Rainfall Organization and Storm Tracking in Urban Barcelona, NE Spain, Using a High-Resolution Rain Gauge Network
Abstract
1. Introduction
2. Materials and Methods
2.1. The Pluviometric Network of Barcelona
2.2. Spatial Organization of Rainfall in Barcelona
2.3. Storm-Tracking Technique
3. Results
3.1. Spatial Organization of Rainfall: The Urban Rainfall Island in Barcelona
3.2. Tracking the Rainfall Events Recorded by the Urban Network of Barcelona (1994–2019)
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Martín-Vide, J. Spatial Distribution of a Daily Precipitation Concentration Index in Peninsular Spain. Int. J. Climatol. 2004, 24, 959–971. [Google Scholar] [CrossRef]
- Casas, M.C.; Rodríguez, R.; Redaño, À. Analysis of extreme rainfall in Barcelona using a microscale rain gauge network. Meteorol. Appl. 2010, 17, 117–123. [Google Scholar] [CrossRef]
- Rodríguez, R.; Navarro, X.; Casas, M.C.; Redaño, À. Rainfall spatial organization and areal reduction factors in the metropolitan area of Barcelona (Spain). Theor. Appl. Climatol. 2013, 114, 1–8. [Google Scholar] [CrossRef]
- Tramblay, Y.; El Adlouni, S.; Servat, E. Trends and variability in extreme precipitation indices over Maghreb countries. Nat. Hazards Earth Syst. Sci. 2013, 13, 3235–3248. [Google Scholar] [CrossRef]
- Pérez-Zanón, N.; Casas-Castillo, M.C.; Rodríguez-Solà, R.; Peña, J.C.; Rius, A.; Solé, J.G.; Redaño, À. Analysis of extreme rainfall in the Ebre Observatory (Spain). Theor. Appl. Climatol. 2016, 124, 935–944. [Google Scholar] [CrossRef]
- Ribes, A.; Thao, S.; Vautard, R.; Dubuisson, B.; Somot, S.; Colin, J.; Planton, S.; Soubeyroux, J.M. Observed increase in extreme daily rainfall in the French Mediterranean. Clim. Dyn. 2019, 52, 1095–1114. [Google Scholar] [CrossRef]
- Lana, X.; Rodríguez-Solà, R.; Martínez, M.D.; Casas-Castillo, M.C.; Serra, C.; Burgueño, A. Characterization of standardized heavy rainfall profiles for Barcelona city: Clustering, rain amounts and intensity peaks. Theor. Appl. Climatol 2020, 142, 255–268. [Google Scholar] [CrossRef]
- González-Hidalgo, J.C.; Beguería, S.; Peña-Angulo, D.; Trullenque, V. Catalogue and analysis of extraordinary precipitation events in the Spanish mainland, 1916–2022. Int. J. Climatol. 2025, 45, e8785. [Google Scholar] [CrossRef]
- Naylor, J.; Sexton, A. The Relationship between Severe Weather Warnings, Storm Reports, and Storm Cell Frequency in and around Several Large Metropolitan Areas. Weather Forecast. 2018, 33, 1339–1358. [Google Scholar] [CrossRef]
- Liu, J.; Niyogi, D. Meta-analysis of urbanization impact on rainfall modification. Sci. Rep. 2019, 9, 7301. [Google Scholar] [CrossRef]
- Martín-Vide, J.; Moreno-García, M.C. Probability values for the intensity of urban heat island (Spain). Atmos. Res. 2020, 240, 104877. [Google Scholar] [CrossRef]
- Torelló-Sentelles, H.; Marra, F.; Koukoula, M.; Villarini, G.; Peleg, N. Intensification and changing spatial extent of heavy rainfall in urban areas. Earth’s Future 2024, 12, e2024EF004505. [Google Scholar] [CrossRef]
- Shepherd, J.M.; Stallins, J.A.; Jin, M.L.; Mote, T.L. Urbanization: Impacts on Clouds, Precipitation, and Lightning. In Urban Ecosystem Ecology; Aitkenhead-Peterson, J., Volder, A., Eds.; Agronomy Monographs; ASA, CSSA, SSSA Books: Madison, WI, USA, 2010. [Google Scholar] [CrossRef]
- IPCC. Climate Change 2021: The Physical Science Basis. Contribution of Working Group I to the Sixth Assessment Report of the Intergovernmental Panel on Climate Change; Masson-Delmotte, V., Zhai, P., Pirani, A., Connors, S.L., Péan, C., Berger, S., Caud, N., Chen, Y., Goldfarb, L., Gomis, M.I., et al., Eds.; Cambridge University Press: Cambridge, UK; New York, NY, USA, 2021; 2391p. [Google Scholar] [CrossRef]
- Myhre, G.; Alterskjær, K.; Stjern, C.W.; Hodnebrog, Ø.; Marelle, L.; Samset, B.H.; Sillmann, J.; Schaller, N.; Fischer, E.; Schulz, M.; et al. Frequency of extreme precipitation increases extensively with event rareness under global warming. Sci. Rep. 2019, 9, 16063. [Google Scholar] [CrossRef] [PubMed]
- Drobinski, P.; Ducrocq, V.; Alpert, P.; Anagnostou, E.; Béranger, K.; Borga, M.; Braud, I.; Chanzy, A.; Davolio, S.; Delrieu1, G.; et al. HyMeX: A 10-Year Multidisciplinary Program on the Mediterranean Water Cycle. Bull. Am. Meteorol. Soc. 2014, 95, 1063–1082. [Google Scholar] [CrossRef]
- Ínsua-Costa, D.; Senande-Rivera, M.; Llasat, M.C.; Míguez-Macho, G. A global perspective on western Mediterranean precipitation extremes. npj Clim. Atmos. Sci. 2022, 5, 9. [Google Scholar] [CrossRef]
- Reale, M.; Lionello, P. Synoptic climatology of winter intense precipitation events along the Mediterranean coasts. Nat. Hazards Earth Syst. Sci. 2013, 13, 1707–1722. [Google Scholar] [CrossRef]
- de Lima, M.I.P.; Santo, F.E.; Ramos, A.M.; Trigo, R.M. Trends and correlations in annual extreme precipitation indices for mainland Portugal, 1941–2007. Theor. Appl. Climatol. 2015, 119, 55–75. [Google Scholar] [CrossRef]
- Sunyer, M.A.; Hundecha, Y.; Lawrence, D.; Madsen, H.; Willems, P.; Martinkova, M.; Vormoor, K.; Bürger, G.; Hanel, M.; Kriaučiūnienė, J.; et al. Inter-comparison of statistical downscaling methods for projection of extreme precipitation in Europe. Hydrol. Earth Syst. Sci. 2015, 19, 1827–1847. [Google Scholar] [CrossRef]
- Serrano-Notivoli, R.; Beguería, S.; Saz, M.Á.; de Luis, M. Recent trends reveal decreasing intensity of daily precipitation in Spain. Int. J. Climatol. 2018, 38, 4211–4224. [Google Scholar] [CrossRef]
- Zittis, G.; Almazroui, M.; Alpert, P.; Ciais, P.; Cramer, W.; Dahdal, Y.; Fnais, M.; Francis, D.; Hadjinicolaou, P.; Howari, F.; et al. Climate change and weather extremes in the Eastern Mediterranean and Middle East. Rev. Geophys. 2022, 60, e2021RG000762. [Google Scholar] [CrossRef]
- Vicente-Serrano, S.M.; Tramblay, Y.; Reig, F.; González-Hidalgo, J.C.; Beguería, S.; Brunetti, M.; Kalin, K.C.; Patalen, L.; Kržič, A.; Lionello, P.; et al. High temporal variability not trend dominates Mediterranean precipitation. Nature 2025, 639, 658–666. [Google Scholar] [CrossRef] [PubMed]
- Lionello, P.; Scarascia, L. The relation of climate extremes with global warming in the Mediterranean region and its north versus south contrast. Reg. Environ. Change 2020, 20, 31. [Google Scholar] [CrossRef]
- Vautard, R.; Kadygrov, N.; Iles, C.; Boberg, F.; Buonomo, E.; Bülow, K.; Coppola, E.; Corre, L.; van Meijgaard, E.; Nogherotto, R.; et al. Assessment of the European Climate Projections as Simulated by the Large EURO-CORDEX Regional and Global Climate Model Ensemble. J. Geophys. Res. D Atmos. 2021, 126, e2019JD032356. [Google Scholar] [CrossRef]
- Rodríguez, R.; Navarro, X.; Casas, M.C.; Ribalaygua, J.; Russo, B.; Pouget, L.; Redaño, À. Influence of climate change on IDF curves for the metropolitan area of Barcelona (Spain). Int. J. Climatol. 2014, 34, 643–654. [Google Scholar] [CrossRef]
- Casas-Castillo, M.C.; Rodríguez-Solà, R.; Lana, X.; Serra, C.; Martínez, M.D.; Biere, R.; Arellano, B.; Roca, J. Consecuencias hidrológicas del cambio climático en entornos urbanos. In Proceedings of the XIII International Conference on Virtual City and Territory: Challenges and Paradigms of the Contemporary City, Barcelona, Spain, 2–4 October 2019; p. 8291. [Google Scholar] [CrossRef]
- Monjo, R.; Locatelli, L.; Milligan, J.; Torres, L.; Velasco, M.; Gaitán, E.; Pórtoles, J.; Redolat, D.; Russo, B.; Ribalaygua, J. Estimation of future extreme rainfall in Barcelona (Spain) under monofractal hypothesis. Int. J. Climatol. 2023, 43, 4047–4068. [Google Scholar] [CrossRef]
- Huang, X.; Hao, L.; Sun, G.; Yang, Z.-L.; Li, W.; Chen, D. Urbanization aggravates effects of global warming on local atmospheric drying. Geophys. Res. Lett. 2022, 49, e2021GL095709. [Google Scholar] [CrossRef]
- Huang, J.; Fatichi, S.; Mascaro, G.; Manoli, G.; Peleg, N. Intensification of sub-daily rainfall extremes in a low-rise urban area. Urban Clim. 2022, 42, 101124. [Google Scholar] [CrossRef]
- Huang, S.; Gan, Y.; Zhang, X.; Chen, N.; Wang, C.; Gu, X.; Ma, J.; Niyogi, D. Urbanization amplified asymmetrical changes of rainfall and exacerbated drought: Analysis over five urban agglomerations in the Yangtze River Basin, China. Earth’s Future 2023, 11, e2022EF003117. [Google Scholar] [CrossRef]
- Llasat, M.C.; Marcos, R.; Turco, M.; Gilabert, J.; Llasat-Botija, M. Trends in Flash Flood Events versus Convective Precipitation in the Mediterranean Region: The Case of Catalonia. J. Hydrol. 2016, 541, 24–37. [Google Scholar] [CrossRef]
- Doswell, C., III; Ramis, C.; Romero, R.; Alonso, S. A Diagnostic Study of Three Heavy Precipitation Episodes in the Western Mediterranean Region. Weather Forecast. 1998, 13, 102–124. [Google Scholar] [CrossRef]
- Alpert, P.; Radian, R.; Halfon, N.; Levin, Z. Urban Rainfall Anomaly under Intensive Development, 1949–2018, Case of Tel-Aviv, Israel. Atmosphere 2019, 10, 163. [Google Scholar] [CrossRef]
- Wilson, J.; Crook, N.; Mueller, C.; Sun, J.; Dixon, M. Nowcasting thunderstorms: A status report. Bull. Am. Meteorol. Soc. 1998, 79, 2079–2099. [Google Scholar] [CrossRef]
- Newton, C.W.; Fankhauser, J.C. Movement and propagation of multicellular convective storms. Pure Appl. Geophys. 1975, 113, 747–764. [Google Scholar] [CrossRef]
- Lorente, J.; Redaño, À. Rainfall rate distribution in a local scale: The case of Barcelona city. Theor. Appl. Climatol. 1990, 41, 23–32. [Google Scholar] [CrossRef]
- Zhang, Y.; Miao, S.; Dai, Y.; Bornstein, R. Numerical simulation of urban land surface effects on summer convective rainfall under different UHI intensity in Beijing. J. Geophys. Res. Atmos. 2017, 122, 7851–7868. [Google Scholar] [CrossRef]
- Hong, S.H.; Jin, H.G.; Han, J.Y.; Baik, J.J. Initiation and evolution of urban-induced precipitation under different background wind speeds: Roles of urban breeze circulation and cold pool. Theor. Appl. Climatol. 2024, 155, 9457–9470. [Google Scholar] [CrossRef]
- Li, Y.; Fowler, H.J.; Argüeso, D.; Blenkinsop, S.; Evans, J.P.; Lenderink, G.; Yan, X.; Guerreiro, S.B.; Lewis, E.; Li, X.F. Strong intensification of hourly rainfall extremes by urbanization. Geophys. Res. Lett. 2020, 47, e2020GL088758. [Google Scholar] [CrossRef]
- Yan, H.; Gao, Y.; Wilby, R.; Yu, D.; Wright, N.; Yin, J.; Chen, X.; Chen, J.; Guan, M. Urbanization further intensifies short-duration rainfall extremes in a warmer climate. Geophys. Res. Lett. 2024, 51, e2024GL108565. [Google Scholar] [CrossRef]
- Rigo, T.; Llasat, M.-C. Analysis of mesoscale convective systems in Catalonia using meteorological radar for the period 1996–2000. Atmos. Res. 2007, 83, 458–472. [Google Scholar] [CrossRef]
- Rigo, T.; Farnell, C. Quasi-Linear Convective Systems in Catalonia Detected Through Radar and Lightning Data. Remote Sens. 2024, 16, 4262. [Google Scholar] [CrossRef]
- Arellano Ramos, B.; Roca-Cladera, J. Urban-CLIMPLAN: La Isla de Calor Urbana en la Región Metropolitana de Barcelona. ACE-Archit. City Environ. 2021, 15, 10381. [Google Scholar] [CrossRef]
- Rigo, T.; Llasat, M.C. A methodology for the classification of convective structures using meteorological radar: Application to heavy rainfall events on the Mediterranean coast of the Iberian Peninsula. Nat. Hazards Earth Syst. Sci. 2004, 4, 59–68. [Google Scholar] [CrossRef]
- Berne, A.; Krajewski, W.F. Radar for hydrology: Unfulfilled promise or unrecognized potential? Adv. Water Resour. 2013, 51, 357–366. [Google Scholar] [CrossRef]
- Thorndahl, S.; Einfalt, T.; Willems, P.; Nielsen, J.E.; ten Veldhuis, M.-C.; Arnbjerg-Nielsen, K.; Rasmussen, M.R.; Molnar, P. Weather radar rainfall data in urban hydrology. Hydrol. Earth Syst. Sci. 2017, 21, 1359–1380. [Google Scholar] [CrossRef]
- Ochoa-Rodríguez, S.; Wang, L.-P.; Willems, P.; Onof, C. A review of radar-rain gauge data merging methods and their potential for urban hydrological applications. Water Resour. Res. 2019, 55, 6356–6391. [Google Scholar] [CrossRef]
- Esbrí, L.; Rigo, T.; Llasat, M.C.; Aznar, B. Identifying storm hotspots and the most unsettled areas in Barcelona by analysing significant rainfall episodes from 2013 to 2018. Water 2021, 13, 1730. [Google Scholar] [CrossRef]
- Lo Conti, F.; Noto, L.; Quatrosi, A.; La Loggia, G. Using high resolution raingauge data for storm tracking analysis in the urban area of Palermo, Italy. In Proceedings of the 8th International Workshop on Precipitation in Urban Areas “Rainfall in the Urban Context: Forecasting, Risk and Climate Change”, St. Moritz, Switzerland, 10–13 December 2009; pp. 166–171. Available online: https://hdl.handle.net/10447/41562 (accessed on 10 March 2025).
- Carbone, M.; Garofalo, G.; Tomei, G.; Piro, P. Storm Tracking based on Rain Gauges for Flooding Control in Urban Areas. Procedia Eng. 2014, 70, 256–265. [Google Scholar] [CrossRef]
- Paz, I.; Tchiguirinskaia, I.; Schertzer, D. Rain gauge networks’ limitations and the implications to hydrological modelling highlighted with a X-band radar. J. Hydrol. 2020, 583, 124615. [Google Scholar] [CrossRef]
- Navarro, X. Organització Espacial i Temporal de la pluja a l’àrea Metropolitana de Barcelona. Ph.D. Thesis, Universitat Politècnica de Catalunya, Vilanova I La Geltrú, Spain, 13 October 2021. Available online: http://hdl.handle.net/10803/673995 (accessed on 18 March 2025).
- Olsson, J.; Niemczynowicz, J. Multifractal analysis of daily spatial rainfall distributions. J. Hydrol. 1996, 187, 29–43. [Google Scholar] [CrossRef]
- Enjamio, C.; Vilar, E.; Redaño, À.; Fontán, F.P.; Ndzi, D. Experimental analysis of microscale rain cells and their dynamic evolution. Radio Sci. 2005, 40, RS3015. [Google Scholar] [CrossRef]
- Servei Meteorològic de Catalunya: Divulgacio/La Predicció Meteorològica/Predicció/. Available online: https://www.meteo.cat/wpweb/divulgacio/la-prediccio-meteorologica/prediccio/ (accessed on 12 April 2025).
- Platikanov, S.; López, J.F.; Martrat, B.; Martín-Vide, J.; Tauler, R. Temporal and Spatial Relationships Between Climatic Indices and Precipitation Zones in Europe, Spain and Catalonia. Int. J. Climatol. 2025, 45, e8699. [Google Scholar] [CrossRef]
- Jolliffe, I. Principal Component Analysis. In International Encyclopedia of Statistical Science; Lovric, M., Ed.; Springer: Berlin/Heidelberg, Germany, 2011. [Google Scholar] [CrossRef]
- Rodríguez-Solà, R.; Casas-Castillo, M.C.; Navarro, X.; Redaño, À. A study of the scaling properties of rainfall in Spain and its appropriateness to generate intensity-duration-frequency curves from daily records. Int. J. Climatol. 2017, 37, 770–780. [Google Scholar] [CrossRef]
- Casas-Castillo, M.C.; Llabrés-Brustenga, A.; Rius, A.; Rodríguez-Solà, R.; Navarro, X. A single scaling parameter as a first approximation to describe the rainfall pattern of a place: Application on Catalonia. Acta Geophys. 2018, 66, 415–424. [Google Scholar] [CrossRef]
- Casas-Castillo, M.C.; Llabrés-Brustenga, A.; Rodríguez-Solà, R.; Rius, A.; Redaño, À. Scaling properties of rainfall as a basis for intensity-duration-frequency relationships and their spatial distribution in Catalunya, NE Spain. Climate 2025, 13, 37. [Google Scholar] [CrossRef]
- Karl, T.R.; Nicholls, N.; Ghazi, A. (Eds.) CLIVAR/GCOS/WMO workshop on indices and indicators for climate extremes: Workshop summary, Weather and Climate Extremes. In Weather and Climate Extremes; Springer: Dordrecht, The Netherlands, 1999; Volume 42, pp. 3–7. [Google Scholar] [CrossRef]
- Niemczynowicz, J. Storm tracking using rain gauge data. J. Hydrol. 1987, 93, 135–152. [Google Scholar] [CrossRef]
- Diskin, M.H. The Speed of Two Moving Rainfall Events in Lund. Hydrol. Res. 1990, 21, 153–164. [Google Scholar] [CrossRef]
- Zawadski, I.I. Statistical properties of precipitation patterns. J. Appl. Met. 1973, 12, 459–472. [Google Scholar] [CrossRef]
- Marshall, R.J. The estimation and distribution of storm movement and storm structure, using a correlation analysis technique and rain gauge data. J. Hydrol. 1980, 48, 19–39. [Google Scholar] [CrossRef]
- Upton, G.J.G. A correlation–regression method for tracking rainstorms using rain-gauge data. J. Hydrol. 2002, 261, 60–73. [Google Scholar] [CrossRef]
- Serra, C.; Lana, X.; Martínez, M.D.; Roca, R.; Arellano, B.; Biere, R.; Moix, M.; Burgueño, A. Air temperature in Barcelona metropolitan region from MODIS satellite and GIS data. Theor. Appl. Climatol. 2020, 139, 473–492. [Google Scholar] [CrossRef]
- Sui, X.; Yang, Z.; Shepherd, M.; Niyogi, D. Global scale assessment of urban precipitation anomalies. Proc. Natl. Acad. Sci. USA 2024, 121, e2311496121. [Google Scholar] [CrossRef] [PubMed]
- Zhao, Y.; Xia, J.; Xu, Z.; Zou, L.; Qiao, Y.; Li, P. Impact of urban expansion on rain island effect in Jinan City, North China. Remote Sens. 2021, 13, 2989. [Google Scholar] [CrossRef]
- Berndtsson, R.; Niemczynowicz, J. Spatial and temporal scales in rainfall analysis—Some aspects and future perspectives. J. Hydrol. 1988, 100, 293–313. [Google Scholar] [CrossRef]
- Casas-Castillo, M.C.; Rodríguez-Solà, R.; Llabrés-Brustenga, A.; García-Marín, A.P.; Estévez, J.; Navarro, X. A Simple Scaling Analysis of Rainfall in Andalusia (Spain) under Different Precipitation Regimes. Water 2022, 14, 1303. [Google Scholar] [CrossRef]
- Mazón, J.; Pino, D. Pluviometric anomaly in the Llobregat Delta. Tethys Rev. Meteorol. Climatol. Mediterr. 2009, 6, 31–50. [Google Scholar] [CrossRef]
- Gascón, E.; Laviola, S.; Merino, A.; Miglietta, M.M. Analysis of a Localized Flash-Flood Event over the Central Mediterranean. Atmos. Res. 2016, 182, 256–268. [Google Scholar] [CrossRef]
- del Moral, A.; Llasat, M.C.; Rigo, T. Connecting Flash Flood Events with Radar-Derived Convective Storm Characteristics on the Northwestern Mediterranean Coast: Knowing the Present for Better Future Scenarios Adaptation. Atmos. Res. 2020, 238, 104863. [Google Scholar] [CrossRef]
- Rigo, T.; Berenguer, M.; Llasat, M.C. An improved analysis of mesoscale convective systems in the western Mediterranean using weather radar. Atmos. Res. 2019, 227, 147–156. [Google Scholar] [CrossRef]
- Barcelona Cicle de l’Aigua, SA. 9. Sol·Licitud d’informació Pluviomètrica. Available online: https://www.bcasa.cat/CAT/solicitud-informacio.asp (accessed on 14 April 2025).
Code | UTMx (m) | UTMy (m) | Elevation (m a.s.l.) |
---|---|---|---|
AGBE | 432,572 | 4,590,189 | 18 |
AGCO | 422,530 | 4,579,549 | 15 |
AGTI | 426,690 | 4,586,494 | 450 |
AGTR | 430,034 | 4,585,878 | 162 |
AJNO | 431,351 | 4,581,678 | 8 |
AJSA | 426,648 | 4,583,627 | 120 |
AJUO | 429,270 | 4,584,410 | 86 |
BARK | 428,485 | 4,578,698 | 9 |
CANY | 430,181 | 4,588,414 | 148 |
CATA | 433,279 | 4,585,023 | 7 |
CLAB | 427,987 | 4,578,247 | 4 |
COTX | 427,879 | 4,580,946 | 27 |
DEIN | 428,911 | 4,582,279 | 37 |
DEPU | 435,184 | 4,584,975 | 5 |
ELIZ | 430,373 | 4,583,077 | 32 |
FCCF | 427,443 | 4,576,149 | 3 |
FISI | 426,341 | 4,582,030 | 67 |
HEUR | 428,357 | 4,587,775 | 206 |
JOMI | 428,880 | 4,581,117 | 30 |
MONT | 430,431 | 4,579,649 | 146 |
NABI | 425,042 | 4,585,529 | 293 |
NICA | 433,035 | 4,582,822 | 3 |
ROLI | 434,117 | 4,587,439 | 14 |
SAGR | 432,334 | 4,586,332 | 26 |
D J F | M A M | J J A | S O N | |
---|---|---|---|---|
Winter | Spring | Summer | Autumn | |
Total events | 670 (25%) | 741 (28%) | 382 (14%) | 885 (33%) |
Intense events | 7 (5%) | 13 (10%) | 37 (28%) | 76 (57%) |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Casas-Castillo, M.d.C.; Navarro, X.; Rodríguez-Solà, R. Rainfall Organization and Storm Tracking in Urban Barcelona, NE Spain, Using a High-Resolution Rain Gauge Network. Hydrology 2025, 12, 178. https://doi.org/10.3390/hydrology12070178
Casas-Castillo MdC, Navarro X, Rodríguez-Solà R. Rainfall Organization and Storm Tracking in Urban Barcelona, NE Spain, Using a High-Resolution Rain Gauge Network. Hydrology. 2025; 12(7):178. https://doi.org/10.3390/hydrology12070178
Chicago/Turabian StyleCasas-Castillo, María del Carmen, Xavier Navarro, and Raül Rodríguez-Solà. 2025. "Rainfall Organization and Storm Tracking in Urban Barcelona, NE Spain, Using a High-Resolution Rain Gauge Network" Hydrology 12, no. 7: 178. https://doi.org/10.3390/hydrology12070178
APA StyleCasas-Castillo, M. d. C., Navarro, X., & Rodríguez-Solà, R. (2025). Rainfall Organization and Storm Tracking in Urban Barcelona, NE Spain, Using a High-Resolution Rain Gauge Network. Hydrology, 12(7), 178. https://doi.org/10.3390/hydrology12070178