Atmospheric Boundary Layer Processes, Characteristics and Parameterization (3rd Edition)

A special issue of Atmosphere (ISSN 2073-4433). This special issue belongs to the section "Meteorology".

Deadline for manuscript submissions: 25 September 2025 | Viewed by 2141

Special Issue Editors


E-Mail Website
Guest Editor
School of Atmospheric Physics, Nanjing University of Information Science & Technology, Nanjing 210044, China
Interests: tropical cyclones; atmospheric boundary layer; air–land–sea interaction; air pollution
Special Issues, Collections and Topics in MDPI journals

E-Mail Website
Guest Editor
Shanghai Typhoon Institute of China Meteorological Administration, Shanghai 200030, China
Interests: tropical cyclone boundary layer; typhoon field experiment; extratropical transition
Special Issues, Collections and Topics in MDPI journals

Special Issue Information

Dear Colleagues,

This Special Issue is the third volume in a series of publications dedicated to “Atmospheric Boundary Layer Processes, Characteristics and Parameterization”, and Atmospheric Boundary Layer Processes, Characteristics and Parameterization (2nd Edition).

The atmospheric boundary layer is distinguished from the rest of the atmosphere by its unique characteristics, i.e., direct interaction with the Earth’s surface and active turbulence. Understanding the dynamic and chemical processes in the boundary layer is of great importance in weather and air quality forecasting. Recently, with the improvements made in observation and simulation techniques, our understanding of atmospheric boundary layer processes and characteristics has significantly improved. For example, ultrasonic anemometers and large-aperture scintillometers can provide information on turbulent exchanges, while large eddy simulation techniques simulating the detailed structure of turbulent eddies. This Special Issue is dedicated to reporting new findings with regard to atmospheric boundary layer processes, characteristics, and parametrization methods. Potential topics include, but are not limited to, turbulent exchange, transportation, and their parametrization; boundary layer jet; local atmospheric circulation; surface energy partitioning; atmospheric stability condition; pollutant distribution and transportation; etc.

Prof. Dr. Yubin Li
Prof. Dr. Jie Tang
Guest Editors

Manuscript Submission Information

Manuscripts should be submitted online at www.mdpi.com by registering and logging in to this website. Once you are registered, click here to go to the submission form. Manuscripts can be submitted until the deadline. All submissions that pass pre-check are peer-reviewed. Accepted papers will be published continuously in the journal (as soon as accepted) and will be listed together on the special issue website. Research articles, review articles as well as short communications are invited. For planned papers, a title and short abstract (about 100 words) can be sent to the Editorial Office for announcement on this website.

Submitted manuscripts should not have been published previously, nor be under consideration for publication elsewhere (except conference proceedings papers). All manuscripts are thoroughly refereed through a single-blind peer-review process. A guide for authors and other relevant information for submission of manuscripts is available on the Instructions for Authors page. Atmosphere is an international peer-reviewed open access monthly journal published by MDPI.

Please visit the Instructions for Authors page before submitting a manuscript. The Article Processing Charge (APC) for publication in this open access journal is 2400 CHF (Swiss Francs). Submitted papers should be well formatted and use good English. Authors may use MDPI's English editing service prior to publication or during author revisions.

Keywords

  • atmospheric boundary layer
  • turbulent exchange
  • boundary layer jet
  • local atmospheric circulation
  • surface energy partitioning
  • pollutant transportation

Benefits of Publishing in a Special Issue

  • Ease of navigation: Grouping papers by topic helps scholars navigate broad scope journals more efficiently.
  • Greater discoverability: Special Issues support the reach and impact of scientific research. Articles in Special Issues are more discoverable and cited more frequently.
  • Expansion of research network: Special Issues facilitate connections among authors, fostering scientific collaborations.
  • External promotion: Articles in Special Issues are often promoted through the journal's social media, increasing their visibility.
  • e-Book format: Special Issues with more than 10 articles can be published as dedicated e-books, ensuring wide and rapid dissemination.

Further information on MDPI's Special Issue policies can be found here.

Published Papers (2 papers)

Order results
Result details
Select all
Export citation of selected articles as:

Research

18 pages, 5015 KiB  
Article
Dissipation Scaling with a Variable Cϵ Coefficient in the Stable Atmospheric Boundary Layer
by Marta Wacławczyk, Jackson Nzotungishaka, Paweł Jędrejko, Joydeep Sarkar and Szymon P. Malinowski
Atmosphere 2025, 16(2), 188; https://doi.org/10.3390/atmos16020188 - 7 Feb 2025
Viewed by 488
Abstract
This work concerns the Taylor formula for the turbulence kinetic energy dissipation rate in the stable atmospheric boundary layer. The formula relates the turbulence kinetic energy dissipation rate to statistics at large scales, namely, the turbulence kinetic energy and the integral length scale. [...] Read more.
This work concerns the Taylor formula for the turbulence kinetic energy dissipation rate in the stable atmospheric boundary layer. The formula relates the turbulence kinetic energy dissipation rate to statistics at large scales, namely, the turbulence kinetic energy and the integral length scale. In parameterization schemes for atmospheric turbulence, it is usually assumed that the dissipation coefficient Cϵ in the Taylor formula is constant. However, a series of recent theoretical works and laboratory experiments showed that Cϵ depends on the local Reynolds number. We calculate turbulence statistics, including the dissipation rate, the standard deviation of fluctuating velocities and integral length scales, using observational data from the MOSAiC (Multidisciplinary drifting Observatory for the Study of Arctic Climate) expedition. We show that the dissipation coefficient Cϵ varies considerably and is a function of the Reynolds number, however, the functional form of this dependency in the stably stratified atmospheric boundary layer is different than in previous studies. Full article
Show Figures

Figure 1

25 pages, 7826 KiB  
Article
Comprehensive Comparison of Seven Widely-Used Planetary Boundary Layer Parameterizations in Typhoon Mangkhut Intensification Simulation
by Lei Ye, Yubin Li, Ping Zhu, Zhiqiu Gao and Zhihua Zeng
Atmosphere 2024, 15(10), 1182; https://doi.org/10.3390/atmos15101182 - 30 Sep 2024
Viewed by 1095
Abstract
Numerical experiments using the WRF model were conducted to analyze the sensitivity of Typhoon Mangkhut intensification simulations to seven widely used planetary boundary layer (PBL) parameterization schemes, including YSU, MYJ, QNSE, MYNN2, MYNN3, ACM2, and BouLac. The results showed that all simulations generally [...] Read more.
Numerical experiments using the WRF model were conducted to analyze the sensitivity of Typhoon Mangkhut intensification simulations to seven widely used planetary boundary layer (PBL) parameterization schemes, including YSU, MYJ, QNSE, MYNN2, MYNN3, ACM2, and BouLac. The results showed that all simulations generally reproduced the tropical cyclone (TC) track and intensity, with YSU, QNSE, and BouLac schemes better capturing intensification processes and closely matching observed TC intensity. In terms of surface layer parameterization, the QNSE scheme produced the highest Ck/Cd ratio, resulting in stronger TC intensity based on Emanuel’s potential intensity theory. In terms of PBL parameterization, the YSU and BouLac schemes, with the same revised MM5 surface layer scheme, simulated weaker turbulent diffusivity Km and shallower mixing height, leading to stronger TC intensity. During the intensification period, the BouLac, YSU, and QNSE PBL schemes exhibited stronger tangential wind, radial inflow within the boundary layer, and updraft around the eye wall, consistent with TC intensity results. Both PBL and surface layer parameterization significantly influenced simulated TC intensity. The QNSE scheme, with the largest Ck/Cd ratio, and the YSU and BouLac schemes, with weaker turbulent diffusivity, generated stronger radial inflow, updraft, and warm core structures, contributing to higher storm intensity. Full article
Show Figures

Figure 1

Back to TopTop