Open AccessArticle
Integration of Field Data and UAV Imagery for Coffee Yield Modeling Using Machine Learning
by
Sthéfany Airane dos Santos Silva, Gabriel Araújo e Silva Ferraz, Vanessa Castro Figueiredo, Margarete Marin Lordelo Volpato, Danton Diego Ferreira, Marley Lamounier Machado, Fernando Elias de Melo Borges and Leonardo Conti
Drones 2025, 9(10), 717; https://doi.org/10.3390/drones9100717 (registering DOI) - 16 Oct 2025
Abstract
The integration of machine learning (ML) techniques with unmanned aerial vehicle (UAV) imagery holds strong potential for improving yield prediction in agriculture. However, few studies have combined biophysical field variables with UAV-derived spectral data, particularly under conditions of limited sample size. This study
[...] Read more.
The integration of machine learning (ML) techniques with unmanned aerial vehicle (UAV) imagery holds strong potential for improving yield prediction in agriculture. However, few studies have combined biophysical field variables with UAV-derived spectral data, particularly under conditions of limited sample size. This study evaluated the performance of different ML algorithms in predicting Arabica coffee (
Coffea arabica) yield using field-based biophysical measurements and spectral variables extracted from multispectral UAV imagery. The research was conducted over two crop seasons (2020/2021 and 2021/2022) in a 1.2-hectare experimental plot in southeastern Brazil. Three modeling scenarios were tested with Random Forest, Gradient Boosting, K-Nearest Neighbors, Multilayer Perceptron, and Decision Tree algorithms, using Leave-One-Out cross-validation. Results varied considerably across seasons and scenarios. KNN performed best with raw data, while Gradient Boosting was more stable after variable selection and synthetic data augmentation with SMOTE. Nevertheless, limitations such as small sample size, seasonal variability, and overfitting, particularly with synthetic data, affected overall performance. Despite these challenges, this study demonstrates that integrating UAV-derived spectral data with ML can support yield estimation, especially when variable selection and phenological context are carefully addressed.
Full article
►▼
Show Figures