Estimation of Sensible and Latent Heat Fluxes from Different Ecosystems Using the Daily-Scale Flux Variance Method
Abstract
1. Introduction
2. Materials and Methods
2.1. Site Description
2.2. Daily-Scale Flux Variance Method
2.3. EC Flux Data Processing
2.4. Energy Balance Closure Correction
3. Results
3.1. Energy Balance Closure of Each Site
3.2. Comparison of the Calculated Friction Velocity with EC Method
3.3. Comparison of Sensible Heat Flux Between EC Measurement and FV Prediction
3.4. Comparison of Latent Heat Flux Between EC Measurement and FV Prediction
4. Discussion
4.1. FV-Estimated Sensible Heat Flux
4.2. FV-Estimated Latent Heat Flux
4.3. Outlook
5. Conclusions
- For the four sites, the sensible heat flux estimations showed poor correlation with EC measurements, primarily due to the occurrence of negative flux values. However, the latent heat flux estimations demonstrated reasonable agreement with EC measurements, indicating that the FV method provided more accurate latent heat flux estimation than sensible heat flux estimation.
- Even though the estimated sensible heat flux was underestimated across both grassland and cropland ecosystems, the estimated latent heat flux over cropland sites was better than that over grassland sites, indicating that the daily-scale FV method may be more appropriate for ecosystems where more surface energy is used for evapotranspiration.
- Compared to the two daily-scale FV methods, employing fitting constants derived from the half-daily scale yielded better results for both sensible and latent heat flux calculations than those obtained from the daily-scale method.
- The constants of the daily-scale FV relations for daytime (0.0884) and nighttime (−0.0274) are recommended for homogeneous surfaces.
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Trenberth, K.E.; Fasullo, J.T.; Kiehl, J. Earth’s global energy budget. Bull. Am. Meteorol. Soc. 2009, 90, 311–324. [Google Scholar] [CrossRef]
- Wild, M.; Folini, D.; Schär, C.; Loeb, N.; Dutton, E.G.; König-Langlo, G. The global energy balance from a surface perspective. Clim. Dyn. 2013, 40, 3107–3134. [Google Scholar] [CrossRef]
- Hsieh, C.I.; Lai, M.C.; Hsia, Y.J.; Chang, T.J. Estimation of sensible heat, water vapor, and CO2 fluxes using the flux-variance method. Int. J. Biometeorol. 2008, 52, 521–533. [Google Scholar] [CrossRef]
- Foken, T.; Aubinet, M.; Leuning, R. The eddy covariance method. In Eddy Covariance: A Practical Guide to Measurement and Data Analysis; Springer: Dordrecht, The Netherlands, 2011; pp. 1–19. [Google Scholar]
- Fischer, M.; Katul, G.; Noormets, A.; Pozníková, G.; Domec, J.C.; Orság, M.; Žalud, Z.; Trnka, M.; King, J.S. Merging flux-variance with surface renewal methods in the roughness sublayer and the atmospheric surface layer. Agric. For. Meteorol. 2023, 342, 109692. [Google Scholar] [CrossRef]
- Billesbach, D.P.; Arkebauer, T.J.; Sullivan, R.C. Intercomparison of sensible and latent heat flux measurements from combined eddy covariance, energy balance, and Bowen ratio methods above a grassland prairie. Sci. Rep. 2024, 14, 21866. [Google Scholar] [CrossRef] [PubMed]
- Shih, C.H.; Anderson, R.G.; Skaggs, T.H.; Juang, J.Y.; Chen, Y.Y.; Jang, Y.S.; Gu, R.Y.; Huang, C.Y.; Lo, M.H. Challenges and limitations of applying the flux variance similarity (FVS) method to partition evapotranspiration in a montane cloud forest. Agric. For. Meteorol. 2025, 362, 110391. [Google Scholar] [CrossRef]
- Anderson, D.E.; Verma, S.B.; Rosenberg, N.J. Eddy correlation measurements of CO2, latent heat, and sensible heat fluxes over a crop surface. Bound. Layer Meteorol. 1984, 29, 263–272. [Google Scholar] [CrossRef]
- Lee, X.; Massman, W.; Law, B. (Eds.) Handbook of Micrometeorology: A Guide for Surface Flux Measurement and Analysis; Springer Science & Business Media: Berlin/Heidelberg, Germany, 2004; Volume 29. [Google Scholar]
- Baldocchi, D. How eddy covariance flux measurements have contributed to our understanding of Global Change Biology. Glob. Change Biol. 2020, 26, 242–260. [Google Scholar] [CrossRef]
- Baldocchi, D. Measuring fluxes of trace gases and energy between ecosystems and the atmosphere-the state and future of the eddy covariance method. Glob. Change Biol. 2014, 20, 3600–3609. [Google Scholar] [CrossRef]
- Wilson, K.; Goldstein, A.; Falge, E.; Aubinet, M.; Baldocchi, D.; Berbigier, P.; Bernhofer, C.; Ceulemans, R.; Dolman, H.; Field, C.; et al. Energy balance closure at FLUXNET sites. Agric. For. Meteorol. 2002, 113, 223–243. [Google Scholar] [CrossRef]
- Katul, G.; Goltz, S.M.; Hsieh, C.I.; Cheng, Y.; Mowry, F.; Sigmon, J. Estimation of surface heat and momentum fluxes using the flux-variance method above uniform and non-uniform terrain. Bound. Layer Meteorol. 1995, 74, 237–260. [Google Scholar] [CrossRef]
- De Bruin, H.A.R.; Hartogensis, O.K. Variance method to determine turbulent fluxes of momentum and sensible heat in the stable atmospheric surface layer. Bound. Layer Meteorol. 2005, 116, 385–392. [Google Scholar] [CrossRef]
- Tillman, J.E. The indirect determination of stability, heat and momentum fluxes in the atmospheric boundary layer from simple scalar variables during dry unstable conditions. J. Appl. Meteorol. Climatol. 1972, 11, 783–792. [Google Scholar] [CrossRef]
- Guo, X.; Zhang, H.; Cai, X.; Kang, L.; Zhu, T.; Leclerc, M.Y. Flux-variance method for latent heat and carbon dioxide fluxes in unstable conditions. Bound. Layer Meteorol. 2009, 131, 363–384. [Google Scholar] [CrossRef]
- Wang, S.; Zhang, Y.; Lü, S.; Liu, H.; Shang, L. Estimation of turbulent fluxes using the flux-variance method over an alpine meadow surface in the eastern Tibetan Plateau. Adv. Atmos. Sci. 2013, 30, 411–424. [Google Scholar] [CrossRef]
- Choi, T.; Hong, J.; Kim, J.; Lee, H.; Asanuma, J.; Ishikawa, H.; Tsukamoto, O.; Zhiqiu, G.; Ma, Y.; Ueno, K.; et al. Turbulent exchange of heat, water vapor, and momentum over a Tibetan prairie by eddy covariance and flux variance measurements. J. Geophys. Res. Atmos. 2004, 109, D21106. [Google Scholar] [CrossRef]
- French, A.N.; Alfieri, J.G.; Kustas, W.P.; Prueger, J.H.; Hipps, L.E.; Chávez, J.L.; Evett, S.R.; Howell, T.A.; Gowda, P.H.; Hunsaker, D.J.; et al. Estimation of surface energy fluxes using surface renewal and flux variance techniques over an advective irrigated agricultural site. Adv. Water Resour. 2012, 50, 91–105. [Google Scholar] [CrossRef]
- Wesson, K.H.; Katul, G.; Lai, C.T. Sensible heat flux estimation by flux variance and half-order time derivative methods. Water Resour. Res. 2001, 37, 2333–2343. [Google Scholar] [CrossRef]
- Castellvi, F.; Martínez-Cob, A. Estimating sensible heat flux using surface renewal analysis and the flux variance method: A case study over olive trees at Sástago (NE of Spain). Water Resour. Res. 2005, 41, W09422. [Google Scholar] [CrossRef]
- Buttar, N.A.; Yongguang, H.; Chuan, Z.; Tanny, J.; Ullah, I.; Aleem, M. Height effect of air temperature measurement on sensible heat flux estimation using flux variance method. Pak. J. Agric. Sci. 2019, 56, 793–800. [Google Scholar]
- You, C.; Wang, Y.; Chen, S. A dataset of carbon and water fluxes of the typical grasslands in Duolun County, Inner Mongolia during 2006–2015. Chin. Sci. Data 2023, 8, 1–11. [Google Scholar] [CrossRef]
- Wang, Y.; You, C.; Chen, S. A dataset of carbon and water fluxes of mowing grasslands in Xilinhot, Inner Mongolia during 2006–2015. Chin. Sci. Data 2023, 8, 1–10. [Google Scholar] [CrossRef]
- De Bruin, H.A.R.; Kohsiek, W.; Van Den Hurk, B.J.J.M. A verification of some methods to determine the fluxes of momentum, sensible heat, and water vapour using standard deviation and structure parameter of scalar meteorological quantities. Bound. Layer Meteorol. 1993, 63, 231–257. [Google Scholar] [CrossRef]
- Lee, X. Fundamentals of Boundary-Layer Meteorology; Springer: Cham, Switzerland, 2018; Volume 256. [Google Scholar]
- Maki, T. Interrelationships between zero-plane displacement, aerodynamic roughness length and plant canopy height. J. Agric. Meteorol. 1975, 31, 7–15. [Google Scholar] [CrossRef]
- Aubinet, M.; Vesala, T.; Papale, D. Eddy Covariance: A Practical Guide to Measurement and Data Analysis; Springer Science & Business Media: Berlin/Heidelberg, Germany, 2012. [Google Scholar]
- Webb, E.K.; Pearman, G.I.; Leuning, R. Correction of flux measurements for density effects due to heat and water vapour transfer. Q. J. R. Meteorol. Soc. 1980, 106, 85–100. [Google Scholar] [CrossRef]
- You, C.; Wang, Y.; Chen, S. A dataset of carbon and water fluxes of the typical grasslands in Duolun County, Inner Mongolia during 2006–2015. Sci. Data Bank 2023, 8, 1–11. [Google Scholar] [CrossRef]
- Wang, Y.; You, C.; Chen, S. A dataset of carbon and water fluxes of mowing grasslands in Xilinhot, Inner Mongolia during 2006–2015. Sci. Data Bank 2023, 8, 1–10. [Google Scholar] [CrossRef]
- Foken, T. The energy balance closure problem: An overview. Ecol. Appl. 2008, 18, 1351–1367. [Google Scholar] [CrossRef] [PubMed]
- Leuning, R.; van Gorsel, E.; Massman, W.J.; Isaac, P.R. Reflections on the surface energy imbalance problem. Agric. For. Meteorol. 2012, 156, 65–74. [Google Scholar] [CrossRef]
- Barr, A.G.; King, K.M.; Gillespie, T.J.; Den Hartog, G.; Neumann, H.H. A comparison of Bowen ratio and eddy correlation sensible and latent heat flux measurements above deciduous forest. Bound. Layer Meteorol. 1994, 71, 21–41. [Google Scholar] [CrossRef]
- Blanken, P.D.; Black, T.A.; Yang, P.C.; Neumann, H.H.; Nesic, Z.; Staebler, R.; Hartog, G.; Novak, M.D.; Lee, X. Energy balance and canopy conductance of a boreal aspen forest: Partitioning overstory and understory components. J. Geophys. Res. Atmos. 1997, 102, 28915–28927. [Google Scholar] [CrossRef]
- Twine, T.E.; Kustas, W.P.; Norman, J.M.; Cook, D.R.; Houser, P.; Meyers, T.P.; Prueger, J.H.; Starks, P.J.; Wesely, M.L. Correcting eddy-covariance flux underestimates over a grassland. Agric. For. Meteorol. 2000, 103, 279–300. [Google Scholar] [CrossRef]
- Wohlfahrt, G.; Haslwanter, A.; Hörtnagl, L.; Jasoni, R.L.; Fenstermaker, L.F.; Arnone III, J.A.; Hammerle, A. On the consequences of the energy imbalance for calculating surface conductance to water vapour. Agric. For. Meteorol. 2009, 149, 1556–1559. [Google Scholar] [CrossRef]
- Gao, Z.; Bian, L.; Chen, Z.; Sparrow, M.; Zhang, J. Turbulent variance characteristics of temperature and humidity over a non-uniform land surface for an agricultural ecosystem in China. Adv. Atmos. Sci. 2006, 23, 365–374. [Google Scholar] [CrossRef]
- Li, Y.; Lu, P. Estimation of surface fluxes using flux-variance method over alpine meadow on east edges of Tibetan Plateau. J. Meteorol. Environ. 2014, 30, 134–140. [Google Scholar]
- Buttar, N.A.; Hu, Y.; Tanny, J.; Raza, A.; Niaz, Y.; Khan, M.I.; Saddique, N.; Sarwar, A.; Azeem, A.; Ahmed, F.; et al. Estimation of sensible and latent heat fluxes using flux variance method under unstable conditions: A case study of tea plants. Atmosphere 2022, 13, 1545. [Google Scholar] [CrossRef]
- Padro, J. An investigation of flux-variance methods and universal functions applied to three land-use types in unstable conditions. Bound. Layer Meteorol. 1993, 66, 413–425. [Google Scholar] [CrossRef]
- Moriwaki, M.; Kanda, M. Local and global similarity in turbulent transfer of heat, water vapor, and CO2 in the dynamic convective sublayer over a suburban area. Bound. Layer Meteorol. 2006, 120, 163–179. [Google Scholar] [CrossRef]
Site | Duolun (DL) | Xilinhot (XLHT) | Luancheng (LC) | Yongfeng (YF) |
---|---|---|---|---|
Climate | temperate | temperate | warm temperate | subtropical monsoon |
Annual mean temperature (°C) | 2.4 | 2.6 | 12.3 | 15.4 |
Annual precipitation (mm) | 375 | 349 | 531 | 1110 |
Date of experiment | 1 May–30 October 2015 | 4 April–20 October 2015 | 1 April–13 September 2008 | 15 March–6 May 2015, 23 July–13 October 2015 |
Observation days | 183 | 200 | 166 | 136 |
ecosystem | grassland | grassland | wheat + maize | wheat + rice |
Canopy height (m) | 0.4 | 0.2 | 0.17~2.77 | 0.45~1.10 |
EC system | ||||
Measurement height (m) | 4 | 4 | 3.5 | 6 |
Sonic anemometer | CSAT3, Campbell Scientific, Inc., Logan, UT, USA | CSAT3 | CSAT3 | CSAT3 |
CO2/H2O analyzer | Li-7500, LI-COR Biosciences, Lincoln, NE, USA | Li-7500 | Li-7500 | Li-7500 |
Microclimate system | ||||
Measurement height (m) | 4 | 4 | 3.5 | 2 |
Air temperature | HMP45C (1 m), Vaisala Inc., Helsinki, Finland | HMP45C (1 m) | HMP45C | HMP155 |
Wind speed | / | / | A100R | 05103 |
Surface radiation | CNR1 | CNR1 | CNR1 | CNR4 |
Soil heat flux | ||||
Measurement depth (cm) | 2 | 2 | 5 | 5 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Xie, Y.; Xu, J.; Pu, Y.; Huang, L.; Zhang, M.; Xiao, W.; Lee, X. Estimation of Sensible and Latent Heat Fluxes from Different Ecosystems Using the Daily-Scale Flux Variance Method. Atmosphere 2025, 16, 1030. https://doi.org/10.3390/atmos16091030
Xie Y, Xu J, Pu Y, Huang L, Zhang M, Xiao W, Lee X. Estimation of Sensible and Latent Heat Fluxes from Different Ecosystems Using the Daily-Scale Flux Variance Method. Atmosphere. 2025; 16(9):1030. https://doi.org/10.3390/atmos16091030
Chicago/Turabian StyleXie, Yanhong, Jingzheng Xu, Yini Pu, Lei Huang, Mi Zhang, Wei Xiao, and Xuhui Lee. 2025. "Estimation of Sensible and Latent Heat Fluxes from Different Ecosystems Using the Daily-Scale Flux Variance Method" Atmosphere 16, no. 9: 1030. https://doi.org/10.3390/atmos16091030
APA StyleXie, Y., Xu, J., Pu, Y., Huang, L., Zhang, M., Xiao, W., & Lee, X. (2025). Estimation of Sensible and Latent Heat Fluxes from Different Ecosystems Using the Daily-Scale Flux Variance Method. Atmosphere, 16(9), 1030. https://doi.org/10.3390/atmos16091030