Hydrological Modelling for the Sustainable Management of Water Resources in River Basins

A special issue of Hydrology (ISSN 2306-5338). This special issue belongs to the section "Water Resources and Risk Management".

Deadline for manuscript submissions: closed (30 April 2025) | Viewed by 5497

Special Issue Editors


E-Mail Website
Guest Editor
Department of Hydraulics, Soil Science and Agricultural Engineering, School of Agriculture, Aristotle University of Thessaloniki, 54124 Thessaloniki, Greece
Interests: hydrology; hydrological processes in catchments; water resources; water quality; nutrient water pollution; river basin planning and management
Special Issues, Collections and Topics in MDPI journals

E-Mail Website
Guest Editor
School of Rural and Surveying Engineering, Faculty of Engineering, Aristotle University of Thessaloniki, 54124 Thessaloniki, Greece
Interests: analysis, modelling, and forecasting of groundwater resources; spatiotemporal analysis of groundwater quantity and quality variables; deterministic and stochastic groundwater modelling and optimization; water resources management; applications of GIS; design and supervision of hydrotechnical projects
Special Issues, Collections and Topics in MDPI journals

Special Issue Information

Dear Colleagues,

Natural disasters from hydrometeorological extremes and water scarcity, as well as human pressures such as intensive agriculture, can affect the quantity and quality of surface and groundwater resources in river basins. As a result, ecosystem services connected to human benefits, such as the provision of drinking and irrigation water, the regulation of floods, and cultural services, may be disturbed. To preserve them, water and river basin authorities are relying more and more on valuable tools such as conceptual and physically based hydrological models in order to propose cost-effective management strategies to minimize impacts on the aquatic environment and on society. This Special Issue of Hydrology will showcase the state of the art in the adaptation and use of hydrological models on the catchment or river basin scale in different regions and for various purposes within the wider context of water resources and river basin management. We invite novel modelling articles that propose actions for tackling both natural and human pressures, preserving the environmental status of water bodies, and maintaining or improving the socio-economic status within regions. We hope that new methods/models will help us to celebrate progress in tackling real river basin problems and the possible further issues that require more focused research.

Dr. Ioannis Panagopoulos
Dr. Pantelis Sidiropoulos
Guest Editors

Manuscript Submission Information

Manuscripts should be submitted online at www.mdpi.com by registering and logging in to this website. Once you are registered, click here to go to the submission form. Manuscripts can be submitted until the deadline. All submissions that pass pre-check are peer-reviewed. Accepted papers will be published continuously in the journal (as soon as accepted) and will be listed together on the special issue website. Research articles, review articles as well as short communications are invited. For planned papers, a title and short abstract (about 100 words) can be sent to the Editorial Office for announcement on this website.

Submitted manuscripts should not have been published previously, nor be under consideration for publication elsewhere (except conference proceedings papers). All manuscripts are thoroughly refereed through a single-blind peer-review process. A guide for authors and other relevant information for submission of manuscripts is available on the Instructions for Authors page. Hydrology is an international peer-reviewed open access monthly journal published by MDPI.

Please visit the Instructions for Authors page before submitting a manuscript. The Article Processing Charge (APC) for publication in this open access journal is 1800 CHF (Swiss Francs). Submitted papers should be well formatted and use good English. Authors may use MDPI's English editing service prior to publication or during author revisions.

Keywords

  • management practices/measures
  • river basin planning and management
  • hydrological modeling, calibration/uncertainty
  • ecosystem services
  • hydrological extremes
  • water scarcity
  • intensive agriculture

Benefits of Publishing in a Special Issue

  • Ease of navigation: Grouping papers by topic helps scholars navigate broad scope journals more efficiently.
  • Greater discoverability: Special Issues support the reach and impact of scientific research. Articles in Special Issues are more discoverable and cited more frequently.
  • Expansion of research network: Special Issues facilitate connections among authors, fostering scientific collaborations.
  • External promotion: Articles in Special Issues are often promoted through the journal's social media, increasing their visibility.
  • e-Book format: Special Issues with more than 10 articles can be published as dedicated e-books, ensuring wide and rapid dissemination.

Further information on MDPI's Special Issue policies can be found here.

Published Papers (5 papers)

Order results
Result details
Select all
Export citation of selected articles as:

Research

23 pages, 5043 KiB  
Article
Assessing Hydrological Alterations and Environmental Flow Components in the Beht River Basin, Morocco, Using Integrated SWAT and IHA Models
by Fatima Daide, Thomas Hasiotis, Soumaya Nabih, Soufiane Taia, Abderrahim Lahrach, Eleni-Ioanna Koutsovili and Ourania Tzoraki
Hydrology 2025, 12(5), 109; https://doi.org/10.3390/hydrology12050109 - 2 May 2025
Abstract
This study presents a comprehensive analysis of hydrological alterations and environmental flow components in the Beht River basin in northwest Morocco, using a coupled approach involving the Soil and Water Assessment Tool (SWAT) for hydrological modeling, the Indicators of Hydrologic Alteration (IHA) for [...] Read more.
This study presents a comprehensive analysis of hydrological alterations and environmental flow components in the Beht River basin in northwest Morocco, using a coupled approach involving the Soil and Water Assessment Tool (SWAT) for hydrological modeling, the Indicators of Hydrologic Alteration (IHA) for flow regime assessment, and the Standardized Precipitation Index (SPI) for drought characterization. The SWAT model, run on a daily time step, showed satisfactory performance in terms of statistical criteria for both calibration and validation periods, despite encountering limitations, and proved its ability to simulate and reproduce the hydrological behavior of the basin. Using the IHA, we investigated changes in the hydrological regime over two distinct periods, revealing significant hydrological alteration. The SPI analysis supported these findings by highlighting the variable impacts of dry and wet periods on the hydrological regime, thus validating the observed changes in river flow indicators. As a preliminary step toward establishing environmental flows in the Beht River, this study provides foundational insights into the temporal evolution of its hydrology. These findings offer a valuable basis for better water resource management and conservation in the region. Full article
Show Figures

Figure 1

24 pages, 4146 KiB  
Article
Assessing the Effects of Bioenergy Cropping Scenarios on the Surface Water and Groundwater of an Intensively Agricultural Basin in Central Greece
by Maria Sismanidi, Lamprini Kokkinaki, Sofia Kavalieratou, Haralampos Georgoussis, Kyriakos D. Giannoulis, Elias Dimitriou and Yiannis Panagopoulos
Hydrology 2025, 12(4), 66; https://doi.org/10.3390/hydrology12040066 - 22 Mar 2025
Viewed by 1086
Abstract
Pinios river basin constitutes the most important agricultural production area in Greece but contributes to the degradation of the quality and quantity of surface water and groundwater bodies. Bioenergy crops implemented as part of the existing cropping systems could be a novel and [...] Read more.
Pinios river basin constitutes the most important agricultural production area in Greece but contributes to the degradation of the quality and quantity of surface water and groundwater bodies. Bioenergy crops implemented as part of the existing cropping systems could be a novel and efficient mitigation strategy against water degradation, contributing to the production of energy through renewable sources. This study uses the Soil and Water Assessment Tool (SWAT) to first develop a representative model of Pinios river basin and evaluate its current state with respect to water availability and nitrate water pollution. A low-input perennial bioenergy crop, switchgrass, is then simulated closely to the Greek conditions to investigate its potential effects on water in three implementation scenarios: the installation and growth of switchgrass in the entire irrigated cropland, exclusively in irrigated sloping (slopes > 1.5%) cropland, and exclusively in irrigated non-sloping cropland. The simulated results demonstrate that under all scenarios, the water quality improvements with respect to the nitrate loads entering surface water and groundwater bodies were significant, with their reduction being directly affected by the extent to which switchgrass replaced resource-demanding conventional crops. Specifically, the reduction in the annual nitrate loads in the surface water under these three scenarios varied from 7% to 18% at the river basin scale, while in certain cropland areas, the respective reduction even exceeded a level of 80%. The potential to improve the water status was also considerable, as the implementation of the bioenergy crop reduced the irrigation water used annually in the basin by 10% (64 Mm3) when switchgrass replaced the conventional crops only on the sloping land and by almost 30% (187 Mm3) when it replaced them throughout the irrigated land. At the same time, significant biomass production above 18 t/ha/y applied in all of the simulations. This study also highlights the contribution of the bioenergy crop to the rehabilitation of the groundwater levels across the basin, with the possibility of increasing them by >50% compared to the baseline, implying that the adoption of switchgrass could be a promising means against water scarcity. Full article
Show Figures

Figure 1

26 pages, 9680 KiB  
Article
Development of Transient Hydrodynamic and Hydrodispesive Models in Semi-Arid Environments
by Samir Hakimi, Mohamed Abdelbaset Hessane, Mohammed Bahir, Turki Kh. Faraj and Paula M. Carreira
Hydrology 2025, 12(3), 46; https://doi.org/10.3390/hydrology12030046 - 3 Mar 2025
Viewed by 465
Abstract
The hydrogeological study of the Rharb coastal basin, located in the semi-arid northwest region of Morocco, focuses on its two aquifers: the Plio-Quaternary aquifer characterized by high-quality water with salt concentrations ranging from 0.4 to 2 g/L, and the Upper Quaternary aquifer, with [...] Read more.
The hydrogeological study of the Rharb coastal basin, located in the semi-arid northwest region of Morocco, focuses on its two aquifers: the Plio-Quaternary aquifer characterized by high-quality water with salt concentrations ranging from 0.4 to 2 g/L, and the Upper Quaternary aquifer, with lower water quality (2 to 6 g/L). The deep aquifer is overexploited for agricultural purposes. This overexploitation has led to declining piezometric levels and the worsening of the oceanic intrusion phenomenon. The study aims to develop a numerical model for a period of 15 years, from 1992/93 to 2006/07 for monitoring groundwater quantity and quality, considering recharge, exploitation, and basin characteristics. A hydrodynamic model based on storage coefficient calibration identifies overexploitation for irrigation, increasing from 93 Mm3 in 1993 to 170 Mm3 in 2007, as the primary driver of declining water levels. A hydrodispersive model highlights higher salt concentrations in the shallow aquifer (up to 6 g/L), high nitrate concentrations due to human activity, and pinpoints areas of seawater intrusion approximately 500 m from the shoreline. Although the deeper aquifer remains relatively preserved, negative hydraulic balances from −15.4 Mm3 in 1993 to −36.6 Mm3 in 2007 indicate an impending critical period. Full article
Show Figures

Figure 1

22 pages, 7144 KiB  
Article
Attribution of the Climate and Land Use Change Impact on the Hydrological Processes of Athabasca River Basin, Canada
by Sharad Aryal, Mukand S. Babel, Anil Gupta, Babak Farjad, Dibesh Khadka and Quazi K. Hassan
Hydrology 2025, 12(1), 7; https://doi.org/10.3390/hydrology12010007 - 7 Jan 2025
Cited by 1 | Viewed by 1104
Abstract
Climate change (CC) and land use/land cover change (LULCC) are significant drivers of hydrological change, and an effective watershed management requires a detailed understanding of their individual and the combined impact. This study focused on the Athabasca River Basin (ARB), Canada, and investigated [...] Read more.
Climate change (CC) and land use/land cover change (LULCC) are significant drivers of hydrological change, and an effective watershed management requires a detailed understanding of their individual and the combined impact. This study focused on the Athabasca River Basin (ARB), Canada, and investigated how the basin responded to their changes using the MIKE SHE-MIKE Hydro River. Our findings revealed novel insights into ARB hydrological changes, including increment in non-vegetated lands (0.26%), savannas (1.28%), forests (0.53%), and urban areas (0.02%) while grasslands (2.07%) and shrublands (0.03%) decreased. Moreover, the basin experienced rising annual minimum (1.01 °C) and maximum (0.85 °C) temperatures but declining precipitation (6.2%). The findings suggested a significant impact of CC compared to LULCC as CC caused annual reduction in streamflow (7.9%), evapotranspiration (4.8%), and recharge (6.9%). Meanwhile, LULCC reduced streamflow (0.2%) and recharge (0.4%) but increased evapotranspiration (0.1%). The study revealed spatiotemporal variability across the ARB, with temperature impacts stronger in winter and precipitation influencing other seasons. Full article
Show Figures

Figure 1

21 pages, 11467 KiB  
Article
Effects of Climate Change and Changes in Land Use and Cover on Water Yield in an Equatorial Andean Basin
by Darío Xavier Zhiña, Alex Avilés, Lorena González, Ana Astudillo, José Astudillo and Carlos Matovelle
Hydrology 2024, 11(9), 157; https://doi.org/10.3390/hydrology11090157 - 23 Sep 2024
Cited by 1 | Viewed by 1735
Abstract
Ecosystem services contribute significantly to human development, with water production being a crucial component. Climate and land use changes can impact water availability within a basin. In this context, researching water-related areas is essential for formulating policies to protect and manage hydrological services. [...] Read more.
Ecosystem services contribute significantly to human development, with water production being a crucial component. Climate and land use changes can impact water availability within a basin. In this context, researching water-related areas is essential for formulating policies to protect and manage hydrological services. The objective of this study was to estimate water yield in the sub-basins of the Tabacay and Aguilán rivers under climate change scenarios in 2030, 2040, and 2050, combined with scenarios of changes in land cover and land use. The InVEST model was employed to analyze water yield. The results show that crop areas were identified as the lowest water yield in future scenarios, and forested areas, particularly the region where the Cubilán Protected Forest is located, contribute the most to water yield in the subbasin. Besides, water yield has increased in the historic period (2016–2018) due to the conservation and reforestation initiatives carried out by the Municipal Public Service Company for Drinking Water, Sewerage, and Environmental Sanitation of the city of Azogues in 2018, the so-called Reciprocal Agreements for Water. Additionally, an increase in water yield is projected for future scenarios. This study can serve as a basis for decision-makers to identify areas that should prioritize protection and conservation. Full article
Show Figures

Figure 1

Back to TopTop