Coastal Wind in East Iceland Using Sentinel-1 and Model Data Reanalysis
Abstract
1. Introduction
2. Data and Methods
2.1. Datasets
2.1.1. Remote Sensing
2.1.2. Reanalyses
2.2. Methodology
Preprocessing
3. Experimental Results
3.1. Wind Speed Evaluation
3.1.1. Statistical Metrics
Single-Source Metrics
Comparative Metrics Between Data Sources
3.1.2. Scatterplots
3.1.3. Wind Speed Distribution
3.2. Wind Direction
4. Conclusions and Discussion
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
Abbreviations
SAR | Synthetic Aperture Radar |
OWI | Ocean Wind Field |
NWP | Numerical Weather Prediction |
ECMWF | European Centre for Medium-Range Weather Forecasts |
NRCS | Normalised Radar Cross Section |
GMF | Geophysical Model Function |
RMSD | Root Mean Squared Difference |
STD | Standard Deviation |
References
- Nicholls, R.; Cazenave, A. Sea-Level Rise and Its Impact on Coastal Zones. Science 2010, 328, 1517–1520. [Google Scholar] [CrossRef]
- Glade, T. Landslide occurrence as a response to land use change: A review of evidence from New Zealand. CATENA 2003, 51, 297–314. [Google Scholar] [CrossRef]
- Davidson-Arnott, R.; Bauer, B.; Houser, C. Introduction to Coastal Processes and Geomorphology, 2nd ed.; Cambridge University Press: Cambridge, UK, 2019. [Google Scholar]
- Nicholls, R.; Wong, P.P.; Burkett, V.; Codignotto, J.; Hay, J.; Mclean, R.; Ragoonaden, S.; Woodroffe, C.; Abuodha, P.; Arblaster, J.; et al. Coastal systems and low-lying areas. In Climate Change: Impacts, Adaptation and Vulnerability. Contribution of Working Group II to the Fourth Assessment Report of the Intergovernmental Panel on Climate Change; Cambridge University Press: Cambridge, UK, 2008; pp. 315–356. [Google Scholar]
- International Energy Agency. World Energy Outlook 2019; International Energy Agency: Paris, France, 2019. [Google Scholar] [CrossRef]
- Manwell, J.F.; McGowan, J.G.; Rogers, A.L. Wind Energy Applications. In Wind Energy Explained; John Wiley & Sons, Ltd.: Hoboken, NJ, USA, 2009; Chapter 10; pp. 449–504. [Google Scholar] [CrossRef]
- Burton, T.; Sharpe, D.; Jenkins, N.; Bossanyi, E. Offshore Wind Turbines and Wind Farms. In Wind Energy Handbook; John Wiley & Sons, Ltd.: Hoboken, NJ, USA, 2011; Chapter 11; pp. 613–728. [Google Scholar] [CrossRef]
- Dagestad, K.F.; Horstmann, J.; Mouche, A.; Perrie, W.; Shen, H.; Zhang, B.; Li, X.; Monaldo, F.; Pichel, W.; Lehner, S.; et al. Wind Retrieval from Synthetic Aperture Radar—An Overview. In Proceedings of the 4th SAR Oceanography Workshop (SEASAR 2012), Tromsø, Norway, 18–22 June 2012. [Google Scholar]
- Hersbach, H.; Bell, B.; Berrisford, P.; Hirahara, S.; Horányi, A.; Muñoz-Sabater, J.; Nicolas, J.; Peubey, C.; Radu, R.; Schepers, D.; et al. The ERA5 global reanalysis. Q. J. R. Meteorol. Soc. 2020, 146, 1999–2049. [Google Scholar] [CrossRef]
- Gualtieri, G. Reliability of ERA5 Reanalysis Data for Wind Resource Assessment: A Comparison against Tall Towers. Energies 2021, 14, 4169. [Google Scholar] [CrossRef]
- Dörenkämper, M.; Olsen, B.T.; Witha, B.; Hahmann, A.N.; Davis, N.N.; Barcons, J.; Ezber, Y.; García-Bustamante, E.; González-Rouco, J.F.; Navarro, J.; et al. The Making of the New European Wind Atlas—Part 2: Production and evaluation. Geosci. Model Dev. 2020, 13, 5079–5102. [Google Scholar] [CrossRef]
- Horstmann, J.; Koch, W.; Lehner, S.; Tonboe, R. Wind retrieval over the ocean using synthetic aperture radar with C-band HH polarization. IEEE Trans. Geosci. Remote Sens. 2000, 38, 2122–2131. [Google Scholar] [CrossRef]
- Akhtar, N.; Geyer, B.; Schrum, C. Impacts of accelerating deployment of offshore windfarms on near-surface climate. Sci. Rep. 2022, 12, 18307. [Google Scholar] [CrossRef] [PubMed]
- Akhtar, N.; Geyer, B.; Schrum, C. Larger wind turbines as a solution to reduce environmental impacts. Sci. Rep. 2024, 14, 6608. [Google Scholar] [CrossRef]
- Kim, H.J.; An, S.I.; Park, J.H.; Sung, M.K.; Kim, D.; Choi, Y.; Kim, J.S. North Atlantic Oscillation impact on the Atlantic Meridional Overturning Circulation shaped by the mean state. npj Clim. Atmos. Sci. 2023, 6, 25. [Google Scholar] [CrossRef]
- Saemundsson, T.; Decaulne, A. Meteorological triggering factors and threshold conditions for shallow landslides and debris-flow activity in Iceland. In Proceedings of the First North America Landslide Conference, Vail, CO, USA, 3–8 June 2008; AEG Publication No. 23. pp. 1475–1485. [Google Scholar]
- Khan, S.; Young, I.; Ribal, A.; Hemer, M. High-resolution calibrated and validated Synthetic Aperture Radar Ocean surface wind data around Australia. Sci. Data 2023, 10, 163. [Google Scholar] [CrossRef]
- Zecchetto, S.; Accadia, C. Diagnostics of T1279 ECMWF analysis winds in the Mediterranean basin by comparison with ASCAT 12.5 km winds. Q. J. R. Meteorol. Soc. 2014, 140, 2506–2514. [Google Scholar] [CrossRef]
- Tuy, S.; Lee, H.S.; Chreng, K. Integrated assessment of offshore wind power potential using Weather Research and Forecast (WRF) downscaling with Sentinel-1 satellite imagery, optimal sites, annual energy production and equivalent CO2 reduction. Renew. Sustain. Energy Rev. 2022, 163, 112501. [Google Scholar] [CrossRef]
- Thompson, D.R.; Horstmann, J.; Mouche, A.; Winstead, N.S.; Sterner, R.; Monaldo, F.M. Comparison of high-resolution wind fields extracted from TerraSAR-X SAR imagery with predictions from the WRF mesoscale model. J. Geophys. Res. Ocean. 2012, 117. [Google Scholar] [CrossRef]
- ESA. Level 2 OCN Ocean Wind Field Component. 2023. Available online: https://sentinels.copernicus.eu/web/sentinel/ocean-wind-field-component (accessed on 31 August 2023).
- European Space Agency. Sentinel-1 Ocean Wind Fields (OWI) Algorithm Theoretical Basis Document; Technical Report S1-IF-ASD-PO-0006; ESA: Paris, France, 2018. [Google Scholar]
- ECMWF. ERA5 Hourly Data on Single Levels from 1940 to Present. 2023. Available online: https://cds.climate.copernicus.eu/cdsapp#!/dataset/reanalysis-era5-single-levels?tab=form (accessed on 6 September 2023).
- De Rooy, W.C.; Siebesma, P.; Baas, P.; Lenderink, G.; de Roode, S.R.; de Vries, H.; van Meijgaard, E.; Meirink, J.F.; Tijm, S.; van ’t Veen, B. Model development in practice: A comprehensive update to the boundary layer schemes in HARMONIE-AROME cycle 40. Geosci. Model Dev. 2022, 15, 1513–1543. [Google Scholar] [CrossRef]
- Køltzow, M.; Schyberg, H.; Støylen, E.; Yang, X. Value of the Copernicus Arctic Regional Reanalysis (CARRA) in representing near-surface temperature and wind speed in the north-east European Arctic. Polar Res. 2022, 41, 1–15. [Google Scholar] [CrossRef]
- ECMWF. Copernicus Arctic Regional Reanalysis. 2023. Available online: https://climate.copernicus.eu/copernicus-arctic-regional-reanalysis-service (accessed on 6 September 2023).
- Jónsson, S.; Agüstsson, K. Landslides in Iceland Studied using SAR Interferometry. In Proceedings of the 2004 Envisat & ERS Symposium (ESA SP-572), Salzburg, Austria, 6–10 September 2004. [Google Scholar]
- Cruz, C.; Anderson, L. Creation of landslide database in Iceland assessing mechanisms, occurrences, and hazards. RANGE Undergrad. Res. J. 2023. [Google Scholar]
- Ahsbahs, T.; Badger, M.; Karagali, I.; Larsén, X.G. Validation of Sentinel-1A SAR Coastal Wind Speeds Against Scanning LiDAR. Remote Sens. 2017, 9, 552. [Google Scholar] [CrossRef]
- Koh, T.Y.; Wang, S.; Bhatt, B.C. A diagnostic suite to assess NWP performance. J. Geophys. Res. Atmos. 2012, 117, D13109. [Google Scholar] [CrossRef]
- Theodoridis, S.; Koutroumbas, K. Pattern Recognition, 4th ed.; Academic Press, Inc.: Orlando, FL, USA, 2008. [Google Scholar]
- Owda, A.; Pleskachevsky, A.; Larsén, X.G.; Badger, M.; Cavar, D.; Hasager, C.B. Evaluation of SAR-Based Sea State Parameters and Roughness Length Derivation Over the Coastal Seas of the USA. IEEE J. Sel. Top. Appl. Earth Obs. Remote Sens. 2024, 17, 9415–9428. [Google Scholar] [CrossRef]
- Owda, A.; Dall, J.; Badger, M.; Cavar, D. Improving SAR wind retrieval through automatic anomalous pixel detection. Int. J. Appl. Earth Obs. Geoinf. 2023, 122, 103444. [Google Scholar] [CrossRef]
- Khachatrian, E.; Asemann, P.; Zhou, L.; Birkelund, Y.; Esau, I.; Ricaud, B. Exploring the Potential of Sentinel-1 Ocean Wind Field Product for Near-Surface Offshore Wind Assessment in the Norwegian Arctic. Atmosphere 2024, 15, 146. [Google Scholar] [CrossRef]
- Seguro, J.; Lambert, T. Modern estimation of the parameters of the Weibull wind speed distribution for wind energy analysis. J. Wind Eng. Ind. Aerodyn. 2000, 85, 75–84. [Google Scholar] [CrossRef]
- Tsai, W.C.; Hong, C.M.; Tu, C.S.; Lin, W.M.; Chen, C.H. A Review of Modern Wind Power Generation Forecasting Technologies. Sustainability 2023, 15, 10757. [Google Scholar] [CrossRef]
- Moreno-Ostos, E.; Cruz-Pizarro, L.; Basanta, A.; George, G. The influence of wind-induced mixing on the vertical distribution of buoyant and sinking phytoplankton species. Aquat. Ecol. 2008, 43, 271–284. [Google Scholar] [CrossRef]
- Kaempf, J.; Chapman, P. Seasonal Wind-Driven Coastal Upwelling Systems. In Upwelling Systems of the World; Springer: Berlin/Heidelberg, Germany, 2016; pp. 315–361. [Google Scholar] [CrossRef]
- Crozier, M. Deciphering the effect of climate change on landslide activity: A review. Geomorphology 2010, 124, 260–267. [Google Scholar] [CrossRef]
- Spall, M.A.; Jackson, R.H.; Straneo, F. Katabatic Wind-Driven Exchange in Fjords. J. Geophys. Res. Ocean. 2017, 122, 8246–8262. [Google Scholar] [CrossRef]
Metrics [m/s] | Fjord | Coastal | Offshore | ||||||
---|---|---|---|---|---|---|---|---|---|
S-1 | ERA5 | CARRA | S-1 | ERA5 | CARRA | S-1 | ERA5 | CARRA | |
3.59 | 1.68 | 3.84 | 4.37 | 3.33 | 4.50 | 4.65 | 4.22 | 4.41 | |
min | 0.0 | 0.1 | 0.3 | 0.0 | 0.1 | 0.3 | 0.0 | 0.6 | 0.5 |
mean | 5.1 | 3.1 | 6.0 | 7.1 | 6.2 | 8.1 | 8.5 | 8.8 | 8.8 |
max | 21.1 | 10.4 | 22.0 | 21.9 | 20.0 | 26.0 | 26.1 | 22.5 | 25.4 |
Data Source | Fjord | Coastal | Offshore | ||||||
---|---|---|---|---|---|---|---|---|---|
S-1 | ERA5 | CARRA | S-1 | ERA5 | CARRA | S-1 | ERA5 | CARRA | |
S-1 | 0.46 | 0.59 | 0.88 | 0.89 | 0.93 | 0.93 | |||
ERA5 | 3.77 | 0.79 | 2.37 | 0.90 | 1.70 | 0.95 | |||
CARRA | 3.47 | 3.98 | 2.31 | 2.88 | 1.74 | 1.32 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Khachatrian, E.; Birkelund, Y.; Marinoni, A. Coastal Wind in East Iceland Using Sentinel-1 and Model Data Reanalysis. Atmosphere 2025, 16, 962. https://doi.org/10.3390/atmos16080962
Khachatrian E, Birkelund Y, Marinoni A. Coastal Wind in East Iceland Using Sentinel-1 and Model Data Reanalysis. Atmosphere. 2025; 16(8):962. https://doi.org/10.3390/atmos16080962
Chicago/Turabian StyleKhachatrian, Eduard, Yngve Birkelund, and Andrea Marinoni. 2025. "Coastal Wind in East Iceland Using Sentinel-1 and Model Data Reanalysis" Atmosphere 16, no. 8: 962. https://doi.org/10.3390/atmos16080962
APA StyleKhachatrian, E., Birkelund, Y., & Marinoni, A. (2025). Coastal Wind in East Iceland Using Sentinel-1 and Model Data Reanalysis. Atmosphere, 16(8), 962. https://doi.org/10.3390/atmos16080962