Open AccessArticle
Real-Life ISO 15189 Qualification of Long-Range Drone Transportation of Medical Biological Samples: Results from a Clinical Trial
by
Baptiste Demey, Olivier Bury, Morgane Choquet, Julie Fontaine, Myriam Dollerschell, Hugo Thorel, Charlotte Durand-Maugard, Olivier Leroy, Mathieu Pecquet, Annelise Voyer, Gautier Dhaussy and Sandrine Castelain
Viewed by 167
Abstract
Controlling pre-analytical conditions for medical biology tests, particularly during transport, is crucial for complying with the ISO 15189 standard and ensuring high-quality medical services. The use of drones, also known as unmanned aerial vehicles, to transport clinical samples is growing in scale, but
[...] Read more.
Controlling pre-analytical conditions for medical biology tests, particularly during transport, is crucial for complying with the ISO 15189 standard and ensuring high-quality medical services. The use of drones, also known as unmanned aerial vehicles, to transport clinical samples is growing in scale, but requires prior validation to verify that there is no negative impact on the test results provided to doctors. This study aimed to establish a secure, high-quality solution for transporting biological samples by drone in a coastal region of France. The 80 km routes passed over several densely populated urban areas, with take-off and landing points within hospital grounds. The analytical and clinical impact of this mode of transport was compared according to two protocols: an interventional clinical trial on 30 volunteers compared to the reference transport by car, and an observational study on samples from 126 hospitalized patients compared to no transport. The system enabled samples to be transported without damage by maintaining freezing, refrigerated, and room temperatures throughout the flight, without any significant gain in travel time. Analytical variations were observed for sodium, folate, GGT, and platelet levels, with no clinical impact on the interpretation of the results. There is a risk of time-dependent alterations of blood glucose measurements in heparin tubes, which can be corrected by using fluoride tubes. This demonstrated the feasibility and security of transporting biological samples over long distances in line with the ISO 15189 standard. Controlling transport times remains crucial to assessing the quality of analyses. It is imperative to devise contingency plans for backup solutions to ensure the continuity of transportation in the event of inclement weather.
Full article
►▼
Show Figures