Editor’s Choice Articles

Editor’s Choice articles are based on recommendations by the scientific editors of MDPI journals from around the world. Editors select a small number of articles recently published in the journal that they believe will be particularly interesting to readers, or important in the respective research area. The aim is to provide a snapshot of some of the most exciting work published in the various research areas of the journal.

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
Article
Water Chlorophyll a Estimation Using UAV-Based Multispectral Data and Machine Learning
Drones 2023, 7(1), 2; https://doi.org/10.3390/drones7010002 - 21 Dec 2022
Cited by 1 | Viewed by 1324
Abstract
Chlorophyll a (chl-a) concentration is an important parameter for evaluating the degree of water eutrophication. Monitoring it accurately through remote sensing is thus of great significance for early warnings of water eutrophication, and the inversion of water quality from UAV images has attracted [...] Read more.
Chlorophyll a (chl-a) concentration is an important parameter for evaluating the degree of water eutrophication. Monitoring it accurately through remote sensing is thus of great significance for early warnings of water eutrophication, and the inversion of water quality from UAV images has attracted more and more attention. In this study, a regression method to estimate chl-a was proposed; it used a small multispectral UAV to collect data and took the vegetation indices as intermediate variables. For this purpose, ten monitoring points were selected in Erhai Lake, China, and two months of monitoring and data collection were conducted during a cyanobacterial bloom period. Finally, 155 sets of valid data were obtained. The imaging data were obtained using a multispectral UAV, water samples were collected from the lake, and the chl-a concentration was obtained in the laboratory. Then, the images were preprocessed to extract the information from different wavebands. The univariate regression of each vegetation index and the regression using band information were used for comparative analysis. Four machine learning algorithms were used to build the model: support vector machine (SVM), random forest (RF), extreme learning machine (ELM), and convolutional neural network (CNN). The results showed that the effect of estimating the chl-a concentration via multiple regression using vegetation indices was generally better than that via regression with a single vegetation index and original band information. The CNN model obtained the best results (R2 = 0.7917, RMSE = 8.7660, and MRE = 0.2461). This study showed the reliability of using multiple regression based on vegetation indices to estimate the chl-a of surface water. Full article
(This article belongs to the Special Issue Yield Prediction Using Data from Unmanned Aerial Vehicles)
Show Figures

Figure 1

Review
Independent Control Spraying System for UAV-Based Precise Variable Sprayer: A Review
Drones 2022, 6(12), 383; https://doi.org/10.3390/drones6120383 - 28 Nov 2022
Cited by 3 | Viewed by 3399
Abstract
Pesticides are essential for removing plant pests and sustaining good yields on agricultural land. Excessive use has detrimental repercussions, such as the depletion of soil fertility and the proliferation of immune insect species, such as Nilaparvata lunges and Nezara viridula. Unmanned aerial [...] Read more.
Pesticides are essential for removing plant pests and sustaining good yields on agricultural land. Excessive use has detrimental repercussions, such as the depletion of soil fertility and the proliferation of immune insect species, such as Nilaparvata lunges and Nezara viridula. Unmanned aerial vehicle (UAV) variable-rate spraying offers a precise and adaptable alternative strategy for overcoming these challenges. This study explores research trends in the application of semi-automatic approaches and land-specific platforms for precision spraying. The employment of an autonomous control system, together with a selection of hardware such as microcontrollers, sensors, pumps, and nozzles, yields the performance necessary to accomplish spraying precision, UAV performance efficacy, and flexibility in meeting plant pesticide requirements. This paper discusses the implications of ongoing and developing research. The comparison of hardware, control system approaches, and data acquisition from the parameters of each study is presented to facilitate future research. Future research is incentivized to continue the precision performance of the variable rate development by combining it with cropland mapping to determine the need for pesticides, although strict limits on the amount of spraying make it difficult to achieve the same, even though the quality is very beneficial. Full article
(This article belongs to the Special Issue Advances of UAV in Precision Agriculture)
Show Figures

Figure 1

Article
Vegetation Cover Estimation in Semi-Arid Shrublands after Prescribed Burning: Field-Ground and Drone Image Comparison
Drones 2022, 6(11), 370; https://doi.org/10.3390/drones6110370 - 21 Nov 2022
Cited by 1 | Viewed by 1925
Abstract
The use of drones for vegetation monitoring allows the acquisition of large amounts of high spatial resolution data in a simple and fast way. In this study, we evaluated the accuracy of vegetation cover estimation by drones in Mediterranean semi-arid shrublands (Sierra de [...] Read more.
The use of drones for vegetation monitoring allows the acquisition of large amounts of high spatial resolution data in a simple and fast way. In this study, we evaluated the accuracy of vegetation cover estimation by drones in Mediterranean semi-arid shrublands (Sierra de Filabres; Almería; southern Spain) after prescribed burns (2 years). We compared drone-based vegetation cover estimates with those based on traditional vegetation sampling in ninety-six 1 m2 plots. We explored how this accuracy varies in different types of coverage (low-, moderate- and high-cover shrublands, and high-cover alfa grass steppe); as well as with diversity, plant richness, and topographic slope. The coverage estimated using a drone was strongly correlated with that obtained by vegetation sampling (R2 = 0.81). This estimate varied between cover classes, with the error rate being higher in low-cover shrublands, and lower in high-cover alfa grass steppe (normalized RMSE 33% vs. 9%). Diversity and slope did not affect the accuracy of the cover estimates, while errors were larger in plots with greater richness. These results suggest that in semi-arid environments, the drone might underestimate vegetation cover in low-cover shrublands. Full article
(This article belongs to the Special Issue Drones for Biodiversity Conservation)
Show Figures

Figure 1

Review
Development Status and Key Technologies of Plant Protection UAVs in China: A Review
Drones 2022, 6(11), 354; https://doi.org/10.3390/drones6110354 - 15 Nov 2022
Cited by 2 | Viewed by 1327
Abstract
Plant protection unmanned aerial vehicles (UAVs) play a crucial role in agricultural aviation services. In recent years, plant protection UAVs, which improve the accuracy and eco-friendliness of agricultural techniques, have been used to overcome the shortcomings of traditional agricultural operations. First, this paper [...] Read more.
Plant protection unmanned aerial vehicles (UAVs) play a crucial role in agricultural aviation services. In recent years, plant protection UAVs, which improve the accuracy and eco-friendliness of agricultural techniques, have been used to overcome the shortcomings of traditional agricultural operations. First, this paper introduces the development scale, main types, and operation scenarios of China’s plant protection UAVs. Subsequently, the key technologies of plant protection UAVs, such as precision autonomous flight control, pesticide spraying, drift control, and spraying quality measurement technologies, are reviewed. Next, the emergent technologies of plant protection UAVs are studied and analyzed with a focus on better spray effects, calculation models of droplet drift, controllable droplet size atomization technology, droplet drift detection technology, and droplet deposition quality detection technology in the application of plant protection UAVs. Moreover, the technologies of plant protection UAV application are summarized and future research prospects are presented, offering ideas for follow-up research on the key technologies of plant protection UAVs and encouraging agricultural production management to move toward better efficiency, eco-friendliness, and accuracy. Full article
(This article belongs to the Special Issue Recent Advances in Crop Protection Using UAV and UGV)
Show Figures

Figure 1

Article
GGT-YOLO: A Novel Object Detection Algorithm for Drone-Based Maritime Cruising
Drones 2022, 6(11), 335; https://doi.org/10.3390/drones6110335 - 31 Oct 2022
Cited by 6 | Viewed by 1704
Abstract
Drones play an important role in the development of remote sensing and intelligent surveillance. Due to limited onboard computational resources, drone-based object detection still faces challenges in actual applications. By studying the balance between detection accuracy and computational cost, we propose a novel [...] Read more.
Drones play an important role in the development of remote sensing and intelligent surveillance. Due to limited onboard computational resources, drone-based object detection still faces challenges in actual applications. By studying the balance between detection accuracy and computational cost, we propose a novel object detection algorithm for drone cruising in large-scale maritime scenarios. Transformer is introduced to enhance the feature extraction part and is beneficial to small or occluded object detection. Meanwhile, the computational cost of the algorithm is reduced by replacing the convolution operations with simpler linear transformations. To illustrate the performance of the algorithm, a specialized dataset composed of thousands of images collected by drones in maritime scenarios is given, and quantitative and comparative experiments are conducted. By comparison with other derivatives, the detection precision of the algorithm is increased by 1.4%, the recall is increased by 2.6% and the average precision is increased by 1.9%, while the parameters and floating-point operations are reduced by 11.6% and 7.3%, respectively. These improvements are thought to contribute to the application of drones in maritime and other remote sensing fields. Full article
Show Figures

Figure 1

Article
Parameter Optimization and Impacts on Oilseed Rape (Brassica napus) Seeds Aerial Seeding Based on Unmanned Agricultural Aerial System
Drones 2022, 6(10), 303; https://doi.org/10.3390/drones6100303 - 17 Oct 2022
Viewed by 747
Abstract
Aerial seeding based on the unmanned agricultural aerial system (UAAS) improves the seeding efficiency of oilseed rape (OSR) seeds, and solves the problem of OSR planting in mountainous areas where it is inconvenient to use ground seeding machines. Therefore, the UAAS has been [...] Read more.
Aerial seeding based on the unmanned agricultural aerial system (UAAS) improves the seeding efficiency of oilseed rape (OSR) seeds, and solves the problem of OSR planting in mountainous areas where it is inconvenient to use ground seeding machines. Therefore, the UAAS has been applied in aerial seeding to a certain degree in China. The effective broadcast seeding width (EBSW), broadcast seeding density (BSD) and broadcast seeding uniformity (BSU) are the important indexes that affect the aerial seeding efficiency and quality of OSR seeds. In order to investigate the effects of flight speed (FS) and flight height (FH) on EBSW, BSD and BSU, and to achieve the optimized parameter combinations of UAAS T30 on aerial seeding application, three levels of FS (4.0 m/s, 5.0 m/s and 6.0 m/s) and three levels of FH (2.0 m, 3.0 m and 4.0 m) experiments were carried out in the field with 6.0 kg seeds per ha. The results demonstrated that the EBSW was not constant as the FS and FH changed. In general, the EBSW showed a change trend of first increasing and then decreasing as the FH increased under the same FS, and showed a trend of decreasing as FS increased under the same FH. The EBSWs were over 3.0 m in the nine treatments, in which the maximum was 5.44 m (T1, 4.0 m/s, 2.0 m) while the minimum was 3.2 m (T9, 6.0 m/s, 4.0 m). The BSD showed a negative change correlation as the FS changed under the same FH, and the BSD decreased as the FH increased under 4.0 m/s FS, while it first increased and then decreased under the FS of 5.0 m/s and 6.0 m/s. The maximum BSD value was 140.12 seeds/m2 (T1, 4.0 m/s, 2.0 m), while the minimum was 40.17 seeds/m2 (T9, 6.0 m/s, 4.0 m). There was no obvious change in the trend of the BSU evaluated by the coefficients of variation (CV): the minimum CV was 13.01% (T6, 6.0 m/s, 3.0 m) and the maximum was 64.48% (T3, 6.0 m/s, 2.0 m). The statistical analyses showed that the FH had significant impacts on the EBSWs (0.01 < p-value < 0.05), the FS and the interaction between FH and FS both had extremely significant impacts on EBSWs (p-value < 0.01). The FH had extremely significant impacts on BSD (p-value < 0.01), the FS had no impacts on BSD (p-value > 0.05), and the interaction between FH and FS had significant impacts on BSD (0.01 < p-value < 0.05). There were no significant differences in the broadcast sowing uniformity (BSU) among the treatments. Taking the EBSW, BSD and BSU into consideration, the parameter combination of T5 (T9, 5.0 m/s, 3.0 m) was selected for aerial seeding. The OSR seed germination rate was over 36 plants/m2 (33 days) on average, which satisfied the requirements of OSR planting agronomy. This study provided some technical support for UAAS application in aerial seeding. Full article
(This article belongs to the Special Issue Feature Papers for Drones in Agriculture and Forestry Section)
Show Figures

Figure 1

Article
Automatic Tuning and Turbulence Mitigation for Fixed-Wing UAV with Segmented Control Surfaces
Drones 2022, 6(10), 302; https://doi.org/10.3390/drones6100302 - 16 Oct 2022
Cited by 1 | Viewed by 1019
Abstract
Unlike bigger aircraft, the small fixed-wing unmanned aerial vehicles face significant stability challenges in a turbulent environment. To improve the flight performance, a fixed-wing UAV with segmented aileron control surfaces has been designed and deployed. A total of four ailerons are attached to [...] Read more.
Unlike bigger aircraft, the small fixed-wing unmanned aerial vehicles face significant stability challenges in a turbulent environment. To improve the flight performance, a fixed-wing UAV with segmented aileron control surfaces has been designed and deployed. A total of four ailerons are attached to the main wing and grouped into inner and outer aileron pairs. The controllers are automatically tuned by utilizing the frequency response data obtained via the frequency sampling filter and the relay with embedded integrator experiments. The hardware validation experiments are performed in the normal and turbulent flight environments under three configurations: inner aileron pair only, outer aileron pair only and collective actuation of all the aileron pairs. The error-threshold-based control is introduced to handle collective actuation of aileron pairs. The experiments have manifested that the collective usage of all aileron segments improves the roll attitude stability by a margin of 38.69% to 43.51% when compared to the independent actuation of aileron pairs in a turbulent atmosphere. Full article
(This article belongs to the Section Drone Design and Development)
Show Figures

Figure 1

Article
Monitoring and Cordoning Wildfires with an Autonomous Swarm of Unmanned Aerial Vehicles
Drones 2022, 6(10), 301; https://doi.org/10.3390/drones6100301 - 14 Oct 2022
Cited by 4 | Viewed by 2354
Abstract
Unmanned aerial vehicles, or drones, are already an integral part of the equipment used by firefighters to monitor wildfires. They are, however, still typically used only as remotely operated, mobile sensing platforms under direct real-time control of a human pilot. Meanwhile, a substantial [...] Read more.
Unmanned aerial vehicles, or drones, are already an integral part of the equipment used by firefighters to monitor wildfires. They are, however, still typically used only as remotely operated, mobile sensing platforms under direct real-time control of a human pilot. Meanwhile, a substantial body of literature exists that emphasises the potential of autonomous drone swarms in various situational awareness missions, including in the context of environmental protection. In this paper, we present the results of a systematic investigation by means of numerical methods i.e., Monte Carlo simulation. We report our insights into the influence of key parameters such as fire propagation dynamics, surface area under observation and swarm size over the performance of an autonomous drone force operating without human supervision. We limit the use of drones to perform passive sensing operations with the goal to provide real-time situational awareness to the fire fighters on the ground. Therefore, the objective is defined as being able to locate, and then establish a continuous perimeter (cordon) around, a simulated fire event to provide live data feeds such as e.g., video or infra-red. Special emphasis was put on exclusively using simple, robust and realistically implementable distributed decision functions capable of supporting the self-organisation of the swarm in the pursuit of the collective goal. Our results confirm the presence of strong nonlinear effects in the interaction between the aforementioned parameters, which can be closely approximated using an empirical law. These findings could inform the mobilisation of adequate resources on a case-by-case basis, depending on known mission characteristics and acceptable odds (chances of success). Full article
Show Figures

Figure 1

Article
Aerial Drone Surveys Reveal the Efficacy of a Protected Area Network for Marine Megafauna and the Value of Sea Turtles as Umbrella Species
Drones 2022, 6(10), 291; https://doi.org/10.3390/drones6100291 - 07 Oct 2022
Cited by 2 | Viewed by 1681
Abstract
Quantifying the capacity of protected area networks to shield multiple marine megafauna with diverse life histories is complicated, as many species are wide-ranging, requiring varied monitoring approaches. Yet, such information is needed to identify and assess the potential use of umbrella species and [...] Read more.
Quantifying the capacity of protected area networks to shield multiple marine megafauna with diverse life histories is complicated, as many species are wide-ranging, requiring varied monitoring approaches. Yet, such information is needed to identify and assess the potential use of umbrella species and to plan how best to enhance conservation strategies. Here, we evaluated the effectiveness of part of the European Natura 2000 protected area network (western Greece) for marine megafauna and whether loggerhead sea turtles are viable umbrella species in this coastal region. We systematically surveyed inside and outside coastal marine protected areas (MPAs) at a regional scale using aerial drones (18,505 animal records) and combined them with distribution data from published datasets (tracking, sightings, strandings) of sea turtles, elasmobranchs, cetaceans and pinnipeds. MPAs covered 56% of the surveyed coastline (~1500 km). There was just a 22% overlap in the distributions of the four groups from aerial drone and other datasets, demonstrating the value of combining different approaches to improve records of coastal area use for effective management. All four taxonomic groups were more likely to be detected inside coastal MPAs than outside, confirming sufficient habitat diversity despite varied life history traits. Coastal habitats frequented by loggerhead turtles during breeding/non-breeding periods combined overlapped with 76% of areas used by the other three groups, supporting their potential use as an umbrella species. In conclusion, this study showed that aerial drones can be readily combined with other monitoring approaches in coastal areas to enhance the management of marine megafauna in protected area networks and to identify the efficacy of umbrella species. Full article
(This article belongs to the Special Issue Drones for Biodiversity Conservation)
Show Figures

Figure 1

Review
Comprehensive Review of UAV Detection, Security, and Communication Advancements to Prevent Threats
Drones 2022, 6(10), 284; https://doi.org/10.3390/drones6100284 - 01 Oct 2022
Cited by 14 | Viewed by 4339
Abstract
It has been observed that unmanned aerial vehicles (UAVs), also known as drones, have been used in a very different way over time. The advancements in key UAV areas include detection (including radio frequency and radar), classification (including micro, mini, close range, short [...] Read more.
It has been observed that unmanned aerial vehicles (UAVs), also known as drones, have been used in a very different way over time. The advancements in key UAV areas include detection (including radio frequency and radar), classification (including micro, mini, close range, short range, medium range, medium-range endurance, low-altitude deep penetration, low-altitude long endurance, and medium-altitude long endurance), tracking (including lateral tracking, vertical tracking, moving aerial pan with moving target, and moving aerial tilt with moving target), and so forth. Even with all of these improvements and advantages, security and privacy can still be ensured by researching a number of key aspects of an unmanned aerial vehicle, such as through the jamming of the control signals of a UAV and redirecting them for any high-assault activity. This review article will examine the privacy issues related to drone standards and regulations. The manuscript will also provide a comprehensive answer to these limitations. In addition to updated information on current legislation and the many classes that can be used to establish communication between a ground control room and an unmanned aerial vehicle, this article provides a basic overview of unmanned aerial vehicles. After reading this review, readers will understand the shortcomings, the most recent advancements, and the strategies for addressing security issues, assaults, and limitations. The open research areas described in this manuscript can be utilized to create novel methods for strengthening the security and privacy of an unmanned aerial vehicle. Full article
(This article belongs to the Special Issue Advances in UAV Detection, Classification and Tracking)
Show Figures

Figure 1

Article
Decentralized Sampled-Data Fuzzy Tracking Control for a Quadrotor UAV with Communication Delay
Drones 2022, 6(10), 280; https://doi.org/10.3390/drones6100280 - 27 Sep 2022
Cited by 4 | Viewed by 1066
Abstract
This study deals with the decentralized sampled-data fuzzy tracking control of a quadrotor unmanned aerial vehicle (UAV) considering the communication delay of the feedback signal. A decentralized Takagi–Sugeno (T–S) fuzzy approach is adopted to represent the quadrotor UAV as two subsystems: the position [...] Read more.
This study deals with the decentralized sampled-data fuzzy tracking control of a quadrotor unmanned aerial vehicle (UAV) considering the communication delay of the feedback signal. A decentralized Takagi–Sugeno (T–S) fuzzy approach is adopted to represent the quadrotor UAV as two subsystems: the position control system and the attitude control system. Unlike most previous studies, a novel decentralized controller considering the communication delay for the position control system is proposed. In addition, to minimize the increase in computational complexity, the Lyapunov–Krasovskii functional (LKF) is configured as the only state required for each subsystem. The design conditions guaranteeing the tracking performance of the quadrotor UAV are derived as linear matrix inequalities (LMIs) that are numerically solved. Lastly, the validity of the proposed design method is verified by comparing the results through simulation examples with and without communication delay. Full article
(This article belongs to the Section Drone Design and Development)
Show Figures

Figure 1

Article
Aerial Branch Sampling to Detect Forest Pathogens
Drones 2022, 6(10), 275; https://doi.org/10.3390/drones6100275 - 24 Sep 2022
Cited by 2 | Viewed by 1762
Abstract
Diagnostic testing to detect forest pathogens requires the collection of physical samples from affected trees, which can be challenging in remote or rugged environments. As an alternative to traditional ground-based sampling at breast height by field crews, we examined the feasibility of aerially [...] Read more.
Diagnostic testing to detect forest pathogens requires the collection of physical samples from affected trees, which can be challenging in remote or rugged environments. As an alternative to traditional ground-based sampling at breast height by field crews, we examined the feasibility of aerially sampling and testing material collected from upper canopy branches using a small unoccupied aerial system (sUAS). The pathogen of interest in this study is Ceratocystis lukuohia, the fungal pathogen responsible for Ceratocystis wilt of ‘ōhi‘a, a vascular wilt disease which has caused widespread mortality to ‘ōhi‘a in native forests across the state of Hawai‘i. To characterize the minimum branch diameter needed to successfully detect the pathogen of interest in infected trees, we tested 63 branch samples (0.8–9.6 cm in diameter) collected from felled trees inoculated with C.lukuohia on Hawai‘i Island. Subsequently, we aerially sampled branches from ten symptomatic ‘ōhi‘a (Metrosideros polymorpha) trees using two different branch sampling systems, the Flying Tree Top Sampler from ETH Zurich and the new Kūkūau branch sampler system introduced in this work, producing 29 branch samples with a maximum diameter of 4.2 cm and length of >2 m. We successfully detected the target fungal pathogen from the collected branches and found that branch diameter, leaf presence and condition, as well as wood moisture content are important factors in pathogen detection in sampled branches. None of the smallest branch samples (those <1 cm in diameter) tested positive for C.lukuohia, while 77% of the largest diameter branch samples (5–10 cm) produced positive results. The Kūkūau branch sampler system is capable of retrieving branches up to 7 cm diameter, providing important capacity for pathogenic research requiring larger diameter samples for successful diagnostic testing. Inconclusive and/or non-detection laboratory results were obtained from sample materials that were either too desiccated or from a branch with asymptomatic leaves, suggesting there is an optimal temporal window for sampling. Full article
(This article belongs to the Special Issue Drones for Biodiversity Conservation)
Show Figures

Figure 1

Article
A Framework for Soil Salinity Monitoring in Coastal Wetland Reclamation Areas Based on Combined Unmanned Aerial Vehicle (UAV) Data and Satellite Data
Drones 2022, 6(9), 257; https://doi.org/10.3390/drones6090257 - 16 Sep 2022
Cited by 3 | Viewed by 1237
Abstract
Soil salinization is one of the most important causes of land degradation and desertification, often threatening land management and sustainable agricultural development. Due to the low resolution of satellites, fine mapping of soil salinity cannot be completed, while high-resolution images from UAVs can [...] Read more.
Soil salinization is one of the most important causes of land degradation and desertification, often threatening land management and sustainable agricultural development. Due to the low resolution of satellites, fine mapping of soil salinity cannot be completed, while high-resolution images from UAVs can only achieve accurate mapping of soil salinity in a small area. Therefore, how to realize fine mapping of salinity on a large scale based on UAV and satellite data is an urgent problem to be solved. Therefore, in this paper, the most relevant spectral variables for soil salinity were firstly determined using Pearson correlation analysis, and then the optimal inversion model was established based on the screened variables. Secondly, the feasibility of correcting satellite data based on UAV data was determined using Pearson correlation analysis and spectral variation trends, and the correction of satellite data was completed using least squares-based polynomial curve fitting for both UAV data and satellite data. Finally, the reflectance received from the vegetated area did not directly reflect the surface reflectance condition, so we used the support vector machine classification method to divide the study area into two categories: bare land and vegetated area, and built a model based on the classification results to realize the advantages of complementing the accurate spectral information of UAV and large-scale satellite spectral data in the study areas. By comparing the modeling inversion results using only satellite data with the inversion results based on optimized satellite data, our method framework could effectively improve the accuracy of soil salinity inversion in large satellite areas by 6–19%. Our method can meet the needs of large-scale accurate mapping, and can provide the necessary means and reference for soil condition monitoring. Full article
(This article belongs to the Special Issue UAS in Smart Agriculture)
Show Figures

Figure 1

Communication
Evaluating Thermal and Color Sensors for Automating Detection of Penguins and Pinnipeds in Images Collected with an Unoccupied Aerial System
Drones 2022, 6(9), 255; https://doi.org/10.3390/drones6090255 - 15 Sep 2022
Cited by 2 | Viewed by 1112
Abstract
Estimating seabird and pinniped abundance is central to wildlife management and ecosystem monitoring in Antarctica. Unoccupied aerial systems (UAS) can collect images to support monitoring, but manual image analysis is often impractical. Automating target detection using deep learning techniques may improve data acquisition, [...] Read more.
Estimating seabird and pinniped abundance is central to wildlife management and ecosystem monitoring in Antarctica. Unoccupied aerial systems (UAS) can collect images to support monitoring, but manual image analysis is often impractical. Automating target detection using deep learning techniques may improve data acquisition, but different image sensors may affect target detectability and model performance. We compared the performance of automated detection models based on infrared (IR) or color (RGB) images and tested whether IR images, or training data that included annotations of non-target features, improved model performance. For this assessment, we collected paired IR and RGB images of nesting penguins (Pygoscelis spp.) and aggregations of Antarctic fur seals (Arctocephalus gazella) with a small UAS at Cape Shirreff, Livingston Island (60.79 °W, 62.46 °S). We trained seven independent classification models using the Video and Image Analytics for Marine Environments (VIAME) software and created an open-access R tool, vvipr, to standardize the assessment of VIAME-based model performance. We found that the IR images and the addition of non-target annotations had no clear benefits for model performance given the available data. Nonetheless, the generally high performance of the penguin models provided encouraging results for further improving automated image analysis from UAS surveys. Full article
(This article belongs to the Special Issue UAV Design and Applications in Antarctic Research)
Show Figures

Figure 1

Article
Investigating Errors Observed during UAV-Based Vertical Measurements Using Computational Fluid Dynamics
Drones 2022, 6(9), 253; https://doi.org/10.3390/drones6090253 - 13 Sep 2022
Cited by 1 | Viewed by 1918
Abstract
Unmanned Aerial Vehicles (UAVs) are a popular platform for air quality measurements. For vertical measurements, rotary-wing UAVs are particularly well-suited. However, an important concern with rotary-wing UAVs is how the rotor-downwash affects measurement accuracy. Measurements from a recent field campaign showed notable discrepancies [...] Read more.
Unmanned Aerial Vehicles (UAVs) are a popular platform for air quality measurements. For vertical measurements, rotary-wing UAVs are particularly well-suited. However, an important concern with rotary-wing UAVs is how the rotor-downwash affects measurement accuracy. Measurements from a recent field campaign showed notable discrepancies between data from ascent and descent, which suggested the UAV downwash may be the cause. To investigate and explain these observed discrepancies, we use high-fidelity computational fluid dynamics (CFD) simulations to simulate a UAV during vertical flight. We use a tracer to model a gaseous pollutant and evaluate the impact of the rotor-downwash on the concentration around the UAV. Our results indicate that, when measuring in a gradient, UAV-based measurements were ∼50% greater than the expected concentration during descent, but they were accurate during ascent, regardless of the location of the sensor. These results provide an explanation for errors encountered during vertical measurements and provide insight for accurate data collection methods in future studies. Full article
(This article belongs to the Special Issue Unmanned Aerial Vehicles in Atmospheric Research)
Show Figures

Figure 1

Article
Capacity Optimization of Next-Generation UAV Communication Involving Non-Orthogonal Multiple Access
Drones 2022, 6(9), 234; https://doi.org/10.3390/drones6090234 - 02 Sep 2022
Cited by 7 | Viewed by 1124
Abstract
Unmanned air vehicle communication (UAV) systems have recently emerged as a quick, low-cost, and adaptable solution to numerous challenges in the next-generation wireless network. In particular, UAV systems have shown to be very useful in wireless communication applications with sudden traffic demands, network [...] Read more.
Unmanned air vehicle communication (UAV) systems have recently emerged as a quick, low-cost, and adaptable solution to numerous challenges in the next-generation wireless network. In particular, UAV systems have shown to be very useful in wireless communication applications with sudden traffic demands, network recovery, aerial relays, and edge computing. Meanwhile, non-orthogonal multiple access (NOMA) has been able to maximize the number of served users with the highest traffic capacity for future aerial systems in the literature. However, the study of joint optimization of UAV altitude, user pairing, and power allocation for the problem of capacity maximization requires further investigation. Thus, a capacity optimization problem for the NOMA aerial system is evaluated in this paper, considering the combination of convex and heuristic optimization techniques. The proposed algorithm is evaluated by using multiple heuristic techniques and deployment scenarios. The results prove the efficiency of the proposed NOMA scheme in comparison to the benchmark technique of orthogonal multiple access (OMA). Moreover, a comparative analysis of heuristic techniques for capacity optimization is also presented. Full article
(This article belongs to the Section Drone Communications)
Show Figures

Figure 1

Article
Coverage Path Planning Based on the Optimization Strategy of Multiple Solar Powered Unmanned Aerial Vehicles
Drones 2022, 6(8), 203; https://doi.org/10.3390/drones6080203 - 11 Aug 2022
Cited by 7 | Viewed by 1461
Abstract
In some specific conditions, UAVs are required to obtain comprehensive information of an area or to operate in the area in an all-round way. In this case, the coverage path planning (CPP) is required. This paper proposes a solution to solve the problem [...] Read more.
In some specific conditions, UAVs are required to obtain comprehensive information of an area or to operate in the area in an all-round way. In this case, the coverage path planning (CPP) is required. This paper proposes a solution to solve the problem of short endurance time in the coverage path planning (CPP) problem of multi-solar unmanned aerial vehicles (UAVs). Firstly, the energy flow efficiency based on the energy model is proposed to evaluate the energy utilization efficiency during the operation. Moreover, for the areas with and without obstacles, the coverage path optimization model is proposed based on the undirected graph search method. The constraint equation is defined to restrict the UAV from accessing the undirected graph according to certain rules. A mixed integer linear programming (MILP) model is proposed to determine the flight path of each UAV with the objective of minimizing operation time. Through the simulation experiment, compared with the Boustrophedon Cellular Decomposition method for coverage path planning, it is seen that the completion time is greatly improved. In addition, considering the impact of the attitude angle of the solar powered UAV when turning, the operation time and the total energy flow efficiency are defined as the optimization objective. The bi-objective model equation is established to solve the problem of the CPP. A large number of simulation experiments show that the optimization model in this paper selects different optimization objectives and applies to different shapes of areas to be covered, which has wide applicability and strong feasibility. Full article
(This article belongs to the Special Issue Recent Advances in Crop Protection Using UAV and UGV)
Show Figures

Figure 1

Article
Energy Efficient Transmission Design for NOMA Backscatter-Aided UAV Networks with Imperfect CSI
Drones 2022, 6(8), 190; https://doi.org/10.3390/drones6080190 - 28 Jul 2022
Cited by 6 | Viewed by 1401
Abstract
The recent combination of ambient backscatter communication (ABC) with non-orthogonal multiple access (NOMA) has shown great potential for connecting large-scale Internet of Things (IoT) in future unmanned aerial vehicle (UAV) networks. The basic idea of ABC is to provide battery-free transmission by harvesting [...] Read more.
The recent combination of ambient backscatter communication (ABC) with non-orthogonal multiple access (NOMA) has shown great potential for connecting large-scale Internet of Things (IoT) in future unmanned aerial vehicle (UAV) networks. The basic idea of ABC is to provide battery-free transmission by harvesting the energy of existing RF signals of WiFi, TV towers, and cellular base stations/UAV. ABC uses smart sensor tags to modulate and reflect data among wireless devices. On the other side, NOMA makes possible the communication of more than one IoT on the same frequency. In this work, we provide an energy efficient transmission design ABC-aided UAV network using NOMA. This work aims to optimize the power consumption of a UAV system while ensuring the minimum data rate of IoT. Specifically, the transmit power of UAVs and the reflection coefficient of the ABC system are simultaneously optimized under the assumption of imperfect channel state information (CSI). Due to co-channel interference among UAVs, imperfect CSI, and NOMA interference, the joint optimization problem is formulated as non-convex, which involves high complexity and makes it hard to obtain the optimal solution. Thus, it is first transformed and then solved by a sub-gradient method with low complexity. In addition, a conventional NOMA UAV framework is also studied for comparison without involving ABC. Numerical results demonstrate the benefits of using ABC in a NOMA UAV network compared to the conventional UAV framework. Full article
(This article belongs to the Section Drone Communications)
Show Figures

Figure 1

Article
MCO Plan: Efficient Coverage Mission for Multiple Micro Aerial Vehicles Modeled as Agents
Drones 2022, 6(7), 181; https://doi.org/10.3390/drones6070181 - 21 Jul 2022
Cited by 1 | Viewed by 1244
Abstract
Micro aerial vehicle (MAV) fleets have gained essential recognition in the decision schemes for precision agriculture, disaster management, and other coverage missions. However, they have some challenges in becoming massively deployed. One of them is resource management in restricted workspaces. This paper proposes [...] Read more.
Micro aerial vehicle (MAV) fleets have gained essential recognition in the decision schemes for precision agriculture, disaster management, and other coverage missions. However, they have some challenges in becoming massively deployed. One of them is resource management in restricted workspaces. This paper proposes a plan to balance resources when considering the practical use of MAVs and workspace in daily chores. The coverage mission plan is based on five stages: world abstraction, area partitioning, role allocation, task generation, and task allocation. The tasks are allocated according to agent roles, Master, Coordinator, or Operator (MCO), which describe their flight autonomy, connectivity, and decision skill. These roles are engaged with the partitioning based on the Voronoi-tessellation but extended to heterogeneous polygons. The advantages of the MCO Plan were evident compared with conventional Boustrophedon decomposition and clustering by K-means. The MCO plan achieved a balanced magnitude and trend of heterogeneity between both methods, involving MAVs with few or intermediate resources. The resulting efficiency was tested in the GAMA platform, with gained energy between 2% and 10% in the mission end. In addition, the MCO plan improved mission times while the connectivity was effectively held, even more, if the Firefly algorithm generated coverage paths. Full article
(This article belongs to the Special Issue Intelligent Coordination of UAV Swarm Systems)
Show Figures

Figure 1

Communication
Drones for Area-Wide Larval Source Management of Malaria Mosquitoes
Drones 2022, 6(7), 180; https://doi.org/10.3390/drones6070180 - 20 Jul 2022
Cited by 4 | Viewed by 2862
Abstract
Given the stagnating progress in the fight against malaria, there is an urgent need for area-wide integrated vector management strategies to complement existing intra-domiciliary tools, i.e., insecticide-treated bednets and indoor residual spraying. In this study, we describe a pilot trial using drones for [...] Read more.
Given the stagnating progress in the fight against malaria, there is an urgent need for area-wide integrated vector management strategies to complement existing intra-domiciliary tools, i.e., insecticide-treated bednets and indoor residual spraying. In this study, we describe a pilot trial using drones for aerial application of Aquatain Mosquito Formulation (AMF), a monomolecular surface film with larvicidal activity, against the African malaria mosquito Anopheles arabiensis in an irrigated rice agro-ecosystem in Unguja island, Zanzibar, Tanzania. Nine rice paddies were randomly assigned to three treatments: (a) control (drone spraying with water only), (b) drone spraying with 1 mL/m2, or (c) drone spraying with 5 mL/m2 of AMF. Compared to control paddies, AMF treatments resulted in highly significant (p < 0.001) reductions in the number of larvae and pupae and >90% fewer emerging adults. The residual effect of AMF treatment lasted for a minimum of 5 weeks post-treatment, with reductions in larval densities reaching 94.7% in week 5 and 99.4% in week 4 for the 1 and 5 mL/m2 AMF treatments, respectively. These results merit a review of the WHO policy regarding larval source management (LSM), which primarily recommends its use in urban environments with ‘few, fixed, and findable’ breeding sites. Unmanned aerial vehicles (UAVs) can rapidly treat many permanent, temporary, or transient mosquito breeding sites over large areas at low cost, thereby significantly enhancing the role of LSM in contemporary malaria control and elimination efforts. Full article
(This article belongs to the Section Drones in Ecology)
Show Figures

Figure 1

Article
Urban Air Mobility: Systematic Review of Scientific Publications and Regulations for Vertiport Design and Operations
Drones 2022, 6(7), 179; https://doi.org/10.3390/drones6070179 - 19 Jul 2022
Cited by 12 | Viewed by 6302
Abstract
Novel electric aircraft designs coupled with intense efforts from academia, government and industry led to a paradigm shift in urban transportation by introducing UAM. While UAM promises to introduce a new mode of transport, it depends on ground infrastructure to operate safely and [...] Read more.
Novel electric aircraft designs coupled with intense efforts from academia, government and industry led to a paradigm shift in urban transportation by introducing UAM. While UAM promises to introduce a new mode of transport, it depends on ground infrastructure to operate safely and efficiently in a highly constrained urban environment. Due to its novelty, the research of UAM ground infrastructure is widely scattered. Therefore, this paper selects, categorizes and summarizes existing literature in a systematic fashion and strives to support the harmonization process of contributions made by industry, research and regulatory authorities. Through a document term matrix approach, we identified 49 Scopus-listed scientific publications (2016–2021) addressing the topic of UAM ground infrastructure with respect to airspace operation followed by design, location and network, throughput and capacity, ground operations, cost, safety, regulation, weather and lastly noise and security. Last listed topics from cost onwards appear to be substantially under-represented, but will be influencing current developments and challenges. This manuscript further presents regulatory considerations (Europe, U.S., international) and introduces additional noteworthy scientific publications and industry contributions. Initial uncertainties in naming UAM ground infrastructure seem to be overcome; vertiport is now being predominantly used when speaking about vertical take-off and landing UAM operations. Full article
(This article belongs to the Special Issue Urban Air Mobility (UAM))
Show Figures

Figure 1

Article
An Error Prediction Model for Construction Bulk Measurements Using a Customized Low-Cost UAS-LIDAR System
Drones 2022, 6(7), 178; https://doi.org/10.3390/drones6070178 - 19 Jul 2022
Cited by 1 | Viewed by 1254
Abstract
Small unmanned aerial systems (UAS) have been increasingly popular in surveying and mapping tasks. While photogrammetry has been the primary UAS sensing technology in other industries, construction activities can also benefit from accurate surveying measurements from airborne LIDAR. This paper discusses a custom-designed [...] Read more.
Small unmanned aerial systems (UAS) have been increasingly popular in surveying and mapping tasks. While photogrammetry has been the primary UAS sensing technology in other industries, construction activities can also benefit from accurate surveying measurements from airborne LIDAR. This paper discusses a custom-designed low-cost UAS-based LIDAR system that can effectively measure construction excavation and bulk piles. The system is designed with open interfaces that can be easily upgraded and expanded. An error model was developed to predict the horizontal and vertical errors of single point geo-registration for a generic UAS-LIDAR. This model was validated for the proposed UAS-LIDAR system using calibration targets and real-world measurements from different scenarios. The results indicated random errors from LIDAR at approximately 0.1 m and systematic errors at or below centimeter level. Additional pre-processing of the raw point cloud can further reduce the random errors in LIDAR measurements of bulk piles. Full article
Show Figures

Figure 1

Article
Computing in the Sky: A Survey on Intelligent Ubiquitous Computing for UAV-Assisted 6G Networks and Industry 4.0/5.0
Drones 2022, 6(7), 177; https://doi.org/10.3390/drones6070177 - 18 Jul 2022
Cited by 27 | Viewed by 3798
Abstract
Unmanned Aerial Vehicles (UAVs) are increasingly being used in a high-computation paradigm enabled with smart applications in the Beyond Fifth Generation (B5G) wireless communication networks. These networks have an avenue for generating a considerable amount of heterogeneous data by the expanding number of [...] Read more.
Unmanned Aerial Vehicles (UAVs) are increasingly being used in a high-computation paradigm enabled with smart applications in the Beyond Fifth Generation (B5G) wireless communication networks. These networks have an avenue for generating a considerable amount of heterogeneous data by the expanding number of Internet of Things (IoT) devices in smart environments. However, storing and processing massive data with limited computational capability and energy availability at local nodes in the IoT network has been a significant difficulty, mainly when deploying Artificial Intelligence (AI) techniques to extract discriminatory information from the massive amount of data for different tasks.Therefore, Mobile Edge Computing (MEC) has evolved as a promising computing paradigm leveraged with efficient technology to improve the quality of services of edge devices and network performance better than cloud computing networks, addressing challenging problems of latency and computation-intensive offloading in a UAV-assisted framework. This paper provides a comprehensive review of intelligent UAV computing technology to enable 6G networks over smart environments. We highlight the utility of UAV computing and the critical role of Federated Learning (FL) in meeting the challenges related to energy, security, task offloading, and latency of IoT data in smart environments. We present the reader with an insight into UAV computing, advantages, applications, and challenges that can provide helpful guidance for future research. Full article
(This article belongs to the Special Issue Drone Computing Enabling IoE)
Show Figures

Figure 1

Article
Rotor Failure Compensation in a Biplane Quadrotor Based on Virtual Deflection
Drones 2022, 6(7), 176; https://doi.org/10.3390/drones6070176 - 17 Jul 2022
Cited by 2 | Viewed by 1161
Abstract
A biplane quadrotor is a hybrid type of UAV that has wide applications such as payload pickup and delivery, surveillance, etc. This simulation study mainly focuses on handling the total rotor failure, and for that, we propose a control architecture that does not [...] Read more.
A biplane quadrotor is a hybrid type of UAV that has wide applications such as payload pickup and delivery, surveillance, etc. This simulation study mainly focuses on handling the total rotor failure, and for that, we propose a control architecture that does not only handle rotor failure but is also able to navigate the biplane quadrotor to a safe place for landing. In this structure, after the detection of total rotor failure, the biplane quadrotor will imitate reallocating control signals and then perform the transition maneuver and switch to the fixed-wing mode; control signals are also reallocated. A synthetic jet actuator (SJA) is used as the redundancy that generates the desired virtual deflection to control the pitch angle, while other states are taken care of by the three rotors. The SJA has parametric nonlinearity, and to handle it, an inverse adaptive compensation scheme is applied and a closed-loop stability analysis is performed based on the Lyapunov method for the pitch subsystem. The effectiveness of the proposed control structure is validated using numerical simulation carried out in the MATLAB Simulink. Full article
Show Figures

Figure 1

Article
In the Heat of the Night: Comparative Assessment of Drone Thermography at the Archaeological Sites of Acquarossa, Italy, and Siegerswoude, The Netherlands
Drones 2022, 6(7), 165; https://doi.org/10.3390/drones6070165 - 01 Jul 2022
Viewed by 1467
Abstract
Although drone thermography is increasingly applied as an archaeological remote sensing tool in the last few years, the technique and methods are still relatively under investigated. No doubt there are successes in positive identification of buried archaeology, and the prospection technique has clear [...] Read more.
Although drone thermography is increasingly applied as an archaeological remote sensing tool in the last few years, the technique and methods are still relatively under investigated. No doubt there are successes in positive identification of buried archaeology, and the prospection technique has clear complementary value. Nevertheless, there are also instances where thermograms did not reveal present shallow buried architectural features which had been clearly identified by, for example, ground-penetrating radar. The other way around, there are cases where the technique was able to pick up a signals of buried archaeology at a time of day that is supposed to be very unfavorable for thermographic recording. The main issue here is that the exact factors determining the potential for tracing thermal signatures of anthropomorphic interventions in the soil are many, and their effect, context, and interaction under investigated. This paper deals with a systematic application of drone thermography on two archaeological sites in different soils and climates, one in The Netherlands, and one in Italy, to investigate important variables that can make the prospection technique effective. Full article
(This article belongs to the Special Issue (Re)Defining the Archaeological Use of UAVs)
Show Figures

Figure 1

Article
High-Temporal-Resolution Forest Growth Monitoring Based on Segmented 3D Canopy Surface from UAV Aerial Photogrammetry
Drones 2022, 6(7), 158; https://doi.org/10.3390/drones6070158 - 26 Jun 2022
Cited by 7 | Viewed by 1259
Abstract
Traditional forest monitoring has been mainly performed with images or orthoimages from aircraft or satellites. In recent years, the availability of high-resolution 3D data has made it possible to obtain accurate information on canopy size, which has made the topic of canopy 3D [...] Read more.
Traditional forest monitoring has been mainly performed with images or orthoimages from aircraft or satellites. In recent years, the availability of high-resolution 3D data has made it possible to obtain accurate information on canopy size, which has made the topic of canopy 3D growth monitoring timely. In this paper, forest growth pattern was studied based on a canopy point cloud (PC) reconstructed from UAV aerial photogrammetry at a daily interval for a year. Growth curves were acquired based on the canopy 3D area (3DA) calculated from a triangulated 3D mesh. Methods for canopy coverage area (CA), forest coverage rate, and leaf area index (LAI) were proposed and tested. Three spectral vegetation indices, excess green index (ExG), a combination of green indices (COM), and an excess red union excess green index (ExGUExR) were used for the segmentation of trees. The results showed that (1) vegetation areas extracted by ExGUExR were more complete than those extracted by the other two indices; (2) logistic fitting of 3DA and CA yielded S-shaped growth curves, all with correlation R2 > 0.92; (3) 3DA curves represented the growth pattern more accurately than CA curves. Measurement errors and applicability are discussed. In summary, the UAV aerial photogrammetry method was successfully used for daily monitoring and annual growth trend description. Full article
(This article belongs to the Section Drones in Agriculture and Forestry)
Show Figures

Figure 1

Article
Quality Analysis of Tuberculosis Specimens Transported by Drones versus Ground Transportation
Drones 2022, 6(7), 155; https://doi.org/10.3390/drones6070155 - 23 Jun 2022
Viewed by 1947
Abstract
There are many challenges that impact the current referral network for Tuberculosis (TB) sputum specimens in Mozambique. In some cases, health facilities are remote and the road infrastructure is poor and at times impassable, leading to delays in laboratory specimen transportation and long [...] Read more.
There are many challenges that impact the current referral network for Tuberculosis (TB) sputum specimens in Mozambique. In some cases, health facilities are remote and the road infrastructure is poor and at times impassable, leading to delays in laboratory specimen transportation and long turn-around times for results. Drone transportation is a promising solution to reduce transportation time and improve access to laboratory diagnostics if the sample quality is not compromised during transport. This study evaluated the impact of drone transportation on the quality of TB sputum specimens with suspected Mycobacterium tuberculosis. 156 specimens were collected at five (5) health centers and sent to the Instituto Nacional de Saúde (INS) National TB Reference Laboratory. Specimens were then equally divided into two aliquots; one to be transported on land and the other by air using a drone. Control and study group specimens were processed using the NALC-NaOH method. Agreement between sample and control specimens was acceptable, indicating that drone transportation did not affect the quality of TB specimens. The authors recommend additional studies to validate drone transportation of TB specimens over a longer period of time to give further confidence in the adoption of drone delivery in Mozambique. Full article
Show Figures

Figure 1

Article
UAV Computing-Assisted Search and Rescue Mission Framework for Disaster and Harsh Environment Mitigation
Drones 2022, 6(7), 154; https://doi.org/10.3390/drones6070154 - 22 Jun 2022
Cited by 28 | Viewed by 3995
Abstract
Disasters are crisis circumstances that put human life in jeopardy. During disasters, public communication infrastructure is particularly damaged, obstructing Search And Rescue (SAR) efforts, and it takes significant time and effort to re-establish functioning communication infrastructure. SAR is a critical component of mitigating [...] Read more.
Disasters are crisis circumstances that put human life in jeopardy. During disasters, public communication infrastructure is particularly damaged, obstructing Search And Rescue (SAR) efforts, and it takes significant time and effort to re-establish functioning communication infrastructure. SAR is a critical component of mitigating human and environmental risks in disasters and harsh environments. As a result, there is an urgent need to construct communication networks swiftly to help SAR efforts exchange emergency data. UAV technology has the potential to provide key solutions to mitigate such disaster situations. UAVs can be used to provide an adaptable and reliable emergency communication backbone and to resolve major issues in disasters for SAR operations. In this paper, we evaluate the network performance of UAV-assisted intelligent edge computing to expedite SAR missions and functionality, as this technology can be deployed within a short time and can help to rescue most people during a disaster. We have considered network parameters such as delay, throughput, and traffic sent and received, as well as path loss for the proposed network. It is also demonstrated that with the proposed parameter optimization, network performance improves significantly, eventually leading to far more efficient SAR missions in disasters and harsh environments. Full article
(This article belongs to the Special Issue Drone Computing Enabling IoE)
Show Figures

Figure 1

Article
Anti-Occlusion UAV Tracking Algorithm with a Low-Altitude Complex Background by Integrating Attention Mechanism
Drones 2022, 6(6), 149; https://doi.org/10.3390/drones6060149 - 16 Jun 2022
Cited by 5 | Viewed by 1196
Abstract
In recent years, the increasing number of unmanned aerial vehicles (UAVs) in the low-altitude airspace have not only brought convenience to people’s work and life, but also great threats and challenges. In the process of UAV detection and tracking, there are common problems [...] Read more.
In recent years, the increasing number of unmanned aerial vehicles (UAVs) in the low-altitude airspace have not only brought convenience to people’s work and life, but also great threats and challenges. In the process of UAV detection and tracking, there are common problems such as target deformation, target occlusion, and targets being submerged by complex background clutter. This paper proposes an anti-occlusion UAV tracking algorithm for low-altitude complex backgrounds by integrating an attention mechanism that mainly solves the problems of complex backgrounds and occlusion when tracking UAVs. First, extracted features are enhanced by using the SeNet attention mechanism. Second, the occlusion-sensing module is used to judge whether the target is occluded. If the target is not occluded, tracking continues. Otherwise, the LSTM trajectory prediction network is used to predict the UAV position of subsequent frames by using the UAV flight trajectory before occlusion. This study was verified on the OTB-100, GOT-10k and integrated UAV datasets. The accuracy and success rate of integrated UAV datasets were 79% and 50.5% respectively, which were 10.6% and 4.9% higher than those of the SiamCAM algorithm. Experimental results show that the algorithm could robustly track a small UAV in a low-altitude complex background. Full article
(This article belongs to the Special Issue Advances in UAV Detection, Classification and Tracking)
Show Figures

Figure 1

Article
Resource Management in 5G Networks Assisted by UAV Base Stations: Machine Learning for Overloaded Macrocell Prediction Based on Users’ Temporal and Spatial Flow
Drones 2022, 6(6), 145; https://doi.org/10.3390/drones6060145 - 15 Jun 2022
Cited by 2 | Viewed by 1839
Abstract
The rapid growth of data traffic due to the demands of new services and applications poses new challenges to the wireless network. Unmanned aerial vehicles (UAVs) can be a solution to support wireless networks during congestion, especially in scenarios where the region has [...] Read more.
The rapid growth of data traffic due to the demands of new services and applications poses new challenges to the wireless network. Unmanned aerial vehicles (UAVs) can be a solution to support wireless networks during congestion, especially in scenarios where the region has high traffic peaks due to the temporal and spatial flow of users. In this paper, an intelligent machine-learning-based system is proposed to deploy UAV base stations (UAV-BS) to temporarily support the mobile network in regions suffering from the congestion effect caused by the high density of users. The system includes two main steps, the load prediction algorithm (LPA) and the UAV-BSs clustering and positioning algorithm (UCPA). In LPA, the load history generated by the mobile network is used to predict which macrocells are congested. In UCPA, planning is performed to calculate the number of UAV BSs needed based on two strategies: naïve and optimized, in addition to calculating the optimal positioning for each device requested to support the overloaded macrocells. For prediction, we used two models, generalized regression neural networks (GRNN) and random forest, and the results showed that both models were able to make accurate predictions, and the random forest model was better with an accuracy of over 85%. The results showed that the intelligent system significantly reduced the overhead of the affected macrocells, improved the quality of service (QoS), and reduced the probability of blocking users, as well as defined the preventive scheduling for the UAV BSs, which benefited the scheduling and energy efficiency. Full article
(This article belongs to the Section Drone Communications)
Show Figures

Figure 1

Review
Towards the Unmanned Aerial Vehicles (UAVs): A Comprehensive Review
Drones 2022, 6(6), 147; https://doi.org/10.3390/drones6060147 - 15 Jun 2022
Cited by 60 | Viewed by 11264
Abstract
Recently, unmanned aerial vehicles (UAVs), also known as drones, have come in a great diversity of several applications such as military, construction, image and video mapping, medical, search and rescue, parcel delivery, hidden area exploration, oil rigs and power line monitoring, precision farming, [...] Read more.
Recently, unmanned aerial vehicles (UAVs), also known as drones, have come in a great diversity of several applications such as military, construction, image and video mapping, medical, search and rescue, parcel delivery, hidden area exploration, oil rigs and power line monitoring, precision farming, wireless communication and aerial surveillance. The drone industry has been getting significant attention as a model of manufacturing, service and delivery convergence, introducing synergy with the coexistence of different emerging domains. UAVs offer implicit peculiarities such as increased airborne time and payload capabilities, swift mobility, and access to remote and disaster areas. Despite these potential features, including extensive variety of usage, high maneuverability, and cost-efficiency, drones are still limited in terms of battery endurance, flight autonomy and constrained flight time to perform persistent missions. Other critical concerns are battery endurance and the weight of drones, which must be kept low. Intuitively it is not suggested to load them with heavy batteries. This study highlights the importance of drones, goals and functionality problems. In this review, a comprehensive study on UAVs, swarms, types, classification, charging, and standardization is presented. In particular, UAV applications, challenges, and security issues are explored in the light of recent research studies and development. Finally, this review identifies the research gap and presents future research directions regarding UAVs. Full article
Show Figures

Figure 1

Review
sUAS Monitoring of Coastal Environments: A Review of Best Practices from Field to Lab
Drones 2022, 6(6), 142; https://doi.org/10.3390/drones6060142 - 08 Jun 2022
Cited by 4 | Viewed by 1630
Abstract
Coastal environments are some of the most dynamic environments in the world. As they are constantly changing, so are the technologies and techniques we use to map and monitor them. The rapid advancement of sUAS-based remote sensing calls for rigorous field and processing [...] Read more.
Coastal environments are some of the most dynamic environments in the world. As they are constantly changing, so are the technologies and techniques we use to map and monitor them. The rapid advancement of sUAS-based remote sensing calls for rigorous field and processing workflows so that more reliable and consistent sUAS projects of coastal environments are carried out. Here, we synthesize the best practices to create sUAS photo-based surveying and processing workflows that can be used and modified by coastal scientists, depending on their project objective. While we aim to simplify the complexity of these workflows, we note that the nature of this work is a craft that carefully combines art, science, and technology. sUAS LiDAR is the next advancement in mapping and monitoring coastal environments. Therefore, future work should consider synthesizing best practices to develop rigorous field and data processing workflows used for sUAS LiDAR-based projects of coastal environments. Full article
Show Figures

Figure 1

Article
A ROS Multi-Tier UAV Localization Module Based on GNSS, Inertial and Visual-Depth Data
Drones 2022, 6(6), 135; https://doi.org/10.3390/drones6060135 - 24 May 2022
Cited by 7 | Viewed by 2858
Abstract
Uncrewed aerial vehicles (UAVs) are continuously gaining popularity in a wide spectrum of applications, while their positioning and navigation most often relies on Global Navigation Satellite Systems (GNSS). However, numerous conditions and practices require UAV operation in GNSS-denied environments, including confined spaces, urban [...] Read more.
Uncrewed aerial vehicles (UAVs) are continuously gaining popularity in a wide spectrum of applications, while their positioning and navigation most often relies on Global Navigation Satellite Systems (GNSS). However, numerous conditions and practices require UAV operation in GNSS-denied environments, including confined spaces, urban canyons, vegetated areas and indoor places. For the purposes of this study, an integrated UAV navigation system was designed and implemented which utilizes GNSS, visual, depth and inertial data to provide real-time localization. The implementation is built as a package for the Robotic Operation System (ROS) environment to allow ease of integration in various systems. The system can be autonomously adjusted to the flight environment, providing spatial awareness to the aircraft. This system expands the functionality of UAVs, as it enables navigation even in GNSS-denied environments. This integrated positional system provides the means to support fully autonomous navigation under mixed environments, or malfunctioning conditions. Experiments show the capability of the system to provide adequate results in open, confined and mixed spaces. Full article
(This article belongs to the Special Issue Advances in SLAM and Data Fusion for UAVs/Drones)
Show Figures

Figure 1

Article
Open Collaborative Platform for Multi-Drones to Support Search and Rescue Operations
Drones 2022, 6(5), 132; https://doi.org/10.3390/drones6050132 - 20 May 2022
Cited by 7 | Viewed by 2044
Abstract
Climate-related natural disasters have affected the lives of thousands of people. Global warming creates warmer and drier conditions which increase the risk of wildfires. In large-scale disasters such as wildfires, search and rescue (SAR) operations become extremely challenging due to low visibility, difficulty [...] Read more.
Climate-related natural disasters have affected the lives of thousands of people. Global warming creates warmer and drier conditions which increase the risk of wildfires. In large-scale disasters such as wildfires, search and rescue (SAR) operations become extremely challenging due to low visibility, difficulty to breath, and high temperature from fire and smoke. Unmanned aerial vehicles (UAVs), such as drones, have been used to support such operations. In our previous work, a Krypto module is proposed to “sniff” out wireless signals from mobile phones to locate any possible survivors. With the increased popularity of drones, it is possible to allow people to volunteer in SAR operations with their drones. In this paper, we propose an Open Collaborative Platform for multiple drones to assist SAR operations. The open platform manages different searching drones that carry the Krypto module to collaborate by sharing information and planning search paths/areas. With our Open Collaborative Platform, anyone can participate in SAR operations and contribute to finding possible survivors. The novelty of this work is the openness and collaboration of the platform that “crowdsourcing” the searching operation to a large group of people who share information and contribute to finding possible survivors in a large disaster such as wildfires. Our experimental study shows that the Open Collaborative Platform is effective in reducing both the number of drones required and the search time for finding survivors. Full article
Show Figures

Figure 1

Article
Comparison of Radar Signatures from a Hybrid VTOL Fixed-Wing Drone and Quad-Rotor Drone
Drones 2022, 6(5), 110; https://doi.org/10.3390/drones6050110 - 27 Apr 2022
Cited by 5 | Viewed by 2647
Abstract
Current studies rarely mention radar detection of hybrid vertical take-off and landing (VTOL) fixed-wing drones. We investigated radar signals of an industry-tier VTOL fixed-wing drone, TX25A, compared with the radar detection results of a quad-rotor drone, DJI Phantom 4. We used an X-band [...] Read more.
Current studies rarely mention radar detection of hybrid vertical take-off and landing (VTOL) fixed-wing drones. We investigated radar signals of an industry-tier VTOL fixed-wing drone, TX25A, compared with the radar detection results of a quad-rotor drone, DJI Phantom 4. We used an X-band pulse-Doppler phased array radar to collect tracking radar data of the two drones in a coastal area near the Yellow Sea in China. The measurements indicate that TX25A had double the values of radar cross-section (RCS) and flying speed and a 2 dB larger signal-to-clutter ratio (SCR) than DJI Phantom 4. The radar signals of both drones had micro-Doppler signals or jet engine modulation (JEM) produced by the lifting rotor blades, but the Doppler modulated by the puller rotor blades of TX25A was undetectable. JEM provides radar signatures such as the rotating rate, modulated by the JEM frequency spacing interval and the number of blades for radar automatic target recognition (ATR), but also interferes with the radar tracking algorithm by suppressing the body Doppler. This work provides an a priori investigation of new VTOL fixed-wing drones and may inspire future research. Full article
Show Figures

Figure 1

Article
A Multi-Colony Social Learning Approach for the Self-Organization of a Swarm of UAVs
Drones 2022, 6(5), 104; https://doi.org/10.3390/drones6050104 - 23 Apr 2022
Cited by 5 | Viewed by 1907
Abstract
This research offers an improved method for the self-organization of a swarm of UAVs based on a social learning approach. To start, we use three different colonies and three best members i.e., unmanned aerial vehicles (UAVs) randomly placed in the colonies. This study [...] Read more.
This research offers an improved method for the self-organization of a swarm of UAVs based on a social learning approach. To start, we use three different colonies and three best members i.e., unmanned aerial vehicles (UAVs) randomly placed in the colonies. This study uses max-min ant colony optimization (MMACO) in conjunction with social learning mechanism to plan the optimized path for an individual colony. Hereinafter, the multi-agent system (MAS) chooses the most optimal UAV as the leader of each colony and the remaining UAVs as agents, which helps to organize the randomly positioned UAVs into three different formations. Afterward, the algorithm synchronizes and connects the three colonies into a swarm and controls it using dynamic leader selection. The major contribution of this study is to hybridize two different approaches to produce a more optimized, efficient, and effective strategy. The results verify that the proposed algorithm completes the given objectives. This study also compares the designed method with the Non-Dominated Sorting Genetic Algorithm II (NSGA-II) to prove that our method offers better convergence and reaches the target using a shorter route than NSGA-II. Full article
(This article belongs to the Special Issue Advances in UAV Detection, Classification and Tracking)
Show Figures

Figure 1

Article
Path Planning of Unmanned Aerial Vehicles (UAVs) in Windy Environments
Drones 2022, 6(5), 101; https://doi.org/10.3390/drones6050101 - 20 Apr 2022
Cited by 14 | Viewed by 2817
Abstract
Path planning of unmanned aerial vehicles (UAVs) is one of the vital components that supports their autonomy and deployment ability in real-world applications. Few path-planning techniques have been thoroughly considered for multirotor UAVs for pursuing ground moving targets (GMTs) with variable speed and [...] Read more.
Path planning of unmanned aerial vehicles (UAVs) is one of the vital components that supports their autonomy and deployment ability in real-world applications. Few path-planning techniques have been thoroughly considered for multirotor UAVs for pursuing ground moving targets (GMTs) with variable speed and direction. Furthermore, most path-planning techniques are generally devised without taking into consideration wind disturbances; as a result, they are less suitable for real-world applications as the wind effect usually causes the UAV to drift and tilt from its original course, impacting the mission’s main objective of having an adequate non-deviant camera aim point and steady coverage over the GMT. This paper presents a novel UAV path-planning technique, based on the artificial potential field (APF) for following GMTs in windy environments, to provide steady and continuous coverage over the GMT, by proposing a new modified attractive force to enhance the UAV’s sensitivity to wind speed and direction. The modified wind resistance attractive force function accommodates for any small variation of relative displacement caused by wind leading the UAV to drift in a certain direction. This enables the UAV to maintain its position by tilting (i.e., changing its roll and pitch angles) against the wind to retain the camera aim point on the GMT. The proposed path-planning technique is hardware-independent, does not require an anemometer for measuring wind speed and direction, and can be adopted for all types of multirotor UAVs equipped with basic sensors and an autopilot flight controller. The proposed path-planning technique was evaluated in a Gazebo-supported PX4-SITL and a robot operating system (ROS) for various simulation scenarios. Its performance demonstrated superiority in handling wind disturbances and showed high suitability for deployment in real-world applications. Full article
Show Figures

Figure 1

Article
UAV and Structure-From-Motion Photogrammetry Enhance River Restoration Monitoring: A Dam Removal Study
Drones 2022, 6(5), 100; https://doi.org/10.3390/drones6050100 - 19 Apr 2022
Cited by 4 | Viewed by 2396
Abstract
Dam removal is a river restoration technique that has complex landscape-level ecological impacts. Unmanned aerial vehicles (UAVs) are emerging as tools that enable relatively affordable, repeatable, and objective ecological assessment approaches that provide a holistic perspective of restoration impacts and can inform future [...] Read more.
Dam removal is a river restoration technique that has complex landscape-level ecological impacts. Unmanned aerial vehicles (UAVs) are emerging as tools that enable relatively affordable, repeatable, and objective ecological assessment approaches that provide a holistic perspective of restoration impacts and can inform future restoration efforts. In this work, we use a consumer-grade UAV, structure-from-motion (SfM) photogrammetry, and machine learning (ML) to evaluate geomorphic and vegetation changes pre-/post-dam removal, and discuss how the technology enhanced our monitoring of the restoration project. We compared UAV evaluation methods to conventional boots-on-ground methods throughout the Bellamy River Reservoir (Dover, NH, USA) pre-/post-dam removal. We used a UAV-based vegetation classification approach that used a support vector machine algorithm and a featureset composed of SfM-derived elevation and visible vegetation index values to map other, herbaceous, shrub, and tree cover throughout the reservoir (overall accuracies from 83% to 100%), mapping vegetation succession as well as colonization of exposed sediments that occurred post-dam removal. We used SfM-derived topography and the vegetation classifications to map erosion and deposition throughout the reservoir, despite its heavily vegetated condition, and estimate volume changes post-removal. Despite some limitations, such as influences of refraction and vegetation on the SfM topography models, UAV provided information on post-dam removal changes that would have gone unacknowledged by the conventional ecological assessment approaches, demonstrating how UAV technology can provide perspective in restoration evaluation even in less-than-ideal site conditions for SfM. For example, the UAV provided perspective of the magnitude and extent of channel shape changes throughout the reservoir while the boots-on-ground topographic transects were not as reliable for detecting change due to difficulties in navigating the terrain. In addition, UAV provided information on vegetation changes throughout the reservoir that would have been missed by conventional vegetation plots due to their limited spatial coverage. Lastly, the COVID-19 pandemic prevented us from meeting to collect post-dam removal vegetation plot data. UAV enabled data collection that we would have foregone if we relied solely on conventional methods, demonstrating the importance of flexible and adaptive methods for successful restoration monitoring such as those enabled via UAV. Full article
Show Figures

Figure 1

Article
A Robust and Accurate Landing Methodology for Drones on Moving Targets
Drones 2022, 6(4), 98; https://doi.org/10.3390/drones6040098 - 15 Apr 2022
Cited by 3 | Viewed by 4150
Abstract
This paper presents a framework for performing autonomous precise landing of unmanned aerial vehicles (UAVs) on dynamic targets. The main goal of this work is to design the methodology and the controlling algorithms that will allow multi-rotor drones to perform a robust and [...] Read more.
This paper presents a framework for performing autonomous precise landing of unmanned aerial vehicles (UAVs) on dynamic targets. The main goal of this work is to design the methodology and the controlling algorithms that will allow multi-rotor drones to perform a robust and efficient landing in dynamic conditions of changing wind, dynamic obstacles, and moving targets. Unlike existing GNSS-based vertical landing solutions, the suggested framework does not rely on global positioning and uses adaptive diagonal approaching angle visual landing. The framework was designed to work on existing camera-drone platforms, without any need for additional sensors, and it was implemented using DJI’s API on Android devices. The presented concept of visual sliding landing (VSL) was tested on a wide range of commercial drones, performing hundreds of precise and robust autonomous landings on dynamic targets, including boats, cars, RC-boats, and RC-rovers. Full article
(This article belongs to the Special Issue Honorary Special Issue for Prof. Max F. Platzer)
Show Figures

Figure 1

Review
Non-Terrestrial Networks-Enabled Internet of Things: UAV-Centric Architectures, Applications, and Open Issues
Drones 2022, 6(4), 95; https://doi.org/10.3390/drones6040095 - 10 Apr 2022
Cited by 2 | Viewed by 1941
Abstract
Although Unmanned Aerial Vehicles (UAVs)-aided wireless sensor networks (WSNs) have gained many applications, it is not for long that research works have been produced to define effective algorithms and protocols. In this article, we address the UAV-enabled WSN (U-WSN), explore the performance and [...] Read more.
Although Unmanned Aerial Vehicles (UAVs)-aided wireless sensor networks (WSNs) have gained many applications, it is not for long that research works have been produced to define effective algorithms and protocols. In this article, we address the UAV-enabled WSN (U-WSN), explore the performance and the capability of the UAV, define the UAV functionalities as a communication node, and describe the architectures and the relevant typical technologies that emerge from this new paradigm. Furthermore, this article also identifies the main factors which influence the U-WSN design and analyzes the open issues and challenges in U-WSN. These insights may serve as motivations and guidelines for future designs of UAV-enabled WSNs. Full article
Show Figures

Figure 1

Article
Investigation of Rotor Efficiency with Varying Rotor Pitch Angle for a Coaxial Drone
Drones 2022, 6(4), 91; https://doi.org/10.3390/drones6040091 - 04 Apr 2022
Cited by 6 | Viewed by 3045
Abstract
Coaxial rotor systems are appealing for multirotor drones, as they increase thrust without increasing the vehicle’s footprint. However, the thrust of a coaxial rotor system is reduced compared to having the rotors in line. It is of interest to increase the efficiency of [...] Read more.
Coaxial rotor systems are appealing for multirotor drones, as they increase thrust without increasing the vehicle’s footprint. However, the thrust of a coaxial rotor system is reduced compared to having the rotors in line. It is of interest to increase the efficiency of coaxial systems, both to extend mission time and to enable new mission capabilities. While some parameters of a coaxial system have been explored, such as the rotor-to-rotor distance, the influence of rotor pitch is less understood. This work investigates how adjusting the pitch of the lower rotor relative to that of the upper one impacts the overall efficiency of the system. A methodology based on blade element momentum theory is extended to coaxial rotor systems, and in addition blade-resolved simulations using computational fluid dynamics are performed. A coaxial rotor system for a medium-sized drone with a rotor diameter of 71.12 cm is used for the study. Experiments are performed using a thrust stand to validate the methods. The results show that there exists a peak in total rotor efficiency (thrust-to-power ratio), and that the efficiency can be increased by 2% to 5% by increasing the pitch of the lower rotor. The work contributes to furthering our understanding of coaxial rotor systems, and the results can potentially lead to more efficient drones with increased mission time. Full article
Show Figures

Figure 1

Article
Automating Aircraft Scanning for Inspection or 3D Model Creation with a UAV and Optimal Path Planning
by and
Drones 2022, 6(4), 87; https://doi.org/10.3390/drones6040087 - 28 Mar 2022
Cited by 8 | Viewed by 3339
Abstract
Visual inspections of aircraft exterior surfaces are required in aircraft maintenance routines for identifying possible defects such as dents, cracks, leaking, broken or missing parts, etc. This process is time-consuming and is also prone to error if performed manually. Therefore, it has become [...] Read more.
Visual inspections of aircraft exterior surfaces are required in aircraft maintenance routines for identifying possible defects such as dents, cracks, leaking, broken or missing parts, etc. This process is time-consuming and is also prone to error if performed manually. Therefore, it has become a trend to use mobile robots equipped with visual sensors to perform automated inspections. For such a robotic inspection, a digital model of the aircraft is usually required for planning the robot’s path, but a CAD model of the entire aircraft is usually inaccessible to most maintenance shops. It is very labor-intensive and time-consuming to generate an accurate digital model of an aircraft, or even a large portion of it, because the scanning work still must be performed manually or by a manually controlled robotic system. This paper presents a two-stage approach of automating aircraft scanning with an unmanned aerial vehicle (UAV) or autonomous drone equipped with a red–green–blue and depth (RGB-D) camera for detailed inspection or for reconstructing a digital replica of the aircraft when its original CAD model is unavailable. In the first stage, the UAV–camera system follows a predefined path far from the aircraft surface (for safety) to quickly scan the aircraft and generate a coarse model of the aircraft. Then, an optimal scanning path (much closer to the surface) in the sense of the shortest flying distance for full coverage is computed based on the coarse model. In the second stage, the UAV–camera system follows the computed path to closely inspect the surface for possible defects or scan the surface for generating a dense and precise model of the aircraft. We solved the coverage path planning (CPP) problem for the aircraft inspection or scanning using a Monte Carlo tree search (MCTS) algorithm. We also implemented the max–min ant system (MMAS) strategy to demonstrate the effectiveness of our approach. We carried out a digital experiment and the results showed that our approach can scan 70% of the aircraft surface within one hour, which is much more efficient than manual scanning. Full article
Show Figures

Figure 1

Review
Ice Accretion on Fixed-Wing Unmanned Aerial Vehicle—A Review Study
Drones 2022, 6(4), 86; https://doi.org/10.3390/drones6040086 - 28 Mar 2022
Cited by 5 | Viewed by 3032
Abstract
Ice accretion on commercial aircraft operating at high Reynolds numbers has been extensively studied in the literature, but a direct transformation of these results to an Unmanned Aerial Vehicle (UAV) operating at low Reynolds numbers is not straightforward. Changes in Reynolds number have [...] Read more.
Ice accretion on commercial aircraft operating at high Reynolds numbers has been extensively studied in the literature, but a direct transformation of these results to an Unmanned Aerial Vehicle (UAV) operating at low Reynolds numbers is not straightforward. Changes in Reynolds number have a significant impact on the ice accretion physics. Previously, only a few researchers worked in this area, but it is now gaining more attention due to the increasing applications of UAVs in the modern world. As a result, an attempt is made to review existing scientific knowledge and identify the knowledge gaps in this field of research. Ice accretion can deteriorate the aerodynamic performance, structural integrity, and aircraft stability, necessitating optimal ice mitigation techniques. This paper provides a comprehensive review of ice accretion on fixed-wing UAVs. It includes various methodologies for studying and comprehending the physics of ice accretion on UAVs. The impact of various environmental and geometric factors on ice accretion physics is reviewed, and knowledge gaps are identified. The pros and cons of various ice detection and mitigation techniques developed for UAVs are also discussed. Full article
Show Figures

Figure 1

Article
Drone Surveys Are More Accurate Than Boat-Based Surveys of Bottlenose Dolphins (Tursiops truncatus)
Drones 2022, 6(4), 82; https://doi.org/10.3390/drones6040082 - 25 Mar 2022
Cited by 9 | Viewed by 4017
Abstract
Generating accurate estimates of group sizes or behaviours of cetaceans from boat-based surveys can be challenging because much of their activity occurs below the water surface and observations are distorted by horizontal perspectives. Automated observation using drones is an emerging research tool for [...] Read more.
Generating accurate estimates of group sizes or behaviours of cetaceans from boat-based surveys can be challenging because much of their activity occurs below the water surface and observations are distorted by horizontal perspectives. Automated observation using drones is an emerging research tool for animal behavioural investigations. However, drone-based and boat-based survey methods have not been quantitatively compared for small, highly mobile cetaceans, such as Delphinidae. Here, we conduct paired concurrent boat-based and drone-based surveys, measuring the number of individuals in 21 groups and the behaviour within 13 groups of bottlenose dolphin (Tursiops truncatus). We additionally assessed the ability to detect behaviour events by the drone that would not be detectable from the boat. Drone-derived abundance counts detected 26.4% more individuals per group on average than boat-based counts (p = 0.003). Drone-based behaviour observations detected travelling 55.2% more frequently and association in subgroups 80.4% more frequently than boat-based observations (p < 0.001 for both comparisons). Whereas foraging was recorded 58.3% and resting 15.1% less frequently by the drone than by boat-based surveys, respectively (p = 0.014 and 0.024). A considerable number of underwater behaviours ranging from individual play activities to intra- and inter-species interactions (including those with humans) were observed from the drone that could not be detected from the boat. Our findings demonstrate that drone surveys can improve the accuracy of population counts and behavioural data for small cetaceans and the magnitude of the discrepancies between the two methods highlights the need for cautious interpretation of studies that have relied on boat-derived data. Full article
(This article belongs to the Special Issue Drones for Biodiversity Conservation)
Show Figures

Figure 1

Article
Quantification of Grassland Biomass and Nitrogen Content through UAV Hyperspectral Imagery—Active Sample Selection for Model Transfer
Drones 2022, 6(3), 73; https://doi.org/10.3390/drones6030073 - 11 Mar 2022
Cited by 3 | Viewed by 3041
Abstract
Accurate retrieval of grassland traits is important to support management of pasture production and phenotyping studies. In general, conventional methods used to measure forage yield and quality rely on costly destructive sampling and laboratory analysis, which is often not viable in practical applications. [...] Read more.
Accurate retrieval of grassland traits is important to support management of pasture production and phenotyping studies. In general, conventional methods used to measure forage yield and quality rely on costly destructive sampling and laboratory analysis, which is often not viable in practical applications. Optical imaging systems carried as payload in Unmanned Aerial Vehicles (UAVs) platforms have increasingly been proposed as alternative non-destructive solutions for crop characterization and monitoring. The vegetation spectral response in the visible and near-infrared wavelengths provides information on many aspects of its composition and structure. Combining spectral measurements and multivariate modelling approaches it is possible to represent the often complex relationship between canopy reflectance and specific plant traits. However, empirical models are limited and strictly represent characteristics of the observations used during model training, therefore having low generalization potential. A method to mitigate this issue consists of adding informative samples from the target domain (i.e., new observations) to the training dataset. This approach searches for a compromise between representing the variability in new data and selecting only a minimal number of additional samples for calibration transfer. In this study, a method to actively choose new training samples based on their spectral diversity and prediction uncertainty was implemented and tested using a multi-annual dataset. Accurate predictions were obtained using hyperspectral imagery and linear multivariate models (Partial Least Squares Regression—PLSR) for grassland dry matter (DM; R2 = 0.92, RMSE = 3.25 dt ha1), nitrogen (N) content in % of DM (R2 = 0.58, RMSE = 0.27%) and N-uptake (R2 = 0.91, RMSE = 6.50 kg ha1). In addition, the number of samples from the target dates added to the training dataset could be reduced by up to 77% and 74% for DM and N-related traits, respectively, after model transfer. Despite this reduction, RMSE values for optimal transfer sets (identified after validation and used as benchmark) were only 20–30% lower than those values obtained after model transfer based on prediction uncertainty reduction, indicating that loss of accuracy was relatively small. These results demonstrate that considerably simple approaches based on UAV hyperspectral data can be applied in preliminary grassland monitoring frameworks, even with limited datasets. Full article
(This article belongs to the Section Drones in Agriculture and Forestry)
Show Figures

Figure 1

Article
Drone Observations of Marine Life and Human–Wildlife Interactions off Sydney, Australia
Drones 2022, 6(3), 75; https://doi.org/10.3390/drones6030075 - 11 Mar 2022
Cited by 5 | Viewed by 5583
Abstract
Drones have become popular with the general public for viewing and filming marine life. One amateur enthusiast platform, DroneSharkApp, films marine life in the waters off Sydney, Australia year-round and posts their observations on social media. The drone observations include the behaviours of [...] Read more.
Drones have become popular with the general public for viewing and filming marine life. One amateur enthusiast platform, DroneSharkApp, films marine life in the waters off Sydney, Australia year-round and posts their observations on social media. The drone observations include the behaviours of a variety of coastal marine wildlife species, including sharks, rays, fur seals, dolphins and fish, as well as migratory species such as migrating humpback whales. Given the extensive effort and multiple recordings of the presence, behaviour and interactions of various species with humans provided by DroneSharkApp, we explored its utility for providing biologically meaningful observations of marine wildlife. Using social media posts from the DroneSharkApp Instagram page, a total of 678 wildlife videos were assessed from 432 days of observation collected by a single observer. This included 94 feeding behaviours or events for fur seals (n = 58) and dolphins (n = 33), two feeding events for white sharks and one feeding event for a humpback whale. DroneSharkApp documented 101 interactions with sharks and humans (swimmers and surfers), demonstrating the frequent, mainly innocuous human–shark overlap off some of Australia’s busiest beaches. Finally, DroneSharkApp provided multiple observations of humpback and dwarf minke whales with calves travelling north, indicating calving occurring well south of traditional northern Queensland breeding waters. Collaboration between scientists and citizen scientists such as those involved with DroneSharkApp can greatly and quantitatively increase the biological understanding of marine wildlife data. Full article
(This article belongs to the Special Issue Drones for Biodiversity Conservation)
Show Figures

Figure 1

Review
A Review of Counter-UAS Technologies for Cooperative Defensive Teams of Drones
Drones 2022, 6(3), 65; https://doi.org/10.3390/drones6030065 - 01 Mar 2022
Cited by 14 | Viewed by 8704
Abstract
In recent years, the drone market has had a significant expansion, with applications in various fields (surveillance, rescue operations, intelligent logistics, environmental monitoring, precision agriculture, inspection and measuring in the construction industry). Given their increasing use, the issues related to safety, security and [...] Read more.
In recent years, the drone market has had a significant expansion, with applications in various fields (surveillance, rescue operations, intelligent logistics, environmental monitoring, precision agriculture, inspection and measuring in the construction industry). Given their increasing use, the issues related to safety, security and privacy must be taken into consideration. Accordingly, the development of new concepts for countermeasures systems, able to identify and neutralize a single (or multiples) malicious drone(s) (i.e., classified as a threat), has become of primary importance. For this purpose, the paper evaluates the concept of a multiplatform counter-UAS system (CUS), based mainly on a team of mini drones acting as a cooperative defensive system. In order to provide the basis for implementing such a system, we present a review of the available technologies for sensing, mitigation and command and control systems that generally comprise a CUS, focusing on their applicability and suitability in the case of mini drones. Full article
Show Figures

Figure 1

Review
Impact of UAV Hardware Options on Bridge Inspection Mission Capabilities
Drones 2022, 6(3), 64; https://doi.org/10.3390/drones6030064 - 28 Feb 2022
Cited by 4 | Viewed by 3816
Abstract
Uncrewed Aerial Vehicles (UAV) constitute a rapidly evolving technology field that is becoming more accessible and capable of supplementing, expanding, and even replacing some traditionally manual bridge inspections. Given the classification of the bridge inspection types as initial, routine, in-depth, damage, special, and [...] Read more.
Uncrewed Aerial Vehicles (UAV) constitute a rapidly evolving technology field that is becoming more accessible and capable of supplementing, expanding, and even replacing some traditionally manual bridge inspections. Given the classification of the bridge inspection types as initial, routine, in-depth, damage, special, and fracture critical members, specific UAV mission requirements can be developed, and their suitability for UAV application examined. Results of a review of 23 applications of UAVs in bridge inspections indicate that mission sensor and payload needs dictate the UAV configuration and size, resulting in quadcopter configurations being most suitable for visual camera inspections (43% of visual inspections use quadcopters), and hexa- and octocopter configurations being more suitable for higher payload hyperspectral, multispectral, and Light Detection and Ranging (LiDAR) inspections (13%). In addition, the number of motors and size of the aircraft are the primary drivers in the cost of the vehicle. 75% of vehicles rely on GPS for navigation, and none of them are capable of contact inspections. Factors that limit the use of UAVs in bridge inspections include the UAV endurance, the capability of navigation in GPS deprived environments, the stability in confined spaces in close proximity to structural elements, and the cost. Current research trends in UAV technologies address some of these limitations, such as obstacle detection and avoidance methods, autonomous flight path planning and optimization, and UAV hardware optimization for specific mission requirements. Full article
Show Figures

Figure 1

Article
Examples and Results of Aerial Photogrammetry in Archeology with UAV: Geometric Documentation, High Resolution Multispectral Analysis, Models and 3D Printing
Drones 2022, 6(3), 59; https://doi.org/10.3390/drones6030059 - 24 Feb 2022
Cited by 8 | Viewed by 3298
Abstract
The use of unmanned aerial vehicles (UAVs, also known as drones or RPA) in archaeology has expanded significantly over the last twenty years. Improvements in terms of the reliability, size, and manageability of these aircraft have been largely complemented by the high resolution [...] Read more.
The use of unmanned aerial vehicles (UAVs, also known as drones or RPA) in archaeology has expanded significantly over the last twenty years. Improvements in terms of the reliability, size, and manageability of these aircraft have been largely complemented by the high resolution and spectral bands provided by the sensors of the different cameras that can be incorporated into their structure. If we add to this the functionalities and improvements that photogrammetry programs have been experiencing in recent years, we can conclude that there has been a qualitative leap in the possibilities, not only of geometric documentation and in the presentation of the archaeological data, but in the incorporation of non-intrusive high-resolution analytics. The work that we present here gives a sample of the possibilities of both geometric documentation, creation of 3D models, their subsequent printing with different materials, and techniques to finally show a series of analytics from images with NGB (Nir + Green + Blue), Red Edge, and Thermographic cameras applied to various archaeological sites in which our team has been working since 2013, such as Clunia (Peñalba de Castro, Burgos), Puig Rom (Roses), Vilanera (L’Escala, Girona), and Cosa (Ansedonia, Italy). All of them correspond to different chronological periods as well as to varied geographical and morphological environments, which will lead us to propose the search for adequate solutions for each of the environments. In the discussions, we will propose the lines of research to be followed in a project of these characteristics, as well as some results that can already be viewed. Full article
(This article belongs to the Special Issue (Re)Defining the Archaeological Use of UAVs)
Show Figures

Figure 1