This work presents the structural analysis and validation of a sub-250 g FPV drone chassis, emphasizing both theoretical rigor and practical applicability. The novelty of this contribution lies in four complementary aspects. First, the structural philosophy introduces a screwless frame with interchangeable arms,
[...] Read more.
This work presents the structural analysis and validation of a sub-250 g FPV drone chassis, emphasizing both theoretical rigor and practical applicability. The novelty of this contribution lies in four complementary aspects. First, the structural philosophy introduces a screwless frame with interchangeable arms, joined through interlocking mechanisms inspired by traditional Japanese joinery. This approach mitigates stress concentrations, reduces weight by eliminating fasteners, and enables rapid arm replacement in the field. Second, validation relies on nonlinear static and transient FEM simulations, explicitly including crash scenarios at 5 m/s, systematically cross-checked with bench tests and instrumented flight trials. Third, unlike most structural studies, the framework integrates firmware (Betaflight), GPS, telemetry, and real flight performance, linking structural reliability with operational robustness. Finally, a practical materials pathway was implemented through a dual-track strategy: PETG for rapid, low-cost prototyping, and carbon fiber composites as the benchmark for production-level performance. Nonlinear transient FEM analyses were carried out using Inventor Nastran under multiple load cases, including maximum motor acceleration, pitch maneuvers, and lateral impact at 40 km/h, and were validated against simplified analytical models. Experimental validation included bench and in-flight trials with integrated telemetry and autonomous features such as Return-to-Home, demonstrating functional robustness. The results show that the prototype flies correctly and that the chassis withstands the loads experienced during flight, including accelerations up to 4.2 G (41.19 m/
), abrupt changes in direction, and high-speed maneuvers reaching approximately 116 km/h. Quantitatively, safety factors of approximately 5.3 under maximum thrust and 1.35 during impact confirm sufficient structural integrity for operational conditions. In comparison with prior works reviewed in this study, the key contribution of this work lies in unifying advanced, crash-resilient FEM simulations with firmware-linked flight validation and a scalable material strategy, establishing a distinctive and comprehensive workflow for the development of sub-250 g UAVs.
Full article