Previous Issue
Volume 12, June
 
 

Hydrology, Volume 12, Issue 7 (July 2025) – 2 articles

  • Issues are regarded as officially published after their release is announced to the table of contents alert mailing list.
  • You may sign up for e-mail alerts to receive table of contents of newly released issues.
  • PDF is the official format for papers published in both, html and pdf forms. To view the papers in pdf format, click on the "PDF Full-text" link, and use the free Adobe Reader to open them.
Order results
Result details
Section
Select all
Export citation of selected articles as:
31 pages, 2915 KiB  
Article
Addressing Weather Data Gaps in Reference Crop Evapotranspiration Estimation: A Case Study in Guinea-Bissau, West Africa
by Gabriel Garbanzo, Jesus Céspedes, Marina Temudo, Tiago B. Ramos, Maria do Rosário Cameira, Luis Santos Pereira and Paula Paredes
Hydrology 2025, 12(7), 161; https://doi.org/10.3390/hydrology12070161 (registering DOI) - 22 Jun 2025
Abstract
Crop water use (ETc) is typically estimated as the product of crop evapotranspiration (ETo) and a crop coefficient (Kc). However, the estimation of ETo requires various meteorological data, which are often unavailable or of poor quality, [...] Read more.
Crop water use (ETc) is typically estimated as the product of crop evapotranspiration (ETo) and a crop coefficient (Kc). However, the estimation of ETo requires various meteorological data, which are often unavailable or of poor quality, particularly in countries such as Guinea-Bissau, where the maintenance of weather stations is frequently inadequate. The present study aimed to assess alternative approaches, as outlined in the revised FAO56 guidelines, for estimating ETo when only temperature data is available. These included the use of various predictors for the missing climatic variables, referred to as the Penman–Monteith temperature (PMT) approach. New approaches were developed, with a particular focus on optimizing the predictors at the cluster level. Furthermore, different gridded weather datasets (AgERA5 and MERRA-2 reanalysis) were evaluated for ETo estimation to overcome the lack of ground-truth data and upscale ETo estimates from point to regional and national levels, thereby supporting water management decision-making. The results demonstrate that the PMT is generally accurate, with RMSE not exceeding 26% of the average daily ETo. With regard to shortwave radiation, using the temperature difference as a predictor in combination with cluster-focused multiple linear regression equations for estimating the radiation adjustment coefficient (kRs) yielded accurate results. ETo estimates derived using raw (uncorrected) reanalysis data exhibit considerable bias and high RMSE (1.07–1.57 mm d−1), indicating the need for bias correction. Various correction methods were tested, with the simple bias correction delivering the best overall performance, reducing RMSE to 0.99 mm d−1 and 1.05 mm d−1 for AgERA5 and MERRA-2, respectively, and achieving a normalized RMSE of about 22%. After implementing bias correction, the AgERA5 was found to be superior to the MERRA-2 for all the studied sites. Furthermore, the PMT outperformed the bias-corrected reanalysis in estimating ETo. It was concluded that PMT-ETo can be recommended for further application in countries with limited access to ground-truth meteorological data, as it requires only basic technical skills. It can also be used alongside reanalysis data, which demands more advanced expertise, particularly for data retrieval and processing. Full article
29 pages, 2696 KiB  
Article
Hydrogeochemical Characterization and Water Quality Index-Based Evaluation of Groundwater for Drinking, Livestock, and Irrigation Use in the Arid Ewaso Ng’iro–Lagh Dera Basin, Kenya
by Githinji Tabitha Wambui, Dindi Edwin Wandubi, Kuria Zacharia Njuguna, Olago Daniel Ochieng and Gicheruh Chrysanthus Muchori
Hydrology 2025, 12(7), 160; https://doi.org/10.3390/hydrology12070160 - 20 Jun 2025
Viewed by 17
Abstract
Groundwater is the main source of water for both domestic and agricultural use in arid regions. This study assessed the hydrogeochemical characteristics and suitability of groundwater for drinking and irrigation in Kenya’s Ewaso Ng’iro–Lagh Dera Basin. A total of 129 borehole groundwater samples [...] Read more.
Groundwater is the main source of water for both domestic and agricultural use in arid regions. This study assessed the hydrogeochemical characteristics and suitability of groundwater for drinking and irrigation in Kenya’s Ewaso Ng’iro–Lagh Dera Basin. A total of 129 borehole groundwater samples were collected and analyzed for pH, electrical conductivity (EC), total hardness, and major ions. The groundwater was found to be mostly neutral to slightly alkaline and ranged from marginal to brackish in salinity. The dominant water type is Na-HCO3, with the ionic order Na+ > Ca2+ > Mg2+ > K+ and HCO3 > Cl > SO42− > NO3. Mineral saturation indices indicate that the water is undersaturated with gypsum and anhydrite but is saturated with calcite, dolomite, and aragonite. Groundwater chemistry is primarily influenced by ion exchange, the mixing of fresh and paleo-saline water, and rock weathering processes. The water quality index (WQI) reveals that 80.5% of groundwater is suitable for drinking. The rest have high levels of sodium, EC, and bicarbonate. Thus, they are not suitable. The irrigation water quality index (IWQI) places most samples in the moderate-to-severe restriction category due to high salinity and sodicity. These findings highlight the importance of properly treating groundwater before use. Full article
(This article belongs to the Section Water Resources and Risk Management)
Show Figures

Figure 1

Previous Issue
Back to TopTop