Fine-Scale Spatial Distribution of Indoor Radon and Identification of Potential Ingress Pathways
Abstract
1. Introduction
- Case 1 involved a room with elevated radon levels. The detectors were deployed to map radon release from the floor at fine spatial resolution.
- Case 2 involved a house where mitigation efforts yielded inconsistent results. The detectors helped identify previously unrecognized radon entry routes, including an unusual pathway that conventional diagnostic methods likely would have missed.
2. Materials and Methods
3. Results
3.1. Fine Radon Distribution on the Floor of the Studied Room (Case 1)
3.2. Unusual Routes of Entry in the House Studied (Case 2)
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- International Agency for Research on Cancer (IARC). IARC Monographs on the Evaluation of Carcinogen Risks to Humans; IARC Monographs: Lyon, France, 1988; Volume 43. [Google Scholar]
- World Health Organization. WHO Handbook on Indoor Radon: A Public Health Perspective; Zeeb, H., Shannoun, F., Eds.; WHO Publications: Geneva, Switzerland, 2009. [Google Scholar]
- United Nations Scientific Committee on the Effects of Atomic Radiation (UNSCEAR). Sources of Ionizing Radiation; United Nations Scientific Committee on the Effects of Atomic Radiation Report to the General Assembly. Volume I: Sources; UN: New York, NY, USA, 2008. [Google Scholar]
- George, A. State-of-the-Art Instruments for Measuring Radon/thoron and Their Progeny in Dwellings—A Review. Health Phys. 1996, 70, 451–463. [Google Scholar] [CrossRef] [PubMed]
- Celikovic, I.; Pantelic, G.; Vukanac, I.; Nikolic, J.K.; Živanovic, M.; Cinelli, G.; Gruber, V.; Baumann, S.; Poncela, L.S.Q.; Rabago, D. Outdoor Radon as a Tool to Estimate Radon Priority Areas—A Literature Overview. Int. J. Environ. Res. Public Health 2022, 19, 662. [Google Scholar] [CrossRef] [PubMed]
- Celikovic, I.; Pantelic, G.; Vukanac, I.; Nikolic, J.K.; Živanovic, M.; Cinelli, G.; Gruber, V.; Baumann, S.; Ciotoli, G.; Poncela, L.S.Q.; et al. Overview of Radon Flux Characteristics, Measurements, Models and Its Potential Use for the Estimation of Radon Priority Areas. Atmosphere 2022, 13, 2005. [Google Scholar] [CrossRef]
- Council of the European Union. Council Directive 2013/59/EURATOM of 5 December 2013. Off. J. Eur. Union 2014, 103. [Google Scholar]
- TraceRADON. Available online: http://traceradon-empir.eu (accessed on 18 May 2025).
- Grossi, C.; Arnold, D.; Adame, J.A.; López-Coto, I.; Bolívar, J.P.; de la Morena, B.A.; Vargas, A. Atmospheric 222Rn concentration and source term at El Arenosillo 100 m meteorological tower in southwest Spain. Radiat. Meas. 2012, 47, 149–162. [Google Scholar] [CrossRef]
- Röttger, S.; Röttger, A.; Grossi, C.; Vargas, A.; Karstens, U.; Cinelli, G.; Chung, E.; Kikaj, D.; Rennick, C.; Mertes, F.; et al. Radon metrology for use in climate change observation and radiation protection at the environmental level. Adv. Geosci. 2022, 57, 37–47. [Google Scholar] [CrossRef]
- Fialova, E.; Otahal, P.P.S.; Vosahlik, J.; Mazanova, M. Equipment for testing measuring devices at a low-level radon activity concentration. Int. J. Environ. Res. Public Health 2020, 17, 1904. [Google Scholar] [CrossRef]
- Grossi, C.; Vogel, F.R.; Curcoll, R.; Àgueda, A.; Vargas, A.; Rodó, X.; Morguí, J.-A. Study of the daily and seasonal atmospheric CH4 mixing ratio variability in a rural Spanish region using 222Rn tracer. Atmos. Chem. Phys. 2018, 18, 5847–5860. [Google Scholar] [CrossRef]
- Chambers, S.D.; Hong, S.-B.; Williams, A.G.; Crawford, J.; Griffiths, A.D.; Park, S.-J. Characterising terrestrial influences on Antarctic air masses using Radon-222 measurements at King George Island. Atmos. Phys. Chem. 2014, 14, 9903–9916. [Google Scholar] [CrossRef]
- Pressyanov, D. New generation of highly sensitive radon detectors based on activated carbon with compensated temperature dependence. Sci. Rep. 2022, 12, 8479. [Google Scholar] [CrossRef] [PubMed]
- Rutherford, E. Adsorption of radioactive emanations by charcoal. Nature 1906, 76, 634. [Google Scholar]
- Cohen, B.L.; Cohen, E.S. Theory and practice of radon monitoring with charcoal adsorption. Health Phys. 1983, 45, 501–508. [Google Scholar] [CrossRef]
- Sutej, T.; Ilic, R.; Krizman, M. A new technique for radon measurement based on a combination of a track-etch detector and activated charcoal. Nucl. Tracks Radiat. Meas. 1991, 19, 423–424. [Google Scholar] [CrossRef]
- Cosma, C.; Van Deynse, A.; Poffijn, A. Studies on radon adsorption characteristics of different charcoals used as amplifiers for the track detectors. Radiat. Meas. 1999, 31, 351–354. [Google Scholar] [CrossRef]
- Van Deynse, A.; Cosma, C.; Poffijn, A. A passive radon dosimeter based on the combination of a track etch detector and activated charcoal. Radiat. Meas. 1999, 31, 325–330. [Google Scholar] [CrossRef]
- Scarpita, S.C. Factors Affecting the Estimation of Indoor Radon Using Passive Activated Charcoal Canisters. Ph.D. Dissertation, New York University, New York, NY, USA, 1990. [Google Scholar]
- Mphaga, K.V.; Mbonane, T.P.; Utembe, W.; Rathebe, P.C. Short-Term vs. Long-Term: A Critical Review of Indoor Radon Measurement Techniques. Sensors 2024, 24, 4575. [Google Scholar] [CrossRef]
- Scarpitta, S.C.; Harley, N.H. An improved 222Rn canister using a two-stage charcoal system. Health Phys. 1991, 60, 177–187. [Google Scholar] [CrossRef] [PubMed]
- Zikovski, L. Temperature dependence of adsorption coefficients of 222Rn on activated charcoal determined by adsorption-desorption method. Health Phys. 2001, 80, 175–176. [Google Scholar] [CrossRef]
- Cooper, A.; Le, T.N.; Iimoto, T.; Kosako, T. Temperature calibration formula for activated charcoal radon collectors. J. Environ. Radioact. 2011, 102, 60–63. [Google Scholar] [CrossRef]
- Tommasino, L.; Tommasino, M.C.; Viola, P. Radon-film-badges by solid radiators to complement track detector-based radon monitors. Radiat. Meas. 2009, 44, 719–723. [Google Scholar] [CrossRef]
- Sohrabi, M.; Ghahremani, M. Novel panorama megasize environmental radon monitor. Radiat. Phys. Chem. 2021, 181, 109325. [Google Scholar] [CrossRef]
- Sohrabi, M. Concentration and duration dependence of a new prototype polycarbonate/activated-carbon fabric individual and environmental radon monitor. J. Instrum. 2018, 13, P11012. [Google Scholar] [CrossRef]
- Sullivan, P.D.; Stone, B.R.; Hashisho, Z.; Rood, M.J. Water adsorption with hysteresis effect onto microporous activated carbon fabrics. Adsorpion 2007, 13, 173–189. [Google Scholar] [CrossRef]
- Pressyanov, D.; Momchilov, M.; Georgiev, P. Influence of humidity on activated carbon fabrics scheduled for use in high sensitivity radon detectors. Appl. Radiat. Isot. 2023, 200, 110941. [Google Scholar] [CrossRef]
- Pressyanov, D.; Dimitrov, D. The sensitivity of Innovative techniques for measuring low levels of radon in the environment using passive detectors. J. Environ. Radioact. 2024, 277, 107461. [Google Scholar] [CrossRef]
- Pressyanov, D.; Zajonchovska, V.; Dimitrov, D. Examining radon levels in soil gas and atmospheric air near the soil–air interface. Eur. Phys. J. Spec. Top. 2025, 1–8. [Google Scholar] [CrossRef]
- Froňka, A.; Moučka, L.; Čechák, T. Application of the advanced radon diagnosis methods in the indoor building environment Get access Arrow. Radiat. Prot. Dosim. 2008, 130, 72–75. [Google Scholar] [CrossRef] [PubMed]
- Khan, S.M.; Gomes, J.; Krewski, D.R. Radon interventions around the globe: A systematic review. Heliyon 2019, 5, e01737. [Google Scholar] [CrossRef]
- Cosma, C.; Papp, B.; Cucos (Dinu), A.; Sainz, C. Testing radon mitigation techniques in a pilot house from Băiţa-Ştei radon prone area (Romania). J. Environ. Radioact. 2015, 140, 141–147. [Google Scholar] [CrossRef] [PubMed]
- Ginev, G. Energy-Angular Response of Detector LR-115/II for Detection of Alpha Particles. Master’s Thesis, St. Kliment Ohridski University of Sofia, Sofia, Bulgaria, 1996. [Google Scholar]
- Barillon, R. Contribution a la Detection de Particules Alpha Par Detecteurs Solides de Traces Nucleaires e Application a la Mesure du Radon. Ph.D. Thesis, Universite de Franche-Comte, Besançon, France, 1994. [Google Scholar]
- Pressyanov, D.; Mitev, K.; Georgiev, S.; Dimitrova, I.; Kolev, J. Laboratory facility to create reference radon+thoron atmosphere under dynamic exposure conditions. J. Environ. Radioact. 2017, 166, 181–187. [Google Scholar] [CrossRef]
- Regulation on Radiation Protection Standards. Off. State J. Bulg. 2018, 16. (In Bulgarian)
- Pressyanov, D.; Dimitrov, D.; Dimitrova, I. Energy-efficient reconstructions and indoor radon: The impact assessed by CDs/DVDs. J. Environ. Radioact. 2015, 143, 76–79. [Google Scholar] [CrossRef] [PubMed]
- ISO 11929-1:2019; Determination of the Characteristic Limits (Decision Threshold, Detection Limit and Limits of the Coverage Interval) for Measurements of Ionizing Radiation—Fundamentals and Application. International Organization for Standardization: Geneva, Switzerland, 2019.
- Gulan, L.; Stajic, J.M.; Spasic, D.; Forkapic, S. Radon levels and indoor air quality after application of thermal retrofit measures—A case study. Air Qual. Atmos. Health 2023, 16, 363–373. [Google Scholar] [CrossRef] [PubMed]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Pressyanov, D.; Dimitrov, D. Fine-Scale Spatial Distribution of Indoor Radon and Identification of Potential Ingress Pathways. Atmosphere 2025, 16, 943. https://doi.org/10.3390/atmos16080943
Pressyanov D, Dimitrov D. Fine-Scale Spatial Distribution of Indoor Radon and Identification of Potential Ingress Pathways. Atmosphere. 2025; 16(8):943. https://doi.org/10.3390/atmos16080943
Chicago/Turabian StylePressyanov, Dobromir, and Dimitar Dimitrov. 2025. "Fine-Scale Spatial Distribution of Indoor Radon and Identification of Potential Ingress Pathways" Atmosphere 16, no. 8: 943. https://doi.org/10.3390/atmos16080943
APA StylePressyanov, D., & Dimitrov, D. (2025). Fine-Scale Spatial Distribution of Indoor Radon and Identification of Potential Ingress Pathways. Atmosphere, 16(8), 943. https://doi.org/10.3390/atmos16080943