Wind-Induced Water Transport and Circulation Structure in the Laptev Sea–East Siberian Sea
Abstract
1. Introduction
2. Data and Methods
2.1. Observational Data from the 2018 Sino-Russian Joint Arctic Expedition
2.2. Reanalysis Data
2.3. Runoff Fraction Calculation Method
2.4. Finite-Depth Ekman Transport Calculation Method
2.5. Vector Empirical Orthogonal Function (EOF) Analysis Method
3. Results
3.1. Freshwater Runoff Transport Pathways in the Laptev Sea–East Siberian Sea During the Summer of 2018
3.2. Modulation of Runoff Transport Pathways by Wind in the Summer of 2018
3.3. The Long-Term Spatial–Temporal Distribution Characteristics of Surface Circulation in the Laptev Sea–East Siberian Sea
3.4. Spatial–Temporal Variability of Arctic Sea-Surface Winds and Their Impacts on the Surface-Circulation Structure
4. Discussion and Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Abbreviations
AO | Arctic Oscillation |
AD | Arctic Dipole |
CTD | Conductivity–Temperature–Depth profiler |
EOF | Empirical Orthogonal Function |
ADT | Absolute Dynamic Topography |
SLP | Sea-Level Pressure |
AOO | Arctic Ocean Oscillation |
References
- Bauch, D.; Hölemann, J.; Willmes, S.; Gröger, A.; Novikhin, A.; Nikulina, H.; Kassens, L.T. Changes in distribution of brine waters on the Laptev Sea shelf in 2007. J. Geophys. Res. Ocean. 2010, 115, C11008. [Google Scholar] [CrossRef]
- Dmitrenko, I.A.; Kirillov, S.A.; Tremblay, L.B.; Bauch, D.; Hölemann, J.A.; Krumpen, T.; Kassens, H.; Wegner, C.; Heinemann, G.; Schröder, D. Impact of the Arctic Ocean Atlantic water layer on Siberian shelf hydrography. J. Geophys. Res. Ocean. 2010, 115, 1–17. [Google Scholar] [CrossRef]
- Létolle, R.; Martin, J.M.; Thomas, A.J.; Gordeev, V.V.; Gusarova, S.; Sidorov, I.S. 18O abundance and dissolved silicate in the Lena delta and Laptev Sea (Russia). Mar. Chem. 1993, 43, 47–64. [Google Scholar] [CrossRef]
- Bareiss, J.; Goergen, K. Spatial and temporal variability of sea ice in the Laptev Sea: Analyses and review of satellite passive-microwave data and model results, 1979 to 2002. Glob. Planet Change 2005, 48, 28–54. [Google Scholar] [CrossRef]
- Dmitrenko, I.A.; Kirillov, S.A.; Tremblay, L.B.; Bauch, D.; Willmes, S. Sea-ice production over the Laptev Sea shelf inferred from historical summer-to-winter hydrographic observations of 1960s–1990s. Geophys. Res. Lett. 2009, 36, L13605. [Google Scholar] [CrossRef]
- Aagaard, K.; Coachman, L.K.; Carmack, E. On the halocline of the Arctic Ocean. Deep Sea Res. Part A Oceanogr. Res. Pap. 1981, 28, 529–545. [Google Scholar] [CrossRef]
- Bauch, D.; Dmitrenko, I.A.; Wegner, C.; Hölemann, J.; Kirillov, S.A.; Timokhov, L.A.; Kassens, H. Exchange of Laptev Sea and Arctic Ocean halocline waters in response to atmospheric forcing. J. Geophys. Res. Ocean. 2009, 114, C05008. [Google Scholar] [CrossRef]
- Johnson, M.A.; Polyakov, I.V. The Laptev Sea as a source for recent Arctic Ocean salinity changes. Geophys. Res. Lett. 2001, 28, 2017–2020. [Google Scholar] [CrossRef]
- Morison, J.; Kwok, R.; Peralta-Ferriz, C.; Alkire, M.; Rigor, I.; Andersen, R.; Steele, M. Changing Arctic Ocean freshwater pathways. Nature 2012, 481, 66–70. [Google Scholar] [CrossRef]
- Steele, M.; Boyd, T. Retreat of the cold halocline layer in the Arctic Ocean. J. Geophys. Res. Ocean. 1998, 103, 10419–10435. [Google Scholar] [CrossRef]
- Aagaard, K.; Swift, J.H.; Carmack, E.C. Thermohaline circulation in the Arctic Mediterranean Seas. J. Geophys. Res. Ocean. 1985, 90, 4833–4846. [Google Scholar] [CrossRef]
- Dmitrenko, I.; Kirillov, S.; Eicken, H.; Markova, N. Wind-driven summer surface hydrography of the eastern Siberian shelf. Geophys. Res. Lett. 2005, 32, L14613. [Google Scholar] [CrossRef]
- Dmitrenko, I.A.; Kirillov, S.A.; Tremblay, L.B. The long-term and interannual variability of summer fresh water storage over the eastern Siberian shelf: Implication for climatic change. J. Geophys. Res. Ocean. 2008, 113, C03007. [Google Scholar] [CrossRef]
- Guay, C.K.H.; Falkner, K.K.; Muench, R.D.; Mensch, M.; Frank, M.; Bayer, R. Wind-driven transport pathways for Eurasian Arctic river discharge. J. Geophys. Res. Ocean. 2001, 106, 11469–11480. [Google Scholar] [CrossRef]
- Maslowski, W.; Newton, B.; Schlosser, P.; Semtner, A.; Martinson, D. Modeling recent climate variability in the Arctic Ocean. Geophys. Res. Lett. 2000, 27, 3743–3746. [Google Scholar] [CrossRef]
- Maslowski, W.; Marble, D.C.; Walczowski, W.; Semtner, A.J. On large-scale shifts in the Arctic Ocean and sea-ice conditions during 1979–98. Ann. Glaciol. 2001, 33, 545–550. [Google Scholar] [CrossRef]
- Bauch, D.; Dmitrenko, I.A.; Kirillov, S.; Wegner, C.; Hölemann, J.; Pivovarov, S.; Timokhov, L.; Kassens, H. Eurasian Arctic shelf hydrography: Exchange and residence time of southern Laptev Sea waters. Cont. Shelf Res. 2009, 29, 1815–1820. [Google Scholar] [CrossRef]
- Björk, G.; Söderkvist, J. Dependence of the Arctic Ocean ice thickness distribution on the poleward energy flux in the atmosphere. J. Geophys. Res. Ocean. 2002, 107, 37-1–37-17. [Google Scholar] [CrossRef]
- Overland, J.E.; Francis, J.A.; Hanna, E.; Wang, M. The recent shift in early summer Arctic atmospheric circulation. Geophys. Res. Lett. 2012, 39, L19804. [Google Scholar] [CrossRef]
- Wang, J.; Zhang, J.; Watanabe, E.; Ikeda, M.; Mizobata, K.; Walsh, J.E.; Bai, X.; Wu, B. Is the Dipole Anomaly a major driver to record lows in Arctic summer sea ice extent? Geophys. Res. Lett. 2009, 36, L05706. [Google Scholar] [CrossRef]
- Wu, B.; Wang, J.; Walsh, J.E. Dipole anomaly in the winter Arctic atmosphere and itsassociation with sea ice motion. J. Clim. 2006, 19, 210–225. [Google Scholar] [CrossRef]
- Hudson, P.A.; Martin, A.C.H.; Josey, S.A.; Marzocchi, A.; Angeloudis, A. Drivers of Laptev Sea interannual variability in salinity and temperature. Ocean Sci. 2024, 20, 341–367. [Google Scholar] [CrossRef]
- Osadchiev, A.A.; Pisareva, M.N.; Spivak, E.A.; Semiletov, I.P. Freshwater transport between the Kara, Laptev, and East-Siberian seas. Sci. Rep. 2020, 10, 13041. [Google Scholar] [CrossRef]
- Osadchiev, A.; Frey, D.; Spivak, E.; Shchuka, S.; Tilinina, N.; Semiletov, I. Structure and inter-annual variability of the freshened surface layer in the Laptev and East-Siberian seas during ice-free periods. Front. Mar. Sci. 2021, 8, 735011. [Google Scholar] [CrossRef]
- Andreev, A.G.; Pipko, I.I. Variations in sea level and geostrophic currents in the East Siberian Sea and Laptev Sea under the influence of wind and runoff of the Lena River. Izv. Atmos. Ocean. Phys. 2022, 58, 1028–1036. [Google Scholar] [CrossRef]
- Wang, X.; Zhao, J.; Lobanov, V.B.; Kaplunenko, D.; Rudykh, Y.N.; He, Y.; Chen, X. Distribution and Transport of Water Masses in the East Siberian Sea and Their Impacts on the Arctic Halocline. J. Geophys. Res. Ocean. 2021, 126, e2020JC016523. [Google Scholar] [CrossRef]
- Lin, P.; Pickart, R.S.; Heorton, H.; Tsamados, M.; Itoh, M.; Kikuchi, T. Recent state transition of the Arctic Ocean’s Beaufort Gyre. Nat. Geosci. 2023, 16, 485–491. [Google Scholar] [CrossRef]
- Ekwurzel, B.; Schlosser, P.; Mortlock, R.A.; Fairbanks, R.G.; Swift, J.H. River runoff, sea ice meltwater, and Pacific water distribution and mean residence times in the Arctic Ocean. J. Geophys. Res. Ocean. 2001, 106, 9075–9092. [Google Scholar] [CrossRef]
- Lewis, D.M.; Belcher, S.E. Time-dependent, coupled, Ekman boundary layer solutions incorporating Stokes drift. Dynam. Atmos. Oceans 2004, 37, 313–351. [Google Scholar] [CrossRef]
- Hardy, D.M.; Walton, J.J. Principal Components Analysis of Vector Wind Measurements. J. Appl. Meteorol. Clim. 1978, 17, 1153–1162. [Google Scholar] [CrossRef]
- Zhao, J.; Wang, W.; Kang, S.H.; Yang, E.; Kim, T. Optical properties in waters around the Mendeleev Ridge related to the physical features of water masses. Deep. Sea Res. Part II Top. Stud. Oceanogr. 2015, 120, 43–51. [Google Scholar] [CrossRef]
- Proshutinsky, A.Y.; Johnson, M.A. Two circulation regimes of the wind-driven Arctic Ocean. J. Geophys. Res. Ocean. 1997, 102, 12493–12514. [Google Scholar] [CrossRef]
- Polyakov, I.V.; Ingvaldsen, R.B.; Pnyushkov, A.V.; Bhatt, U.S.; Francis, J.A.; Janout, M.; Kwok, R.; Skagseth, Ø. Fluctuating Atlantic inflows modulate Arctic atlantification. Science 2023, 381, 972–979. [Google Scholar] [CrossRef] [PubMed]
Temporal Modes of Surface-Circulation Motion | Temporal Modes of Arctic Sea-Surface Wind | Temporal Mode of AD | ||
---|---|---|---|---|
PC1 | PC2 | PC3 | PC | |
PC1 | 0.76 ** | −0.20 * | −0.06 | 0.07 |
PC2 | 0.02 | 0.13 | 0.39 * | 0.33 * |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Liu, X.; Wu, Y.; Wang, X. Wind-Induced Water Transport and Circulation Structure in the Laptev Sea–East Siberian Sea. Atmosphere 2025, 16, 1001. https://doi.org/10.3390/atmos16091001
Liu X, Wu Y, Wang X. Wind-Induced Water Transport and Circulation Structure in the Laptev Sea–East Siberian Sea. Atmosphere. 2025; 16(9):1001. https://doi.org/10.3390/atmos16091001
Chicago/Turabian StyleLiu, Xiangyun, Yanjun Wu, and Xiaoyu Wang. 2025. "Wind-Induced Water Transport and Circulation Structure in the Laptev Sea–East Siberian Sea" Atmosphere 16, no. 9: 1001. https://doi.org/10.3390/atmos16091001
APA StyleLiu, X., Wu, Y., & Wang, X. (2025). Wind-Induced Water Transport and Circulation Structure in the Laptev Sea–East Siberian Sea. Atmosphere, 16(9), 1001. https://doi.org/10.3390/atmos16091001