Open AccessArticle
Concentration Distribution and Physicochemical Properties of 10 nm–10 μm Coal Dust Generated by Drum Cutting Different Rank Coals: A Physical Simulation Experiment
by
Hui Liu, Rong Jia, Jintuo Zhu, Liang Wang, Jiamu Tong, Yu Liu, Qingyang Tian, Wenbo Liu, Caixia An and Nkansah Benjamin Oduro
Atmosphere 2025, 16(10), 1114; https://doi.org/10.3390/atmos16101114 (registering DOI) - 23 Sep 2025
Abstract
Shearer drum cutting of coal seams generates over half of the coal dust in coal mines, while relevant studies focus more on micron-sized dust and much less on nano- to sub-micron-sized coal dust. Based on the self-developed experimental system for simulating dust generation
[...] Read more.
Shearer drum cutting of coal seams generates over half of the coal dust in coal mines, while relevant studies focus more on micron-sized dust and much less on nano- to sub-micron-sized coal dust. Based on the self-developed experimental system for simulating dust generation from drum cutting of coal bodies, this study investigated the concentration distribution characteristics and physicochemical properties of 10 nm–10 μm coal dust generated from drum cutting of different rank coals with different cutting parameters. Results showed that the coal dust mass and number concentrations were concentrated in 2–10 μm and 10–200 nm, respectively, accounting for 90% of the total 10 nm–10 μm coal dust; the mass percentages of PM1/PM10 (PM1/PM10 = PM1 particles relative to PM10 particles, similarly hereinafter), PM1/PM2.5, and PM2.5/PM10 were 3.25–4.87%, 19.35–26.73%, and 14.82–18.81%, respectively, whereas over 99% of the total number of particles in the PM10 fraction are within the PM1 fraction (i.e., N-PM1/N-PM10 > 99%), that is, both N-PM1/N-PM2.5 and N-PM2.5/N-PM10 exceeded 99%. Lower-rank coal generates less 10 nm–10 μm coal dust, and either higher moisture content, firmness coefficient, or lower fixed carbon content of the coal can effectively reduce the 10 nm–10 μm coal dust generation. Either reduction in the tooth tip cone angle, the rotary speed, or increase in the mounting angle or the cutting depth can effectively inhibit the 10 nm–10 μm coal dust generation. Higher-rank coal dust shows fewer surface pores, smoother surfaces, larger contact angles, more hydrophobic groups, and fewer hydrophilic groups. The research results have filled the knowledge gap in the pollution characteristics of nano- to submicron-sized dust generated from shearer drum cutting of coal bodies, and can serve as an important reference for the development of dust reduction and suppression technologies in coal mining faces as well as the prevention of coal worker’s pneumoconiosis.
Full article
►▼
Show Figures