A Paleo-Perspective of 21st Century Drought in the Hron River (Slovakia)
Abstract
1. Introduction
2. Study Area
3. Data and Methods
4. Results and Discussion
4.1. Streamflow Reconstruction and Paleo-Drought Analysis
4.2. Discussion of Model Performance and Climate Drivers
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
Abbreviations
AMJJAS | April–May–June–July–August–September |
AMJJAS Q | April–May–June–July–August–September Streamflow |
DW | Durbin–Watson |
IPCC | Intergovernmental Panel on Climate Change |
JJA | June–July–August |
MCM | Million-Cubic-Meters |
OWDA | Old-World Drought Atlas |
Q | streamflow |
coefficient of variation | |
-predicted | |
scPDSI | self-calibrated Palmer Drought Severity Index |
SHMI | Slovak Hydro-meteorological Institute |
SLR | Stepwise Linear Regression |
ST | Sign Test |
VIF | Variation Inflation Factor |
WMO | World Meteorological Organization |
References
- IPCC. Sections. In Climate Change 2023: Synthesis Report. Contribution of Working Groups I, II and III to the Sixth Assessment Report of the Intergovernmental Panel on Climate Change; Team, C.W., Lee, H., Romero, J., Eds.; IPCC: Geneva, Switzerland, 2023; pp. 35–115. [Google Scholar] [CrossRef]
- Kreibich, H.; Van Loon, A.F.; Schröter, K.; Ward, P.J.; Mazzoleni, M.; Sairam, N.; Abeshu, G.W.; Agafonova, S.; AghaKouchak, A.; Aksoy, H.; et al. The challenge of unprecedented floods and droughts in risk management. Nature 2022, 608, 80–86. [Google Scholar] [CrossRef] [PubMed]
- Viorica, N.; Cătălin-Constantin, R.; Andrei, M.; Marian-Ionuț, Ș.; Ionel, P.; Monica, I. The first tree-ring reconstrruction of streamflow variability over the last ~250 years in the Lower Danube. J. Hydrol. 2023, 617, 129150. [Google Scholar] [CrossRef]
- Vido, J.; Nalevanková, P. Drought in the Upper Hron Region (Slovakia) between the Years 1984–2014. Water 2020, 12, 2887. [Google Scholar] [CrossRef]
- Ionita, M.; Nagavciuc, V. Changes in drought features at the European level over the last 120 years. Nat. Hazards Earth Syst. Sci. 2021, 21, 1685–1701. [Google Scholar] [CrossRef]
- Trnka, M.; Balek, J.; Semerádová, D.; Hlavinka, P.; Novotný, I.; Dumbrovský, M.; Drbal, K.; Pavlík, F.; Vopravil, J.; Štěpánková, P.; et al. Assessing the combined hazards of drought, soil erosion and local flooding on agricultural land: A Czech case study. Clim. Res. 2016, 70, 231–249. [Google Scholar] [CrossRef]
- Büntgen, U.; Allen, K.; Anchukaitis, K.J.; Arseneault, D.; Boucher, É.; Bräuning, A.; Chatterjee, S.; Cherubini, P.; Churakova, O.V.; Corona, C.; et al. The influence of decision-making in tree ring-based climate reconstructions. Nat. Commun. 2021, 12, 3411. [Google Scholar] [CrossRef] [PubMed]
- Dobrovolný, P.; Moberg, A.; Brázdil, R.; Pfister, C.; Glaser, R.; Wilson, R.; van Engelen, A.; Limanówka, D.; Kiss, A.; Halíčková, M.; et al. Monthly, seasonal and annual temperature reconstructions for Central Europe derived from documentary evidence and instrumental records since AD 1500. Clim. Chang. 2010, 101, 69–107. [Google Scholar] [CrossRef]
- Ho, M.; Lall, U.; Cook, E.R. Can a paleodrought record be used to reconstruct streamflow?: A case study for the Missouri River Basin. Water Resour. Res. 2016, 52, 5195–5212. [Google Scholar] [CrossRef]
- Ho, M.; Lall, U.; Sun, X.; Cook, E.R. Multiscale temporal variability and regional patterns in 555 years of conterminous U.S. streamflow. Water Resour. Res. 2017, 53, 3047–3066. [Google Scholar] [CrossRef]
- Obertelli, M.A. Data-Driven Approach to Streamflow Reconstruction Using Dendrochronological Data. Master’s Thesis, Politecnico di Milano, Milan, Italy, 2020. [Google Scholar]
- Nasreen, S.; Součková, M.; Vargas Godoy, M.R.; Singh, U.; Markonis, Y.; Kumar, R.; Rakovec, O.; Hanel, M. A 500-year annual runoff reconstruction for 14 selected European catchments. Earth Syst. Sci. Data 2022, 14, 4035–4056. [Google Scholar] [CrossRef]
- Cook, E.R.; Seager, R.; Kushnir, Y.; Briffa, K.R.; Büntgen, U.; Frank, D.; Krusic, P.J.; Tegel, W.; van der Schrier, G.; Andreu-Hayles, L.; et al. Old World megadroughts and pluvials during the Common Era. Sci. Adv. 2015, 1, e1500561. [Google Scholar] [CrossRef] [PubMed]
- Kern, Z.; Németh, A.; Horoszné Gulyás, M.; Popa, I.; Levanič, T.; Hatvani, I.G. Natural proxy records of temperature- and hydroclimate variability with annual resolution from the Northern Balkan–Carpathian region for the past millennium—Review & recalibration. Quat. Int. 2016, 415, 109–125. [Google Scholar] [CrossRef]
- Ljungqvist, F.C.; Seim, A.; Krusic, P.J.; González-Rouco, J.F.; Werner, J.P.; Cook, E.R.; Zorita, E.; Luterbacher, J.; Xoplaki, E.; Destouni, G.; et al. European warm-season temperature and hydroclimate since 850 CE. Environ. Res. Lett. 2019, 14, 084015. [Google Scholar] [CrossRef]
- Tootle, G.; Oubeidillah, A.; Elliott, E.; Formetta, G.; Bezak, N. Streamflow Reconstructions Using Tree-Ring-Based Paleo Proxies for the Sava River Basin (Slovenia). Hydrology 2023, 10, 138. [Google Scholar] [CrossRef]
- Ramírez Molina, A.A.; Bezak, N.; Tootle, G.; Wang, C.; Gong, J. Machine-Learning-Based Precipitation Reconstructions: A Study on Slovenia’s Sava River Basin. Hydrology 2023, 10, 207. [Google Scholar] [CrossRef]
- Trlin, D.; Mikac, S.; Žmegač, A.; Orešković, M. Dendrohydrological Reconstructions Based on Tree-Ring Width (TRW) Chronologies of Narrow-Leaved Ash in the Sava River Basin (Croatia). Sustainability 2021, 13, 2408. [Google Scholar] [CrossRef]
- Ramírez Molina, A.A.; Leščešen, I.; Tootle, G.; Gong, J.; Josić, M. Hydrological Dynamics and Climate Variability in the Sava River Basin: Streamflow Reconstructions Using Tree-Ring-Based Paleo Proxies. Water 2025, 17, 417. [Google Scholar] [CrossRef]
- Bara, M.; Velísková, Y.; Takácová, D. Evaluation of Point-Source Pollution Hazard in the Upper Hron River Basin. In Proceedings of the International Multidisciplinary Scientific GeoConference: SGEM, Sofia, Bulgaria, 17–23 June 2012; Volume 3, pp. 655–662. [Google Scholar]
- Mitkova, V.B.; Halmova, D. Analysis of The Joint Impact of Synchronous Discharges in Estimating the Flood Risk: Case Study on Hron River. IOP Conf. Ser. Earth Environ. Sci. 2019, 221, 012034. [Google Scholar] [CrossRef]
- Blahušiaková, A.; Matoušková, M. Rainfall and runoff regime trends in mountain catchments (Case study area: The upper Hron River basin, Slovakia). J. Hydrol. Hydromechanics 2015, 63, 183–192. [Google Scholar] [CrossRef]
- Pekárová, P.; Szolgay, J. Assessment of Climate Change Impact on Selected Components of the Hydrosphere and Biosphere in the Hron and Váh River Basins; VEDA: Bratislava, Slovakia, 2005; pp. 419–492. [Google Scholar]
- Lapin, M.; Damborská, I.; Faško, P.; Gaál, L.; Melo, M. Some Facts on Extreme Weather Events Analysis in Slovakia. In Bioclimatology and Natural Hazards; Střelcová, K., Mátyás, C., Kleidon, A., Lapin, M., Matejka, F., Blaženec, M., Škvarenina, J., Holécy, J., Eds.; Springer: Dordrecht, The Netherlands, 2009; pp. 39–53. [Google Scholar] [CrossRef]
- Leščešen, I.; Gnjato, S.; Galinović, I.; Basarin, B. Hydrological drought assessment of the Sava River basin in South-Eastern Europe. J. Water Clim. Chang. 2024, 15, 3902–3918. [Google Scholar] [CrossRef]
- Woodhouse, C.A. A 431-Yr Reconstruction of Western Colorado Snowpack from Tree Rings. J. Clim. 2003, 16, 1551–1561. [Google Scholar] [CrossRef]
- Formetta, G.; Tootle, G.; Therrell, M. Regional Reconstruction of Po River Basin (Italy) Streamflow. Hydrology 2022, 9, 163. [Google Scholar] [CrossRef]
- Formetta, G.; Tootle, G.; Bertoldi, G. Streamflow Reconstructions Using Tree-Ring Based Paleo Proxies for the Upper Adige River Basin (Italy). Hydrology 2022, 9, 8. [Google Scholar] [CrossRef]
- O’Brien, R.M. A Caution Regarding Rules of Thumb for Variance Inflation Factors. Qual. Quant. 2007, 41, 673–690. [Google Scholar] [CrossRef]
- Durbin, J.; Watson, G.S. Testing for Serial Correlation in Least Squares Regression: I. Biometrika 1950, 37, 409–428. [Google Scholar]
- Robeson, S.M.; Maxwell, J.T.; Ficklin, D.L. Bias Correction of Paleoclimatic Reconstructions: A New Look at 1200+ Years of Upper Colorado River Flow. Geophys. Res. Lett. 2020, 47. [Google Scholar] [CrossRef]
- Nagavciuc, V.; Helle, G.; Rădoane, M.; Roibu, C.C.; Cotos, M.G.; Ionita, M. A long-term drought reconstruction based on oxygen isotope tree ring data for central and eastern parts of Europe (Romania). Biogeosciences 2025, 22, 55–69. [Google Scholar] [CrossRef]
- Leščešen, I.; Šraj, M.; Pantelić, M.; Dolinaj, D. Assessing the impact of climate on annual and seasonal discharges at the Sremska Mitrovica station on the Sava River, Serbia. Water Supply 2021, 22, 195–207. [Google Scholar] [CrossRef]
- Liu, X.; de Jong, C. Low-Flow Similarities between the Transboundary Lauter River and Rhine River at Maxau from 1956 to 2022 (France/Germany). Water 2024, 16, 1584. [Google Scholar] [CrossRef]
- Brázdil, R.; Dobrovolný, P.; Trnka, M.; Kotyza, O.; Řezníčková, L.; Valášek, H.; Zahradníček, P.; Štěpánek, P. Droughts in the Czech Lands, 1090–2012 AD. Clim. Past 2013, 9, 1985–2002. [Google Scholar] [CrossRef]
- Wohl, E. Connectivity in rivers. Prog. Phys. Geogr. Earth Environ. 2017, 41, 345–362. [Google Scholar] [CrossRef]
- PAGES 2k Consortium. Consistent multidecadal variability in global temperature reconstructions and simulations over the Common Era. Nat. Geosci. 2019, 12, 643–649. [Google Scholar] [CrossRef] [PubMed]
- Davids, J.C.; Rutten, M.M.; Pandey, A.; Devkota, N.; van Oyen, W.D.; Prajapati, R.; van de Giesen, N. Citizen science flow—An assessment of simple streamflow measurement methods. Hydrol. Earth Syst. Sci. 2019, 23, 1045–1065. [Google Scholar] [CrossRef]
- Zhao, Q.; Zhu, Y.; Wan, D.; Yu, Y.; Cheng, X. Research on the Data-Driven Quality Control Method of Hydrological Time Series Data. Water 2018, 10, 1712. [Google Scholar] [CrossRef]
- Vido, J.; Nalevanková, P.; Valach, J.; Šustek, Z.; Tadesse, T. Drought Analyses of the Horné Požitavie Region (Slovakia) in the Period 1966–2013. Adv. Meteorol. 2019, 2019, 3576285. [Google Scholar] [CrossRef]
- Fendeková, M.; Gauster, T.; Labudová, L.; Vrablíková, D.; Danáčová, Z.; Fendek, M.; Pekárová, P. Analysing 21st century meteorological and hydrological drought events in Slovakia. J. Hydrol. Hydromechanics 2018, 66, 393–403. [Google Scholar] [CrossRef]
- Sleziak, P.; Výleta, R.; Hlavčová, K.; Danáčová, M.; Aleksić, M.; Szolgay, J.; Kohnová, S. A Hydrological Modeling Approach for Assessing the Impacts of Climate Change on Runoff Regimes in Slovakia. Water 2021, 13, 3358. [Google Scholar] [CrossRef]
- Minárik, M.; Cimo, J.; Kišš, V. Precipitation and Temperature Changes in Slovakia During the Growing Season in 1961–2020. In Proceedings of the International Multidisciplinary Scientific GeoConference SGEM, Albena, Bulgaria, 3–9 July 2023; Volume 23. [Google Scholar] [CrossRef]
- Kišš, V.; Šurda, P. Analysis of Air Temperature and Precipitation in Nitra, Slovakia in 2005–2019. Acta Hortic. Regiotect. 2021, 24, 45–49. [Google Scholar] [CrossRef]
- Halmová, D.; Pekárová, P.; Podolinská, J.; Jeneiová, K. The Assessment of Changes in the Long-Term Water Balance in the Krupinica River Basin for the Period 1931–2020. Acta Hydrol. Slovaca 2022, 23, 21–31. [Google Scholar] [CrossRef]
- Danihlík, R.; Trizna, M. The Impact of Climate Change on the Runoff Regime in Selected River Basins of Slovakia. Geogr. J. 2005, 57, 71–91. Available online: https://www.sav.sk/journals/uploads/05131254Danihlik%2C%20Trizna.pdf (accessed on 27 February 2025). (In Slovak).
Period | r2 | VIF | DW | ST | Equation | |
---|---|---|---|---|---|---|
1963–2012 | 0.51 | 0.45 | 1.3 | 2.3 | 24/26 | AMJJAS Q = 499.7 + 52.4 (2194) + 33.0 (1780) |
1967–1996 | 0.60 | 0.52 | 1.1 | 1.8 | 14/16 | AMJJAS Q = 490.0 + 51.6 (1944) + 26.8 (2545) |
1967–2006 | 0.50 | 0.42 | 1.1 | 2.1 | 20/20 | AMJJAS Q = 502.6 + 46.8 (2104) + 25.0 (1886) |
1970–2009 | 0.57 | 0.47 | 1.2 | 1.7 | 19/21 | AMJJAS Q = 480.4 + 25.4 (2196) + 25.8 (2000) + 24.3 (2376) |
1971–2010 | 0.55 | 0.50 | 1.1 | 2.0 | 18/22 | AMJJAS Q = 461.6 + 43.0 (2237) + 21.3 (1839) |
1972–2011 | 0.59 | 0.50 | 1.6 | 2.0 | 19/21 | AMJJAS Q = 466.9 + 31.8 (2237) + 19.2 (1839) + 19.2 (2000) |
1973–2012 | 0.62 | 0.52 | 1.4 | 1.6 | 20/20 | AMJJAS Q = 478.6 + 29.2 (2104) + 25.3 (2000) + 16.3 (2376) |
1983–2012 | 0.66 | 0.59 | 1.7 | 1.7 | 17/13 | AMJJAS Q = 509.4 + 44.1 (2194) + 40.3 (1943) |
Period | VIF | DW | ST | Equation | ||
---|---|---|---|---|---|---|
1966–1995 | 0.52 | 0.43 | 1.1 | 2.0 | 14/16 | AMJJAS Q = 785.8 + 78.7 (2000) + 46.7 (2006) |
1970–2009 | 0.54 | 0.46 | 1.0 | 1.9 | 23/17 | AMJJAS Q = 774.0 + 78.0 (1727) + 51.8 (2006) |
1974–2003 | 0.51 | 0.42 | 1.1 | 1.8 | 14/16 | AMJJAS Q = 734.4 + 65.3 (1727) + 42.3 (1839) |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Leščešen, I.; Ramírez Molina, A.A.; Tootle, G. A Paleo-Perspective of 21st Century Drought in the Hron River (Slovakia). Hydrology 2025, 12, 169. https://doi.org/10.3390/hydrology12070169
Leščešen I, Ramírez Molina AA, Tootle G. A Paleo-Perspective of 21st Century Drought in the Hron River (Slovakia). Hydrology. 2025; 12(7):169. https://doi.org/10.3390/hydrology12070169
Chicago/Turabian StyleLeščešen, Igor, Abel Andrés Ramírez Molina, and Glenn Tootle. 2025. "A Paleo-Perspective of 21st Century Drought in the Hron River (Slovakia)" Hydrology 12, no. 7: 169. https://doi.org/10.3390/hydrology12070169
APA StyleLeščešen, I., Ramírez Molina, A. A., & Tootle, G. (2025). A Paleo-Perspective of 21st Century Drought in the Hron River (Slovakia). Hydrology, 12(7), 169. https://doi.org/10.3390/hydrology12070169