Evidence for a New Oxidation Mechanism for Sulfur Dioxide from Laboratory Measurements
Abstract
1. Introduction
1.1. The Significance of Atmospheric Sulfur Dioxide
1.2. Gas-Phase SO2 Oxidation Mechanisms
2. Materials and Methods
3. Results
4. Discussion
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Middleton, P.M.; Klang, C.S.; Mohnen, V.A. The relative importance of various urban sulfate aerosol production mechanisms—A Theoretical comparison. In Heterogeneous Atmospheric Chemistry; Schryer, D.R., Ed.; American Geophysical Union: Washington, DC, USA, 1982; pp. 221–230. [Google Scholar]
- Walcek, C.J.; Taylor, G.R. A Theoretical Method for Computing Vertical Distributions of Acidity and Sulfate Production within Cumulus Clouds. J. Atmos. Sci. 1986, 43, 339–355. [Google Scholar] [CrossRef]
- Seinfeld, J.H.; Pandis, S.N. Atmospheric Chemistry and Physics: From Air Pollution to Climate Change, 3rd ed.; John Wiley & Sons: New York, NY, USA, 2016. [Google Scholar]
- Kolb, C.F.; Worsnop, D.R. Chemistry and Composition of Atmospheric Aerosol Particles. Annu. Rev. Phys. Chem. 2012, 63, 471–491. [Google Scholar] [CrossRef]
- Warneck, P. Sulphur compounds in the atmosphere. In Chemistry of the Natural Atmosphere, 2nd ed.; Academic Press: San Diego, CA, USA, 2000; Chapter 10; pp. 587–655. [Google Scholar]
- Brasseur, G.P.; Orlando, J.J.; Tyndall, G.S. Atmospheric Chemistry and Global Change; Oxford University Press: Oxford, UK, 1999. [Google Scholar]
- Rotstayn, L.D.; Lohmann, U. Simulation of the Tropospheric Sulfur Cycle in a Global Model with a Physically Based Cloud Scheme. J. Geophys. Res. 2002, 107, 4592. [Google Scholar] [CrossRef]
- Gondwe, M.; Krol, M.; Gieskes, W.; Klaassen, W.; de Baar, H. The Contribution of Ocean-Leaving DMS to the Global Atmospheric Burdens of DMS, MSA, SO2, and NSS SO4=. Glob. Biogeochem. Cycles 2003, 17, 1056. [Google Scholar] [CrossRef]
- Gondwe, M.; Krol, M.; Gieskes, W.; Klaassen, W.; de Baar, H. Correction to “The Contribution of Ocean-Leaving DMS to the Global Atmospheric Burdens of DMS, MSA, SO2, and NSS SO4=”. Glob. Biogeochem. Cycles 2003, 17, 1106. [Google Scholar] [CrossRef]
- Lana, A.; Bell, T.G.; Simó, R.; Vallina, S.M.; Ballabrera-Poy, J.; Kettle, A.J.; Dachs, J.; Bopp, L.; Saltzman, E.S.; Stefels, J.; et al. An Updated Climatology of Surface Dimethlysulfide Concentrations and Emission Fluxes in the Global Ocean. Glob. Biogeochem. Cycles 2011, 25, GB1004. [Google Scholar] [CrossRef]
- Goss, M.B.; Kroll, J.H. Chamber Studies of OH + Dimethyl Sulfoxide and Dimethyl Disulfide: Insights into the Dimethyl Sulfide Oxidation Mechanism. Atmos. Chem. Phys. 2024, 24, 1299–1314. [Google Scholar] [CrossRef]
- Rickly, P.S.; Guo, H.; Campuzano-Jost, P.; Jimenez, J.L.; Wolfe, G.M.; Bennett, R.; Bourgeois, I.; Crounse, J.D.; Dibb, J.E.; DiGangi, J.P.; et al. Emission factors and evolution of SO2 measured from biomass burning in wildfires and agricultural fires. Atmos. Chem. Phys. 2022, 22, 15603–15620. [Google Scholar] [CrossRef]
- Pausas, J.G.; Keeley, J.E. Wildfires and Global Change. Front. Ecol. Environ. 2021, 19, 387–395. [Google Scholar] [CrossRef]
- Smith, S.J.; van Aardenne, J.; Klimont, Z.; Andres, R.J.; Volke, A.; Delgado Arias, S. Anthropogenic Sulfur Dioxide Emissions: 1850–2005. Atmos. Chem. Phys. 2011, 11, 1101–1116. [Google Scholar] [CrossRef]
- Calkins, W.H. The Chemical Forms of Sulfur in Coal: A Review. Fuel 1994, 73, 475–484. [Google Scholar] [CrossRef]
- Hu, R.; Seager, S.; Bains, W. Photochemistry in Terrestrial Exoplanet Atmospheres. II. H2S and SO2 Photochemistry in Anoxic Atmospheres. Astrophys. J. 2013, 769, 6. [Google Scholar] [CrossRef]
- Visioni, D.; Pitari, G.; Aquila, V. Sulfate Geoengineering: A Review of the Factors Controlling the Needed Injection of Sulfur Dioxide. Atmos. Chem. Phys. 2017, 17, 3879–3889. [Google Scholar] [CrossRef]
- Tilgner, A.; Schaefer, T.; Alexander, B.; Barth, M.; Collett, J.L., Jr.; Fahey, K.M.; Nenes, A.; Pye, H.O.T.; Herrmann, H.; McNeill, V.F. Acidity and the Multiphase Chemistry of Atmospheric Aqueous Particles and Clouds. Atmos. Chem. Phys. 2021, 21, 13483–13536. [Google Scholar] [CrossRef]
- Jacobson, M.Z. Atmospheric Pollution, History, Science and Regulation; Cambridge University Press: Cambridge, UK, 2002. [Google Scholar]
- Bolin, B.; Persson, C. Regional Dispersion and Deposition of Atmospheric Pollutants with Particular Application to Sulfur Pollution over Western Europe. Tellus 1975, 27, 281–310. [Google Scholar] [CrossRef]
- Cowling, E.B. Acid Precipitation in Historical Perspective. Environ. Sci. Technol. 1982, 16, 110A–123A. [Google Scholar] [CrossRef] [PubMed]
- National Acid Assessment Program. Acid Deposition: State of Science and Technology, Volume 1—Emissions, Atmospheric Processes and Deposition; Superintendent of Documents; National Acid Assessment Program: Washington, DC, USA, 1990.
- National Acid Assessment Program. Acid Deposition: State of Science and Technology, Volume 2—Aquatic Processes and Effects; Superintendent of Documents; National Acid Assessment Program: Washington, DC, USA, 1990.
- National Acid Assessment Program. Acid Deposition: State of Science and Technology, Volume 3—Terrestrial, Materials, Health and Visibility Effects; Superintendent of Documents; National Acid Assessment Program: Washington, DC, USA, 1990.
- National Acid Assessment Program. Acid Deposition: State of Science and Technology, Volume 4—Control Technologies, Future Emissions and Effects Valuation; Superintendent of Documents; National Acid Assessment Program: Washington, DC, USA, 1990.
- Tanner, R.L.; Tichler, J.; Brown, R.; Davis, W.; Johnson, S.; Patrinos, A.A.; Sisterson, D.; Slinn, W.G. PRECP: The Department of Energy’s Program on the Nonlinearity of Acid Precipitation Processes (No. BNL-38776); Brookhaven National Lab.: Upton, NY, USA; Pacific Northwest Lab.: Richland, WA, USA; Argonne National Lab.: Lemont, IL, USA, 1986.
- Rhode, H.; Crutzen, R.; Vanderpol, A. Formation of Sulfuric and Nitric Acid in the Atmosphere During Long-Range Transport. TelIus 1981, 33, 132–141. [Google Scholar]
- Chen, L.-W.A.; Tropp, R.; Li, W.-W.; Zhu, D.; Chow, J.C.; Watson, J.C.; Zielinska, B. Aerosol and Air Toxics Exposure in El Paso, Texas: A Pilot Study. Aerosol Air Qual. Res. 2012, 12, 169–179. [Google Scholar] [CrossRef]
- Karle, N.N.; Mahmud, S.; Sakai, R.K.; Fitzgerald, R.M.; Morris, V.R.; Stockwell, W.R. Investigation of the Successive Ozone Episodes in the El Paso–Juarez Region in the Summer of 2017. Atmosphere 2020, 11, 532. [Google Scholar] [CrossRef]
- Stockwell, W.R.; Calvert, J.G. The Mechanism of the HO-SO2 Reaction. Atmos. Environ. 1983, 17, 2231–2235. [Google Scholar] [CrossRef]
- Sarwar, G.; Fahey, F.; Kwok, R.; Gilliam, R.; Xue, J.; Jianzhen, Y.; Carter, W.P.L. Potential impacts of two SO2 oxidation pathways on regional sulfate concentrations: Aqueous-phase oxidation by NO2 and gas-phase oxidation by Stabilized Criegee Intermediates. Atmos. Environ. 2013, 68, 186–197. [Google Scholar] [CrossRef]
- Sarwar, G.; Simon, H.; Fahey, K.; Mathur, R.; Goliff, W.S.; Stockwell, W.R. Impact of Sulfur Dioxide Oxidation by Stabilized Criegee Intermediate on Sulfate. Atmos. Environ. 2014, 85, 204–214. [Google Scholar] [CrossRef]
- Calvert, J.G.; Stockwell, W.R. Acid Generation in the Troposphere by Gas Phase Chemistry. Environ. Sci. Technol. 1983, 17, 428A–443A. [Google Scholar] [CrossRef] [PubMed]
- Graedel, T.E.; Weschler, C.J. Chemistry Within Aqueous Atmospheric Aerosols and Raindrops. Rev. Geophys. 1981, 19, 505–539. [Google Scholar] [CrossRef]
- Vannucci, P.F.; Foley, K.; Murphy, B.N.; Hogrefe, C.; Cohen, R.C.; Pye, H.O.T. Temperature-Dependent Composition of Summertime PM2.5 in Observations and Model Predictions across the Eastern U.S. ACS Earth Space Chem. 2024, 8, 381–392. [Google Scholar] [CrossRef]
- Farrell, S.L.; Pye, H.O.T.; Gilliam, R.; Pouliot, G.; Huff, D.; Sarwar, G.; Vizuete, W.; Briggs, N.; Duan, F.; Ma, T.; et al. Predicted Impacts of Heterogeneous Chemical Pathways on Particulate Sulfur over Fairbanks (Alaska), the Northern Hemisphere and the Contiguous, United States. Atmos. Chem. Phys. 2025, 25, 3287–3312. [Google Scholar] [CrossRef]
- Stockwell, W.R. The Chemistry of Nitrogen Oxides/Sulphur Oxides/Hydrogen Oxides Systems. Ph.D. Thesis, The Ohio State University, Columbus, OH, USA, 1981. Available online: http://rave.ohiolink.edu/etdc/view?acc_num=osu1487171566434414 (accessed on 4 August 2025).
- Crutzen, P.J. My Life with O3, NOx and Other YZOxs, Nobel Lecture. 1995. Available online: https://www.nobelprize.org/prizes/chemistry/1995/crutzen/lecture/ (accessed on 4 August 2025).
- Gleason, J.F.; Sinha, A.; Howard, C.J. Kinetics of the Gas-Phase Reaction HOSO2 + O2 → HO2 + SO3. J. Phys. Chem. 1987, 91, 719–724. [Google Scholar] [CrossRef]
- Egsgaard, H.; Carlson, L.; Florencio, H.; Drewello, T.; Schwarz, H. Experimental Evidence for the Gaseous HSO3 Radical. The Key Intermediate in the Oxidation of SO2 in the Atmosphere. Chem. Phys. Lett. 1988, 148, 537–540. [Google Scholar] [CrossRef]
- Burkholder, J.B.; Sander, S.P.; Abbatt, J.; Barker, J.R.; Cappa, C.; Crounse, J.D.; Dibble, T.S.; Huie, R.E.; Kolb, C.E.; Kurylo, M.J.; et al. Chemical Kinetics and Photochemical Data for Use in Atmospheric Studies, Evaluation No. 19; JPL Publication 19-5; Jet Propulsion Laboratory: Pasadena, CA, USA, 2019. Available online: http://jpldataeval.jpl.nasa.gov (accessed on 4 August 2025).
- Atkinson, R.; Baulch, D.L.; Cox, R.A.; Crowley, J.N.; Hampson, R.F.; Hynes, R.G.; Jenkin, M.E.; Rossi, M.J.; Troe, J. Evaluated Kinetic and Photochemical Data for Atmospheric Chemistry: Volume I—Gas Phase Reactions of Ox, HOx, NOx and SOx Species. Atmos. Chem. Phys. 2004, 4, 1461–1738. [Google Scholar] [CrossRef]
- Calvert, J.G.; Orlando, J.J.; Stockwell, W.R.; Wallington, T.J. The Mechanisms of Reactions Influencing Atmospheric Ozone; Oxford University Press: Oxford, UK, 2015; pp. 412–424. [Google Scholar]
- Schroeder, W.H.; Urone, P. Isolation and Identification of Nitrosonium Hydrogen Sulfate (NOHSO4) as a Photochemical Reaction Product in Air Containing Sulfur Dioxide and Nitrogen Dioxide. Environ. Sci. Technol. 1978, 12, 545–550. [Google Scholar] [CrossRef]
- Wang, J.; Li, J.; Ye, J.; Zhao, J.; Wu, Y.; Hu, J.; Liu, D.; Nie, D.; Shen, F.; Huang, X.; et al. Fast Sulfate Formation from Oxidation of SO2 by NO2 and HONO Observed in Beijing Haze. Nat. Commun. 2020, 11, 2844. [Google Scholar] [CrossRef] [PubMed]
- Zheng, H.; Song, S.; Sarwar, G.; Gen, M.; Wang, S.; Ding, D.; Chang, X.; Zhang, S.; Xing, J.; Sun, Y.; et al. Contribution of Particulate Nitrate Photolysis to Heterogeneous Sulfate Formation for Winter Haze in China. Environ. Sci. Tech. Lett. 2020, 7, 632–638. [Google Scholar] [CrossRef] [PubMed]
- Fuentes, J.D.; Lerdau, M.; Atkinson, R.; Baldocchi, D.; Botteneheim, J.W.; Ciccioli, P.; Lamb; Geron, C.; Gu, L.; Guenther, A.; et al. Biogenic Hydrocarbons in the Atmospheric Boundary Layer: A Review. Bull. Amer. Meteor. Soc. 2000, 81, 1537–1575. [Google Scholar] [CrossRef]
Experiment Number | N2 (atm) | Initial Reactive Nitrogen (Molec cm−3 × 10−15) | Initial CO (Molec cm−3 × 10−16) | Initial SO2 (Molec cm−3 × 10−15) |
---|---|---|---|---|
1 | 0.921 | 0.817 | 2.31 | 2.96 |
2 | 0.954 | 0.882 | 3.43 | 3.88 |
3 | 0.925 | 0.917 | 2.31 | 2.23 |
4 | 0.924 | 1.09 | 1.60 | 2.07 |
5 | 0.922 | 1.23 | 1.62 | 1.69 |
6 | 0.925 | 2.17 | 1.10 | 1.70 |
7 | 0.933 | 2.38 | 1.03 | 1.28 |
8 | 0.921 | 1.91 | 1.07 | 2.01 |
Experiment Number | N2 (atm) | O2 (atm) | Initial Reactive Nitrogen (Molec cm−3 × 10−15) | Initial CO (Molec cm−3 × 10−16) | Initial SO2 (Molec cm−3 × 10−15) |
---|---|---|---|---|---|
O1 | 0.761 | 0.176 | 0.739 | 2.29 | 3.20 |
O2 | 0.748 | 0.171 | 1.43 | 2.32 | 2.26 |
O3 | 0.749 | 0.172 | 1.34 | 1.86 | 3.42 |
O4 | 0.746 | 0.175 | 0.828 | 1.83 | 2.31 |
O5 | 0.752 | 0.169 | 0.908 | 1.38 | 3.14 |
O6 | 0.742 | 0.176 | 1.02 | 1.39 | 2.36 |
O7 | 0.750 | 0.171 | 1.20 | 0.935 | 3.56 |
Experiment Number | Reaction Time (min) | Δ Reactive Nitrogen (Molec cm−3 × 10−14) | ΔCO2 (Molec cm−3 × 10−14) | ΔSO2 (Molec cm−3 × 10−14) | |
---|---|---|---|---|---|
1 | 29.12 | 0.088 | 1.60 | 2.53 | 12.9 |
2 | 25.37 | 0.52 | 1.01 | 1.03 | 9.1 |
3 | 16.98 | 0.060 | 1.58 | 1.38 | 9.4 |
4 | 25.57 | −0.004 | 1.07 | 1.61 | 12.1 |
5 | 25.72 | 1.20 | 0.979 | 1.26 | 12.8 |
6 | 25.78 | 3.90 | 0.816 | 1.72 | 14.5 |
7 | 25.82 | 2.57 | 1.00 | 1.72 | 14.9 |
8 | 28.47 | 19.10 | 0.383 | 1.03 | 14.8 |
O1 | 28.20 | 0.100 | 1.50 | 2.34 | 11.6 |
O2 | 28.87 | 0.917 | 1.27 | 1.75 | 14.7 |
O3 | 28.37 | −0.024 | 0.832 | 2.45 | 16.7 |
O4 | 28.62 | −0.062 | 1.28 | 2.57 | 16.8 |
O5 | 28.87 | −0.609 | 0.916 | 1.64 | 8.0 |
O6 | 28.32 | 0.382 | 0.962 | 2.45 | 15.9 |
O7 | 37.20 | 0.803 | 0.763 | 2.92 | 10.5 |
Experiment Number | kHO+SO2 (cm3 Molec−1 × 1013) | kHO+CO (cm3 Molec−1 × 1013) | ||
---|---|---|---|---|
1 | 9.22 | 2.21 | 4.17 | 3.10 |
2 | 9.33 | 2.24 | 4.17 | 2.18 |
3 | 9.23 | 2.22 | 4.17 | 2.26 |
4 | 9.23 | 2.21 | 4.17 | 2.90 |
5 | 9.22 | 2.21 | 4.17 | 3.07 |
6 | 9.23 | 2.22 | 4.17 | 3.48 |
7 | 9.26 | 2.22 | 4.17 | 3.58 |
8 | 9.22 | 2.21 | 4.17 | 3.55 |
O1 | 9.27 | 2.08 | 4.46 | 2.60 |
O2 | 9.21 | 2.07 | 4.46 | 3.30 |
O3 | 9.22 | 2.07 | 4.46 | 3.75 |
O4 | 9.22 | 2.07 | 4.46 | 3.76 |
O5 | 9.22 | 2.07 | 4.45 | 1.80 |
O6 | 9.21 | 2.06 | 4.47 | 3.56 |
O7 | 9.22 | 2.07 | 4.46 | 2.36 |
Experimental Series | Average Reactive Nitrogen Conc. (Molec cm−3 × 10−14) | Average kHO+SO2/kHO+CO Ratio | Shared Variance (R2) |
---|---|---|---|
N2 Only | 14.2 | 12.6 | 0.65 |
Synthetic Air | 10.7 | 13.5 | 0.076 |
All | 12.6 | 13.0 | 0.18 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Stockwell, W.R.; Fitzgerald, R.M. Evidence for a New Oxidation Mechanism for Sulfur Dioxide from Laboratory Measurements. Atmosphere 2025, 16, 1000. https://doi.org/10.3390/atmos16091000
Stockwell WR, Fitzgerald RM. Evidence for a New Oxidation Mechanism for Sulfur Dioxide from Laboratory Measurements. Atmosphere. 2025; 16(9):1000. https://doi.org/10.3390/atmos16091000
Chicago/Turabian StyleStockwell, William R., and Rosa M. Fitzgerald. 2025. "Evidence for a New Oxidation Mechanism for Sulfur Dioxide from Laboratory Measurements" Atmosphere 16, no. 9: 1000. https://doi.org/10.3390/atmos16091000
APA StyleStockwell, W. R., & Fitzgerald, R. M. (2025). Evidence for a New Oxidation Mechanism for Sulfur Dioxide from Laboratory Measurements. Atmosphere, 16(9), 1000. https://doi.org/10.3390/atmos16091000