High-Resolution Estimation of Cropland N2O Emissions in China Based on Machine Learning Algorithms
Abstract
1. Introduction
- Identify the driving factors influencing cropland N2O EFs.
- Develop a city-level N2O emission inventory for Chinese croplands from 2000 to 202
- Examine the impacts of agricultural policies on the spatial-temporal patterns of N2O emissions.
2. Methods
2.1. Emission Factor Database
- Studies must be field experiments on agricultural soils.
- Experiments must be conducted within China.
- Implementation of sound N2O sampling and measurement methodologies.
- Reported experimental results within a reasonable range.
- Include complete experimental data covering fertilizer type, nitrogen application rate, mode of fertilizer application, and tillage practice.
2.2. Model Construction and Optimization
2.3. Estimation of N2O Emissions
- i: The city, referring to prefecture-level cities in China.
- j: The agricultural source type (e.g., crop or fertilizer type).
- y: The year, referring to the research period from 2000 to 2022.
- A(i,j,y): The fertilization amount corresponding to the j-th emission source in the i-th prefecture-level city in year y.
- EF(i,j,y): The cropland EF of the j-th emission source in the i-th prefecture-level city in year y.
- E(i,j,y): The emissions amount of the j-th emission source in the i-th prefecture-level city in year y.
3. Results
3.1. Drivers of Spatial Variation in EFs
3.2. Spatiotemporal Characteristics of EFs
3.3. Total Emission Dynamics and Temporal Heterogeneity
3.4. Spatial Distribution of Emissions
Rank | 2000 | 2005 | 2010 | 2015 | 2020 | 2022 |
---|---|---|---|---|---|---|
1 | Chongqing | Nanyang | Chongqing | Chongqing | Nanyang | Chongqing |
(5.5 Gg) | (9.3 Gg) | (9.9 Gg) | (10.3 Gg) | (13.9 Gg) | (7.1 Gg) | |
2 | Nanyang | Chongqing | Nanyang | Xinyang | Chongqing | Nanyang |
(7.6 Gg) | (8.7 Gg) | (7.1 Gg) | (6.1 Gg) | (9.2 Gg) | (4.5 Gg) | |
3 | Xushui | Yancheng | Yancheng | Zhoukou | Zhoukou | Hulunbuir |
(7.0 Gg) | (6.8 Gg) | (5.5 Gg) | (5.9 Gg) | (7.8 Gg) | (4.2 Gg) | |
4 | Yancheng | Zhumadian | Xinyang | Yancheng | Zhumadian | Changchun |
(6.0 Gg) | (6.6 Gg) | (5.0 Gg) | (5.6 Gg) | (6.2 Gg) | (3.9 Gg) | |
5 | Zhumadian | Jining | Zhumadian | Zhumadian | Xuzhou | Xuzhou |
(5.8 Gg) | (6.4 Gg) | (4.8 Gg) | (5.3 Gg) | (6.0 Gg) | (3.4 Gg) |
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Intergovernmental Panel on Climate Change (IPCC). Mitigation of Climate Change. In Contribution of Working Group III to the Sixth Assessment Report of the Intergovernmental Panel on Climate Change; Masson-Delmotte, V., Zhai, P., Pirani, A., Connors, S.L., Pean, C., Berger, S., Caud, N., Chen, Y., Goldfarb, L., Gomis, M., et al., Eds.; Cambridge University Press: Cambridge, UK; New York, NY, USA, 2022; Available online: https://www.ipcc.ch/report/ar6/wg3/ (accessed on 15 March 2024).
- Intergovernmental Panel on Climate Change (IPCC). Climate Change 2013: The Physical Science Basis. In Contribution of Working Group I to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change; Stocker, T.F., Qin, D., Plattner, G.K., Tignor, M., Allen, S.K., Boschung, J., Nauels, A., Xia, Y., Bex, V., Midgley, P.M., Eds.; Cambridge University Press: Cambridge, UK; New York, NY, USA, 2013; Available online: https://www.ipcc.ch/report/ar5/wg1/ (accessed on 15 March 2024).
- Ravishankara, A.R.; Daniel, J.S.; Portmann, R.W. Nitrous oxide (N2O): The dominant ozone-depleting substance emitted in the 21st century. Science 2009, 326, 123–125. [Google Scholar] [CrossRef]
- Tian, H.; Pan, N.; Thompson, R.L.; Canadell, J.G.; Suntharalingam, P.; Regnier, P.; Davidson, E.A.; Prather, M.; Ciais, P.; Muntean, M.; et al. Global nitrous oxide budget (1980–2020). Earth Syst. Sci. Data 2024, 16, 2543–2604. [Google Scholar] [CrossRef]
- Liang, M.; Zhou, Z.; Ren, P.; Xiao, H.; Ri, X.; Hu, Z.; Piao, S.; Tian, H.; Tong, Q.; Zhou, F.; et al. Four decades of full-scale nitrous oxide emission inventory in China. Natl. Sci. Rev. 2024, 11, nwad285. [Google Scholar] [CrossRef] [PubMed]
- Tian, H.Q.; Xu, R.T.; Canadell, J.G.; Thompson, R.L.; Winiwarter, W.; Suntharalingam, P.; Davidson, E.A.; Ciais, P.; Jackson, R.B.; Janssens-Maenhout, G.; et al. A comprehensive quantification of global nitrous oxide sources and sinks. Nature 2020, 586, 248–256. [Google Scholar] [CrossRef]
- Smith, P.; Bustamante, M.; Ahammad, H.; Clark, H.; Dong, H.; Elsiddig, E.A.; Haberl, H.; Harper, R.; House, J.; Jafari, M.; et al. Agriculture, Forestry and Other Land Use (AFOLU). In Climate Change 2014: Mitigation of Climate Change; Edenhofer, O., Pichs-Madruga, R., Sokona, Y., Farahani, E., Kadner, S., Seyboth, K., Adler, A., Baum, I., Brunner, S., Eickemeier, P., et al., Eds.; Contribution of Working Group III to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change; Cambridge University Press: Cambridge, UK; New York, NY, USA, 2014; pp. 811–922. [Google Scholar]
- Gao, Y.; Li, Z.; Hong, S.; Yu, L.; Li, S.; Wei, J.; Chang, J.; Zhang, Y.; Zhang, W.; Yuan, W.; et al. Recent stabilization of agricultural non-CO2 greenhouse gas emissions in China. Natl. Sci. Rev. 2025, 12, nwaf040. [Google Scholar] [CrossRef]
- Liu, X.; Zhang, F. Nitrogen fertilizer induced greenhouse gas emissions in China. Curr. Opin. Environ. Sustain. 2011, 3, 407–413. [Google Scholar] [CrossRef]
- National Bureau of Statistics of China (NBSC). National Bureau of Statistics of China. Available online: http://data.stats.gov.cn/easyquery.htm?cn=C01 (accessed on 15 March 2024).
- Cross, L.; Gruère, A. Public Summary-Medium-Term Fertilizer Outlook 2023–2027. In Proceedings of the IFA Annual Conference, Prague, Czech Republic, 22–24 May 2023. [Google Scholar]
- Yu, Z.; Liu, J.; Kattel, G. Historical nitrogen fertilizer use in China from 1952 to 2018. Earth Syst. Sci. Data 2022, 14, 5179–5194. [Google Scholar] [CrossRef]
- Zheng, X.; Han, S.; Huang, Y.; Wang, Y.; Wang, M. Re-quantifying the emission factors based on field measurements and estimating the direct N2O emission from Chinese croplands. Glob. Biogeochem. Cycles 2004, 18, GB2008. [Google Scholar] [CrossRef]
- Zhou, F.; Shang, Z.; Ciais, P.; Tao, S.; Piao, S.; Raymond, P.; He, C.; Li, B.; Wang, R.; Wang, X.; et al. A new high-resolution N2O emission inventory for China in 2008. Environ. Sci. Technol. 2014, 48, 8538–8547. [Google Scholar] [CrossRef]
- Cui, X.; Zhou, F.; Ciais, P.; Davidson, E.A.; Tubiello, F.N.; Niu, X.; Ju, X.; Canadell, J.G.; Bouwman, A.F.; Jackson, R.B.; et al. Global mapping of crop-specific emission factors highlights hotspots of nitrous oxide mitigation. Nat. Food 2021, 2, 886–893. [Google Scholar] [CrossRef] [PubMed]
- Gunst, R.F.; Mason, R.L. Regression Analysis and Its Application: A Data-Oriented Approach; CRC Press: Boca Raton, FL, USA, 2018. [Google Scholar]
- Zhong, S.; Zhang, K.; Bagheri, M.; Burken, J.G.; Gu, A.; Li, B.; Ma, X.; Marrone, B.L.; Ren, Z.J.; Schrier, J.; et al. Machine learning: New ideas and tools in environmental science and engineering. Environ. Sci. Technol. 2021, 55, 12741–12754. [Google Scholar] [CrossRef] [PubMed]
- China Meteorological Administration (CMA). China Meteorological Administration Official Website. Available online: https://data.cma.cn/ (accessed on 31 March 2025).
- FAO; IIASA; ISRIC; ISSCAS; JRC. Harmonized World Soil Database Version 2.0; FAO: Rome, Italy; IIASA: Laxenburg, Austria, 2023; p. 50. [Google Scholar] [CrossRef]
- Eggleston, H.; Buendia, L.; Miwa, K.; Ngara, T.; Tanabe, K. 2006 IPCC Guidelines for National Greenhouse Gas Inventories; Institute for Global Environmental Strategies (IGES): Hayama, Japan, 2006; Available online: https://www.ipcc-nggip.iges.or.jp/public/2006gl/ (accessed on 31 March 2025).
- Tian, Y. Study on the industrial promotion policy of crop straw comprehensive utilization in China. Chin. J. Agric. Resour. Reg. Plan. 2020, 41, 28–36. (In Chinese) [Google Scholar]
- Kelley, L.A.; Zhang, Z.; Tamagno, S.; Lundy, M.E.; Mitchell, J.P.; Gaudin, A.C.; Pittelkow, C.M. Changes in soil N2O emissions and nitrogen use efficiency following long-term soil carbon storage: Evidence from a mesocosm experiment. Agric. Ecosyst. Environ. 2024, 370, 109054. [Google Scholar] [CrossRef]
- Yin, Y.; Wang, Z.; Tian, X.; Wang, Y.; Cong, J.; Cui, Z. Evaluation of variation in background nitrous oxide emissions: A new global synthesis integrating the impacts of climate, soil, and management conditions. Glob. Change Biol. 2022, 28, 480–492. [Google Scholar] [CrossRef]
- Wang, J.; Sha, Z.; Zhang, J.; Qin, W.; Xu, W.; Goulding, K.; Liu, X. Improving nitrogen fertilizer use efficiency and minimizing losses and global warming potential by optimizing applications and using nitrogen synergists in a maize-wheat rotation. Agric. Ecosyst. Environ. 2023, 353, 108538. [Google Scholar] [CrossRef]
- Qiu, Y.; Zhang, Y.; Zhang, K.; Xu, X.; Zhao, Y.; Bai, T.; Zhao, Y.; Wang, H.; Sheng, X.; Bloszies, S.; et al. Intermediate soil acidification induces highest nitrous oxide emissions. Nat. Commun. 2024, 15, 46931. [Google Scholar] [CrossRef]
- Gao, P.; Yan, X.; Xia, X.; Liu, D.; Guo, S.; Ma, R.; Lou, Y.; Yang, Z.; Wang, H.; Yang, Q.; et al. Effects of the three amendments on NH3 volatilization, N2O emissions, and nitrification at four salinity levels: An indoor experiment. J. Environ. Manag. 2024, 354, 120399. [Google Scholar] [CrossRef] [PubMed]
- Liu, B.; Mørkved, P.T.; Frostegård, Å.; Bakken, L.R. Denitrification gene pools, transcription and kinetics of NO, N2O and N2 production as affected by soil pH. FEMS Microbiol. Ecol. 2010, 72, 407–417. [Google Scholar] [CrossRef] [PubMed]
- Jin, S.; Zhou, F. Zero Growth of Chemical Fertilizer and Pesticide Use: China’s Objectives, Progress and Challenges. J. Resour. Ecol. 2018, 9, 50–58. [Google Scholar] [CrossRef]
- Zhang, W.F.; Dou, Z.X.; He, P.; Ju, X.T.; Powlson, D.; Chadwick, D.; Norse, D.; Lu, Y.L.; Zhang, Y.; Wu, L.; et al. New technologies reduce greenhouse gas emissions from nitrogenous fertilizer in China. Proc. Natl. Acad. Sci. USA 2013, 110, 8375–8380. [Google Scholar] [CrossRef]
- Chen, Y.; Zhang, L.; Zhao, Y.; Zhang, L.; Zhang, J.; Liu, M.; Zhou, M.; Luo, B. High-resolution ammonia emissions from nitrogen fertilizer application in China during 2005–2020. Atmosphere 2022, 13, 1297. [Google Scholar] [CrossRef]
- Yuan, Y.; Chen, H.; Zhang, L.; Ren, B.; Xing, S.; Tong, J. Prediction of spatial distribution of soil organic carbon in farmland based on multi-variables and random forest algorithm—A case study of a subtropical complex geomorphic region in Fujian. Acta Pedol. Sin. 2021, 58, 887–899. (In Chinese) [Google Scholar]
- Hu, Y.; Deng, Q.; Kätterer, T.; Olesen, J.E.; Ying, S.C.; Ochoa-Hueso, R.; Mueller, C.W.; Weintraub, M.N.; Chen, J. Depth-dependent responses of soil organic carbon under nitrogen deposition. Glob. Change Biol. 2024, 30, e17247. [Google Scholar] [CrossRef]
- Badagliacca, G.; Benítez, E.; Amato, G.; Badalucco, L.; Giambalvo, D.; Laudicina, V.A.; Ruisi, P. Long-term effects of contrasting tillage on soil organic carbon, nitrous oxide and ammonia emissions in a Mediterranean Vertisol under different crop sequences. Sci. Total Environ. 2018, 619–620, 18–27. [Google Scholar] [CrossRef] [PubMed]
- Shan, J.; Yan, X. Effects of crop residue returning on nitrous oxide emissions in agricultural soils. Atmos. Environ. 2013, 71, 170–175. [Google Scholar] [CrossRef]
- Bateman, E.J.; Baggs, E.M. Contributions of nitrification and denitrification to N2O emissions from soils at different water-filled pore space. Biol. Fertil. Soils 2005, 41, 379–388. [Google Scholar] [CrossRef]
- Hu, H.-W.; Macdonald, C.A.; Trivedi, P.; Holmes, B.; Bodrossy, L.; He, J.-Z.; Singh, B.K. Water addition regulates the metabolic activity of ammonia oxidizers responding to environmental perturbations in dry subhumid ecosystems. Environ. Microbiol. 2015, 17, 444–461. [Google Scholar] [CrossRef] [PubMed]
- Richardson, D.; Felgate, H.; Watmough, N.; Thomson, A.; Baggs, E. Mitigating release of the potent greenhouse gas N2O from the nitrogen cycle—Could enzymic regulation hold the key? Trends Biotechnol. 2009, 27, 388–397. [Google Scholar] [CrossRef]
- Ash, R.F. The agricultural sector in China: Performance and policy dilemmas during the 1990s. China Q. 1992, 131, 545–576. [Google Scholar] [CrossRef]
- Ministry of Agriculture and Rural Affairs of the People’s Republic of China. Two Actions That Seek to Achieve Zero Growth in the Use of Chemical Fertilizer and Pesticides by 2020. Available online: http://www.moa.gov.cn/nybgb/2015/san/201711/t20171129_5923401.htm (accessed on 20 February 2025). (In Chinese)
- Li, Z.; Hong, S.; Sun, Z.; Cong, N.; Yan, Y.; Li, F.; Gao, Y.; Sun, Y.; Chen, Y.; Chen, Y.; et al. Turning point of direct N2O emissions in China’s croplands dominated by reduced fertilizer usage since 2015. Agric. Ecosyst. Environ. 2025, 388, 109655. [Google Scholar] [CrossRef]
- Shang, Z.; Zhou, F.; Smith, P.; Saikawa, E.; Ciais, P.; Chang, J.; Tian, H.; Del Grosso, S.J.; Ito, A.; Chen, M.; et al. Weakened growth of cropland-N2O emissions in China associated with nationwide policy interventions. Glob. Change Biol. 2019, 25, 3706–3719. [Google Scholar] [CrossRef] [PubMed]
- Xu, P.; Houlton, B.Z.; Zheng, Y.; Zhou, F.; Ma, L.; Li, B.; Liu, X.; Li, G.; Lu, H.; Quan, F.; et al. Policy-enabled stabilization of nitrous oxide emissions from livestock production in China over 1978–2017. Nat. Food 2022, 3, 356–366. [Google Scholar] [CrossRef]
- Zhang, Y.; Fang, S.; Chen, J.; Lin, Y.; Chen, Y.; Liang, R.; Jiang, K.; Parker, R.J.; Boesch, H.; Steinbacher, M.; et al. Observed changes in China’s methane emissions linked to policy drivers. Proc. Natl. Acad. Sci. USA 2022, 119, e2202742119. [Google Scholar] [CrossRef]
- Nelson, D.A. European Environment Agency. Colo. J. Int. Environ. Law Policy 1999, 10, 153. [Google Scholar]
- Gale, F. China’s Agricultural Trade: Issues and Prospects; Economic Research Service, USDA: Washington, DC, USA, 2007; p. 65. [Google Scholar]
- Yue, Q.; Cheng, K.; Ogle, S.; Hillier, J.; Smith, P.; Abdalla, M.; Ledo, A.; Sun, J.; Pan, G. Evaluation of four modelling approaches to estimate nitrous oxide emissions in China’s cropland. Sci. Total Environ. 2019, 652, 1279–1289. [Google Scholar] [CrossRef]
- Recio, J.; Vallejo, A.; Le-Noë, J.; Garnier, J.; García-Marco, S.; Álvarez, J.M.; Sanz-Cobena, A. The effect of nitrification inhibitors on NH3 and N2O emissions in highly N fertilized irrigated Mediterranean cropping systems. Sci. Total Environ. 2018, 636, 427–436. [Google Scholar] [CrossRef] [PubMed]
- Singh, B.; Craswell, E. Fertilizers and nitrate pollution of surface and ground water: An increasingly pervasive global problem. SN Appl. Sci. 2021, 3, 518. [Google Scholar] [CrossRef]
- Imam, T.; Hidetaka, N.; Yoshitaka, G. An Optimization of the Autoregressive Model Using the Grid Search Method. Int. J. Eng. Technol. 2018, 7, 12739. [Google Scholar] [CrossRef]
- Bai, Z.; Ma, W.; Ma, L.; Velthof, G.L.; Wei, Z.; Havlík, P.; Oenema, O.; Lee, M.R.F.; Zhang, F. China’s livestock transition: Driving forces, impacts, and consequences. Sci. Adv. 2018, 4, eaar8534. [Google Scholar] [CrossRef]
- Chen, G.Q.; Zhang, B. Greenhouse gas emissions in China 2007: Inventory and input–output analysis. Energy Policy 2010, 38, 6180–6193. [Google Scholar] [CrossRef]
- Luo, Z.; Lam, S.K.; Fu, H.; Hu, S.; Chen, D. Temporal and spatial evolution of nitrous oxide emissions in China: Assessment, strategy and recommendation. J. Clean. Prod. 2019, 223, 360–367. [Google Scholar] [CrossRef]
- Wang, C.; Shen, Y.; Fang, X.; Xiao, S.; Liu, G.; Wang, L.; Gu, B.; Zhou, F.; Chen, D.; Tian, H.; et al. Reducing soil nitrogen losses from fertilizer use in global maize and wheat production. Nat. Geosci. 2024, 17, 1008–1015. [Google Scholar] [CrossRef]
- Zhang, Y.; Mu, Y.; Zhou, Y.; Liu, J.; Zhang, C. Nitrous oxide emissions from maize–wheat field during 4 successive years in the North China Plain. Biogeosciences 2014, 11, 1717–1726. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Liu, C.; Wen, Z.; Wang, J.; Liu, X. High-Resolution Estimation of Cropland N2O Emissions in China Based on Machine Learning Algorithms. Atmosphere 2025, 16, 1092. https://doi.org/10.3390/atmos16091092
Liu C, Wen Z, Wang J, Liu X. High-Resolution Estimation of Cropland N2O Emissions in China Based on Machine Learning Algorithms. Atmosphere. 2025; 16(9):1092. https://doi.org/10.3390/atmos16091092
Chicago/Turabian StyleLiu, Chong, Zhang Wen, Jianxiao Wang, and Xuejun Liu. 2025. "High-Resolution Estimation of Cropland N2O Emissions in China Based on Machine Learning Algorithms" Atmosphere 16, no. 9: 1092. https://doi.org/10.3390/atmos16091092
APA StyleLiu, C., Wen, Z., Wang, J., & Liu, X. (2025). High-Resolution Estimation of Cropland N2O Emissions in China Based on Machine Learning Algorithms. Atmosphere, 16(9), 1092. https://doi.org/10.3390/atmos16091092