- Kulshrestha, U.C.; Kulshrestha, M.J.; Sekar, R.; Sastry, G.S.R.; Vairamani, M. Chemical characteristics of rainwater at an urban site of south-central India. Atmos. Environ. 2003, 37, 3019–3026. [Google Scholar] [CrossRef]
- Mouli, P.C.; Mohan, S.V.; Reddy, S.J. Rainwater chemistry at a regional representative urban site: Influence of terrestrial sources on ionic composition. Atmos. Environ. 2005, 39, 999–1008. [Google Scholar] [CrossRef]
- Wang, Y.; Yu, W.; Pan, Y.; Wu, D. Acid neutralization of precipitation in Northern China. J. Air Waste Manag. Assoc. 2012, 62, 204–211. [Google Scholar] [CrossRef]
- Wu, Q.; Han, G.; Tao, F.; Tang, Y. Chemical composition of rainwater in a karstic agricultural area, Southwest China: The impact of urbanization. Atmos. Res. 2012, 111, 71–78. [Google Scholar] [CrossRef]
- Demirak, A.; Balci, A.; Karaoglu, H.; Tosmur, B. Chemical characterization of rain water at an urban site of south western Turkey. Environ. Monit. Assess. 2006, 123, 271–283. [Google Scholar] [CrossRef] [PubMed]
- Daum, P.H.; Kelly, T.J.; Schwartz, S.E.; Newman, L. Measurements of the chemical composition of stratiform clouds. Atmos. Environ. 1984, 18, 2671–2684. [Google Scholar] [CrossRef]
- Al-Moman, I.F.; Ayugun, S. Wet deposition of major ions and trace elements in the eastern Mediterranean basin. J. Geophys. Res. 1998, 103, 8287–8299. [Google Scholar] [CrossRef]
- Balasubramanian, R.; Victor, T.; Chun, N. Chemical and statistical analysis of precipitation in Singapore. Water Air Soil Pollut. 2001, 130, 451–456. [Google Scholar] [CrossRef]
- Kaya, G.; Tuncel, G. Trace element and major ion composition of wet and dry deposition in Ankara, Turkey. Atmos. Environ. 1997, 31, 3985–3998. [Google Scholar] [CrossRef]
- Migliavacca, D.; Teizeira, E.C.; Wiegand, F.; Machado, A.C.M.; Sanchez, J. Atmospheric precipitation and chemical composition of an urban site, Guaíba hydrographic basin, Brazil. Atmos. Environ. 2005, 39, 1829–1844. [Google Scholar] [CrossRef]
- Noguchi, I.; Kato, T.; Matsumoto, Y.; Araki, K. Study of rain water in Hokkaido. Part 2: Dissolved component in rain waters. Rep. Hokkaido Res. Inst. Environ. Pollut. 1989, 15, 39–51. [Google Scholar]
- Kitamura, M.; Katou, T.; Sekiguchi, K.; Taguchi, K.; Tamaki, M.; Ohara, M.; Mori, A.; Murano, K.; Wakamatsu, S.; Yamanaka, Y.; et al. pH and its frequency distribution patterns of acid precipitation in Japan. Nippon Kagaku Kaishi 1991, 6, 913–919. (In Japanese) [Google Scholar] [CrossRef][Green Version]
- He, J.; Balasubramanian, R. Rain-aerosol coupling in the tropical atmosphere of Southeast Asia: Distribution and scavenging ratios of major ionic species. J. Atmos. Chem. 2008, 60, 205–220. [Google Scholar] [CrossRef]
- Sakihama, H.; Ishiki, M.; Tokuyama, A. Chemical characteristics of precipitation in Okinawa Island, Japan. Atmos. Environ. 2008, 42, 2320–2325. [Google Scholar] [CrossRef]
- Chang, C.T.; Yang, C.J.; Huang, K.H.; Huang, J.C.; Lin, T.C. Changes of precipitation acidity related to sulfur and nitrogen deposition in forest across three continents in north hemisphere over last two decades. Sci. Total Environ. 2022, 806, 150552. [Google Scholar] [CrossRef] [PubMed]
- Granat, L. On the relation between pH and the chemical composition in atmospheric precipitation. Tellus 1972, 24, 550–560. [Google Scholar] [CrossRef]
- Seinfeld, J.H.; Pandis, S.N. Atmospheric Chemistry and Physics, 2nd ed.; John Wiley & Sons: Hoboken, NJ, USA, 2006. [Google Scholar]
- Charlson, R.J.; Rodhe, H. Factors controlling the acidity of natural precipitation. Nature 1982, 295, 683–685. [Google Scholar] [CrossRef]
- Rodhe, H.; Dentner, F. The global distribution of acidifying wet deposition. Environ. Sci. Technol. 2002, 36, 4382–4388. [Google Scholar] [CrossRef]
- Akimoto, H.; Awan, M.B.; Cho, S.Y.; Gromov, S.A.; Hara, H.; Khummongkol, P.; Ueda, H. (Eds.) Periodic Report of State of Acid Deposition in East Asia, Part I: Regional Assessment; The Network Center for EANET: Niigata-shi, Japan, 2006; pp. 47–50. [Google Scholar]
- Network Center for EANET. Data Report 2023; EANET: Niigata-shi, Japan, 2024; p. 3. [Google Scholar]
- Tarbuck, E.J.; Lutgens, F.K.; Tasa, D. Earth Science, 12th ed.; Pearson Printice Hall: Hoboken, NJ, USA, 2009; pp. 571–584. [Google Scholar]
- Network Center for EANET. Data Report 2021; Publications | Acid Deposition & Air Quality Management; EANET: Niigata-shi, Japan, 2021; Available online: https://monitoring.eanet.asia/document/public/index#:~:text=You%20can%20freely%20download%20the%20data%20report%20%28pdf%29%2C,report%20of%20Inter-Laboratory%20Comparison%20Project%20%28pdf%29%20without%20registration (accessed on 12 May 2024).
- Network Center for EANET. Technical Manual for Wet Deposition Monitoring in East Asia-2010. 2010. Available online: https://www.eanet.asia/wp-content/uploads/2019/04/techwet.pdf (accessed on 12 May 2024).
- Some explanation may be needed for the present usage of the Irkutsk datasets. The measurement itself was carried out by Irkutsk experts while one of the authors (H. H.) has long examined all raw data as a member of EANET Science Committee and of the data verification group. The other author (I.N.) was involved in the revision of the EANET technical manual.
- Available online: https://monitoring.eanet.asia/document/public/index (accessed on 10 June 2023).
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Hara, H.; Noguchi, I. Chemistry of Precipitation Acidity at Irkutsk, Russia. Atmosphere 2025, 16, 959. https://doi.org/10.3390/atmos16080959
Hara H, Noguchi I. Chemistry of Precipitation Acidity at Irkutsk, Russia. Atmosphere. 2025; 16(8):959. https://doi.org/10.3390/atmos16080959
Chicago/Turabian StyleHara, Hiroshi, and Izumi Noguchi. 2025. "Chemistry of Precipitation Acidity at Irkutsk, Russia" Atmosphere 16, no. 8: 959. https://doi.org/10.3390/atmos16080959
APA StyleHara, H., & Noguchi, I. (2025). Chemistry of Precipitation Acidity at Irkutsk, Russia. Atmosphere, 16(8), 959. https://doi.org/10.3390/atmos16080959