Threshold Dynamics of Vegetation Carbon Sink Loss Under Multiscale Droughts in the Mongolian Plateau
Abstract
1. Introduction
2. Materials and Methods
2.1. Study Area
2.2. Data Processing
2.3. Research Methods
2.3.1. General Framework
2.3.2. Evaluation of Different Drought Types
2.3.3. Extraction of Drought Characteristics Using Three-Threshold Run Theory
2.3.4. Sen’s Trend Analysis and Mann–Kendall (M–K) Test
2.3.5. Cross-Wavelet Analysis
2.3.6. Spearman Rank Correlation Analysis
2.3.7. Drought-Triggered GPP Loss Based on Copula
3. Results
3.1. Spatiotemporal Distribution and Characteristics of Meteorological and Soil Moisture Drought
3.2. Propagation Relationship Between Meteorological and Soil Moisture Drought Across Time Scales
3.3. Impact of Meteorological and Soil Moisture Drought on GPP Loss Across Time Scales
3.3.1. Response Time of GPP to Meteorological and Soil Moisture Drought
3.3.2. Probability of Triggering GPP Loss
3.3.3. Thresholds for Triggering GPP Loss
4. Discussion
5. Conclusions
- (1)
- Both MD and SD exhibited significant intensifying trends across all time scales during 1982–2021, with accelerating rates at longer temporal scales. MD manifested high-frequency, short-duration, low-intensity characteristics, whereas SD displayed inverse features. Spatially, the most pronounced aridification occurred in central regions (p < 0.05). Significant positive correlations existed between MD and SD, with MD acting as the primary driver of SD propagation at an average lag of 11.22 months. Propagation durations concentrated within 10–12 months in >50% of the study area, with correlation coefficients demonstrating an increasing eastward gradient.
- (2)
- GPP response time averaged 10.46 months for MD but shortened significantly to −2 months for SD. Conditional probabilities for triggering mild GPP loss (e.g., GPP < 40th percentile) remained consistently high (>40% average) across the scales. As the temporal scales extended from monthly to annual, the probabilities for all GPP loss levels generally increased.
- (3)
- The drought intensity required to trigger mild loss (<40th percentile) was substantially lower than that for severe loss (<10th, <20th percentiles). When the SPI/SSI values ranged from −0.5 to −1, over 80% of the region experienced mild loss, whereas under identical drought intensity, less than 15% of the area incurred severe loss. Furthermore, as temporal scales extended, the proportion of areas requiring extreme thresholds (≤−1.5) to trigger GPP10th loss systematically decreased.
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Li, X.; Piao, S.; Huntingford, C.; Peñuelas, J.; Yang, H.; Xu, H.; Chen, A.; Friedlingstein, P.; Keenan, T.F.; Sitch, S.; et al. Global variations in critical drought thresholds that impact vegetation. Natl. Sci. Rev. 2023, 10, nwad049. [Google Scholar] [CrossRef]
- Zhou, L.; Wang, S.; Chi, Y.; Ju, W.; Huang, K.; Mickler, R.; Wang, M.; Yu, Q. Changes in the Carbon and Water Fluxes of Subtropical Forest Ecosystems in South-Western China Related to Drought. Water 2018, 10, 821. [Google Scholar] [CrossRef]
- Huang, J.; Zheng, F.; Dong, X.; Wang, X.C. Exploring the complex trade-offs and synergies among ecosystem services in the Tibet autonomous region. J. Clean. Prod. 2023, 384, 135483. [Google Scholar] [CrossRef]
- Kang, Y.; Guo, E.; Wang, Y.; Bao, Y.; Zhao, S.; A, R. Spatiotemporal Variation in Compound Dry and Hot Events and Its Effects on NDVI in Inner Mongolia, China. Remote Sens. 2022, 14, 3977. [Google Scholar] [CrossRef]
- Zhao, X.; Luo, M.; Meng, F.; Sa, C.; Bao, S.; Bao, Y. Spatiotemporal changes of gross primary productivity and its response to drought in the Mongolian Plateau under climate change. J. Arid. Land 2024, 16, 46–70. [Google Scholar] [CrossRef]
- Chen, J.; Fan, Y.; Zhang, Y.; Peng, J.; Zhang, J.; Cao, C. Comprehensive propagation characteristics between paired meteorological and hydrological drought events: Insights from various underlying surfaces. Atmos. Res. 2024, 299, 107193. [Google Scholar] [CrossRef]
- Geng, G.; Zhang, B.; Gu, Q.; He, Z.; Zheng, R. Drought propagation characteristics across China: Time, probability, and threshold. J. Hydrol. 2024, 631, 130805. [Google Scholar] [CrossRef]
- Liu, Y.; Shan, F.; Yue, H.; Wang, X. Characteristics of drought propagation and effects of water resources on vegetation in the karst area of Southwest China. Sci. Total Environ. 2023, 891, 164663. [Google Scholar] [CrossRef]
- Shi, X.; Chen, F.; Shi, M.; Ding, H.; Li, Y. Construction and application of Optimized Comprehensive Drought Index based on lag time: A case study in the middle reaches of Yellow River Basin, China. Sci. Total Environ. 2023, 857, 159692. [Google Scholar] [CrossRef]
- Liu, Y.; Shan, F.; Yue, H.; Wang, X.; Fan, Y. Global analysis of the correlation and propagation among meteorological, agricultural, surface water, and groundwater droughts. J. Environ. Manag. 2023, 333, 117460. [Google Scholar] [CrossRef]
- Ma, F.; Yuan, X. Vegetation Greening and Climate Warming Increased the Propagation Risk from Meteorological Drought to Soil Drought at Subseasonal Timescales. Geophys. Res. Lett. 2024, 51, e2023GL107937. [Google Scholar] [CrossRef]
- Liu, J.F.; Arend, M.; Yang, W.J.; Schaub, M.; Ni, Y.Y.; Gessler, A.; Jiang, Z.P.; Rigling, A.; Li, M.H. Effects of drought on leaf carbon source and growth of European beech are modulated by soil type. Sci. Rep. 2017, 7, 42462. [Google Scholar] [CrossRef] [PubMed]
- Wang, C.; Chen, J.; Xiong, L.; Tong, S.; Xu, C.Y. Trigger thresholds and their dynamics of vegetation production loss under different atmospheric and soil drought conditions. Sci. Total Environ. 2024, 950, 175116. [Google Scholar] [CrossRef] [PubMed]
- Han, W.; Zheng, J.; Guan, J.; Liu, Y.; Liu, L.; Han, C.; Li, J.; Li, C.; Mao, X.; Tian, R. Assessment of Vegetation Drought Loss and Recovery in Central Asia Considering a Comprehensive Vegetation Index. Remote Sens. 2024, 16, 4189. [Google Scholar] [CrossRef]
- Luo, M.; Lau, N.; Liu, Z.; Wu, S.; Wang, X. An Observational Investigation of Spatiotemporally Contiguous Heatwaves in China from a 3D Perspective. Geophys. Res. Lett. 2022, 49, e2022GL097714. [Google Scholar] [CrossRef]
- Wu, C.; Zhong, L.; Yeh, P.J.F.; Gong, Z.; Lv, W.; Chen, B.; Zhou, J.; Li, J.; Wang, S. An evaluation framework for quantifying vegetation loss and recovery in response to meteorological drought based on SPEI and NDVI. Sci. Total Environ. 2024, 906, 167632. [Google Scholar] [CrossRef]
- Mei, L.; Tong, S.; Yin, S.; Bao, Y.; Wang, Y.; Guo, E.; Li, F.; Huang, X.; Alateng, T.; Liu, D.; et al. Assessing water use efficiency reactivity to meteorological, hydrological, and agricultural droughts on the Mongolian Plateau. Int. J. Digit. Earth 2024, 17, 2398056. [Google Scholar] [CrossRef]
- Zhou, K.; Wang, Y.; Chang, J. Attribution mechanism of drought propagation time with changes in climate and underlying surface. J. Hydrol. Reg. Stud. 2024, 56, 102041. [Google Scholar] [CrossRef]
- Zhu, Y.; Yang, P.; Xia, J.; Huang, H.; Chen, Y.; Li, Z.; Sun, K.; Song, J.; Shi, X.; Lu, X. Drought propagation and its driving forces in central Asia under climate change. J. Hydrol. 2024, 636, 131260. [Google Scholar] [CrossRef]
- Guo, W.; Huang, S.; Huang, Q.; Leng, G.; Mu, Z.; Han, Z.; Wei, X.; She, D.; Wang, H.; Wang, Z.; et al. Drought trigger thresholds for different levels of vegetation loss in China and their dynamics. Agric. For. Meteorol. 2023, 331, 109349. [Google Scholar] [CrossRef]
- Deng, Y.; Wang, X.; Wang, K.; Ciais, P.; Tang, S. Responses of vegetation greenness and carbon cycle to extreme droughts in China. Agric. For. Meteorol. 2021, 298–299, 108307. [Google Scholar] [CrossRef]
- Li, H.; Hu, Y.; Ao, Z. Identification of critical drought thresholds affecting vegetation on the Mongolian Plateau. Ecol. Indic. 2024, 166, 112507. [Google Scholar] [CrossRef]
- Guo, W.; Huang, S.; Huang, Q.; She, D.; Shi, H.; Leng, G.; Li, J.; Cheng, L.; Gao, Y.; Peng, J. Precipitation and vegetation transpiration variations dominate the dynamics of agricultural drought characteristics in China. Sci. Total Environ. 2023, 898, 165480. [Google Scholar] [CrossRef]
- Wu, Y.; Sun, J.; Blanchette, M.; Rousseau, A.N.; Xu, Y.J.; Hu, B.; Zhang, G. Wetland mitigation functions on hydrological droughts: From drought characteristics to propagation of meteorological droughts to hydrological droughts. J. Hydrol. 2023, 617, 128971. [Google Scholar] [CrossRef]
- Ren, J.; Guo, X.; Tong, S.; Bao, Y.; Bao, G.; Huang, X. Risk posed to vegetation net primary productivity by drought on the Mongolian Plateau. J. Geogr. Sci. 2023, 33, 2175–2192. [Google Scholar] [CrossRef]
- Chen, H.; Meng, F.; Sa, C.; Luo, M.; Bao, Y.; Liu, T. A three-dimensional perspective on how land use/cover change reshapes drought propagation under climate change? J. Hydrol. Reg. Stud. 2025, 60, 102478. [Google Scholar] [CrossRef]
- Wang, H.; Li, Y.P.; Huang, G.H.; Zhang, Q.; Ma, Y.; Li, Y.F. Quantifying multidimensional drought propagation risks under climate change: A vine-copula Bayesian factorial analysis method. J. Hydrol. 2024, 637, 131396. [Google Scholar] [CrossRef]
- Zhen, N.; Yao, R.; Sun, P.; Zhang, Q.; Ge, C.; Shen, H. Triggering thresholds and influential factors in the propagation of meteorological drought to hydrological drought. J. Hydrol. Reg. Stud. 2025, 57, 102184. [Google Scholar] [CrossRef]
- Yuan, B.; Guo, S.; Zhang, X.; Mu, H.; Cao, S.; Xia, Z.; Pan, X.; Du, P. Quantifying the drought sensitivity of vegetation types in northern China from 1982 to 2022. Agric. For. Meteorol. 2024, 359, 110293. [Google Scholar] [CrossRef]
- Tong, S.; Bao, G.; Bao, Y.; Huang, X. Monitoring of long-term vegetation dynamics and responses to droughts of various timescales in Inner Mongolia. Ecosphere 2023, 14, e4415. [Google Scholar] [CrossRef]
- Zhao, A.; Xu, R.; Zou, L.; Zhu, X. Response of Grassland Vegetation Growth to Drought in Inner Mongolia of China from 2002 to 2020. Atmosphere 2023, 14, 1613. [Google Scholar] [CrossRef]
- Gao, S.; Huang, S.; Singh, V.P.; Deng, X.; Duan, L.; Leng, G.; Guo, W.; Li, Y.; Zhang, L.; Han, Z.; et al. Dynamic response of vegetation to meteorological drought and driving mechanisms in Mongolian Plateau. J. Hydrol. 2025, 650, 132541. [Google Scholar] [CrossRef]
- Luo, M.; Meng, F.; Wang, Y.; Sa, C.; Duan, Y.; Bao, Y.; Liu, T. Quantitative detection and attribution of soil moisture heterogeneity and variability in the Mongolian Plateau. J. Hydrol. 2023, 621, 129673. [Google Scholar] [CrossRef]
- Meng, F.; Luo, M.; Sa, C.; Wang, M.; Bao, Y. Quantitative assessment of the effects of climate, vegetation, soil and groundwater on soil moisture spatiotemporal variability in the Mongolian Plateau. Sci. Total Environ. 2022, 809, 152198. [Google Scholar] [CrossRef]
- Rina, W.; Bao, Y.; Guo, E.; Tong, S.; Huang, X.; Yin, S. Lagged feedback of peak season photosynthetic activities on local surface temperature in Inner Mongolia, China. Environ. Res. 2023, 236, 116643. [Google Scholar] [CrossRef]
- Kang, Y.; Guo, E.; Wang, Y.; Bao, Y.; Bao, Y.; Mandula, N. Monitoring Vegetation Change and Its Potential Drivers in Inner Mongolia from 2000 to 2019. Remote Sens. 2021, 13, 3357. [Google Scholar] [CrossRef]
- Luo, X.; Luo, X.; Ji, X.; Ming, W.; Wang, L.; Xiao, X.; Xu, J.; Liu, Y.; Li, Y. Meteorological and hydrological droughts in the Lancang-Mekong River Basin: Spatiotemporal patterns and propagation. Atmos. Res. 2023, 293, 106913. [Google Scholar] [CrossRef]
- Chang, S.; Isaev, E.; Chen, H.; Wu, B.; Yan, N.; Ma, Z.; Meng, J. Exploring the Linkages Between Different Types of Drought and Their Impacts on Crop Production in Kyrgyzstan. IEEE J. Sel. Top. Appl. Earth Obs. Remote Sens. 2024, 17, 4566–4580. [Google Scholar] [CrossRef]
- Du, W.; Hao, Z.; Bai, M.; Zhang, L.; Zhang, C.; Wang, Z.; Xing, P. Spatiotemporal Variation in the Meteorological Drought Comprehensive Index in the Beijing–Tianjin–Hebei Region during 1961–2023. Water 2023, 15, 4230. [Google Scholar] [CrossRef]
- Bao, C.; Yong, M.; Bueh, C.; Bao, Y.; Jin, E.; Bao, Y.; Purevjav, G. Analyses of the Dust Storm Sources, Affected Areas, and Moving Paths in Mongolia and China in Early Spring. Remote Sens. 2022, 14, 3661. [Google Scholar] [CrossRef]
- Han, Z.; Huang, S.; Zhao, J.; Leng, G.; Huang, Q.; Zhang, H.; Li, Z. Long-chain propagation pathways from meteorological to hydrological, agricultural and groundwater drought and their dynamics in China. J. Hydrol. 2023, 625, 130131. [Google Scholar] [CrossRef]
- Feng, G.; Chen, Y.; Mansaray, L.R.; Xu, H.; Shi, A.; Chen, Y. Propagation of Meteorological Drought to Agricultural and Hydrological Droughts in the Tropical Lancang–Mekong River Basin. Remote Sens. 2023, 15, 5678. [Google Scholar] [CrossRef]
- Li, Y.; Huang, Y.; Li, Y.; Zhang, H.; Deng, Q.; Fan, J.; Wang, X. Temporal and Spatial Propagation Characteristics of the Meteorological, Agricultural and Hydrological Drought System in Different Climatic Conditions within the Framework of the Watershed Water Cycle. Water 2023, 15, 3911. [Google Scholar] [CrossRef]
- Zhao, P.; Xie, B.; Huang, X.; Qu, B. The dynamic change of propagation from meteorological drought to hydrological drought at the basin scale: A case study from the Weihe River Basin, China. Front. Environ. Sci. 2022, 10, 1054975. [Google Scholar] [CrossRef]
- Wu, C.; Hua, H.; Wang, J.; Dong, L.; Zohner, C.; Penuelas, J.; Wang, Y.; Zhou, Y.; Peng, S.; Zhu, Z.; et al. Air pollution weakens global spring greening. Biol. Sci. 2024; in review. [Google Scholar] [CrossRef]
- Li, C.; Zhang, X.; Yin, G.; Xu, Y.; Hao, F. Evaluation of Drought Propagation Characteristics and Influencing Factors in an Arid Region of Northeast Asia (ARNA). Remote Sens. 2022, 14, 3307. [Google Scholar] [CrossRef]
- Yuan, Y.; Bao, A.; Chang, C.; Jiang, L.; Zheng, G.; Yu, T.; Jiang, P. Divergent impacts of seasonal precipitation deficiency on grassland growth in drylands of Central Asia. Environ. Res. Lett. 2024, 19, 104027. [Google Scholar] [CrossRef]
- Li, S.; He, S.; Xu, Z.; Liu, Y.; Von Bloh, W. Desertification process and its effects on vegetation carbon sources and sinks vary under different aridity stress in Central Asia during 1990–2020. CATENA 2023, 221, 106767. [Google Scholar] [CrossRef]
Drought at Different Time Scales | The Extent of GPP Loss | Mild Drought | Moderate Drought | Severe Drought | Extreme Drought |
---|---|---|---|---|---|
SPI1 | GPP ≤ GPP10th | 39% | 37% | 17% | 7% |
GPP ≤ GPP20th | 11% | 29% | 37% | 24% | |
GPP ≤ GPP30th | 1% | 8% | 31% | 61% | |
GPP ≤ GPP40th | 0% | 0% | 9% | 91% | |
SPI3 | GPP ≤ GPP10th | 21% | 46% | 25% | 9% |
GPP ≤ GPP20th | 8% | 28% | 37% | 27% | |
GPP ≤ GPP30th | 1% | 7% | 27% | 65% | |
GPP ≤ GPP40th | 0% | 0% | 6% | 94% | |
SPI6 | GPP ≤ GPP10th | 30% | 40% | 23% | 8% |
GPP ≤ GPP20th | 9% | 28% | 36% | 28% | |
GPP ≤ GPP30th | 1% | 7% | 29% | 63% | |
GPP ≤ GPP40th | 0% | 0% | 8% | 91% | |
SPI12 | GPP ≤ GPP10th | 22% | 41% | 27% | 10% |
GPP ≤ GPP20th | 6% | 23% | 42% | 29% | |
GPP ≤ GPP30th | 0% | 4% | 30% | 66% | |
GPP ≤ GPP40th | 0% | 0% | 7% | 93% | |
SSI1 | GPP ≤ GPP10th | 13% | 50% | 27% | 9% |
GPP ≤ GPP20th | 5% | 32% | 40% | 23% | |
GPP ≤ GPP30th | 1% | 9% | 37% | 54% | |
GPP ≤ GPP40th | 0% | 1% | 11% | 88% | |
SSI3 | GPP ≤ GPP10th | 12% | 44% | 31% | 13% |
GPP ≤ GPP20th | 5% | 27% | 43% | 26% | |
GPP ≤ GPP30th | 1% | 8% | 36% | 56% | |
GPP ≤ GPP40th | 0% | 1% | 12% | 87% | |
SSI6 | GPP ≤ GPP10th | 14% | 41% | 30% | 15% |
GPP ≤ GPP20th | 4% | 26% | 42% | 29% | |
GPP ≤ GPP30th | 0% | 7% | 34% | 58% | |
GPP ≤ GPP40th | 0% | 1% | 10% | 90% | |
SSI12 | GPP ≤ GPP10th | 9% | 45% | 33% | 14% |
GPP ≤ GPP20th | 2% | 25% | 44% | 28% | |
GPP ≤ GPP30th | 0% | 6% | 36% | 58% | |
GPP ≤ GPP40th | 0% | 1% | 10% | 89% |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Chen, H.; Wang, M.; Meng, F.; Sa, C.; Luo, M.; Chi, W.; Chonokhuu, S. Threshold Dynamics of Vegetation Carbon Sink Loss Under Multiscale Droughts in the Mongolian Plateau. Atmosphere 2025, 16, 964. https://doi.org/10.3390/atmos16080964
Chen H, Wang M, Meng F, Sa C, Luo M, Chi W, Chonokhuu S. Threshold Dynamics of Vegetation Carbon Sink Loss Under Multiscale Droughts in the Mongolian Plateau. Atmosphere. 2025; 16(8):964. https://doi.org/10.3390/atmos16080964
Chicago/Turabian StyleChen, Hongguang, Mulan Wang, Fanhao Meng, Chula Sa, Min Luo, Wenfeng Chi, and Sonomdagva Chonokhuu. 2025. "Threshold Dynamics of Vegetation Carbon Sink Loss Under Multiscale Droughts in the Mongolian Plateau" Atmosphere 16, no. 8: 964. https://doi.org/10.3390/atmos16080964
APA StyleChen, H., Wang, M., Meng, F., Sa, C., Luo, M., Chi, W., & Chonokhuu, S. (2025). Threshold Dynamics of Vegetation Carbon Sink Loss Under Multiscale Droughts in the Mongolian Plateau. Atmosphere, 16(8), 964. https://doi.org/10.3390/atmos16080964