Weathering Records from an Early Cretaceous Syn-Rift Lake
Abstract
1. Introduction
- What were the tectonic setting and sedimentary provenance of the Lishu paleo-lake during the deposition of the Shahezi Formation in the Songliao Basin, NE Asia?
- How can chemical weathering conditions be reconstructed while accounting for external controls and potential uncertainties?
- What were the prevailing paleoclimate conditions in the Lishu paleo-lake watershed during the Early Cretaceous?
2. Geological Settings
3. Data and Methods
3.1. Sample Preparation
3.2. TOC Measurement, Optical and Electron Microscopy
3.3. X-Ray Fluorescence Spectrometry (XRF)
3.4. Inductively Coupled Plasma-Mass Spectrometry (ICP-MS)
3.5. Geochemical Proxies
3.5.1. Chemical Index of Alteration (CIA)
3.5.2. Plagioclase Index of Alteration (PIA)
3.5.3. Index of Compositional Variability (ICV)
3.5.4. Ln(Al2O3/Na2O) and Total Carbonate Content
3.5.5. Weathering Index of Parker (WIP)
3.5.6. Rubidium-to-Strontium (Rb/Sr) Ratio
3.6. Major Element Concentrations of the Longmaxi Formation Mudstones
3.7. Data Treatment
4. Results
4.1. Bulk TOC Concentrations and Mineral Composition (Shahezi Formation)
4.2. Major Element Geochemistry (Shahezi Formation)
4.3. Rare Earth Element (REE) Geochemistry (Shahezi Formation)
4.4. Chemical Weathering Proxies (Shahezi Formation)
4.5. Microscopic Occurrence of (Na, K, Ba) Feldspar (Longmaxi Formation)
5. Discussion
5.1. Tectonic Settings of the Lishu Rift Depression
5.2. Sedimentary Provenance
5.3. Chemical Weathering Intensity Reconstructed by CIA Values
5.3.1. Controls on CIA Indicator: Protolith Composition
5.3.2. Controls on CIA Indicator: Potassium Metasomatism
5.3.3. Controls on CIA Indicator: Sediment Recycling
5.3.4. Controls on CIA Indicator: Carbonate Abundance
5.4. Paleoclimate Variation Recorded in the Lishu Syn-Rift Paleo-Lake
5.4.1. Chemical Weathering Proxies
5.4.2. Sedimentological and Palynological Evidence
5.5. Uncertainty Analysis
5.5.1. Inaccurate Assessment of “Excess K2O” and Pre-Metasomatic CIA Values: Insights from the Longmaxi Formation Mudstones Affected by Hydrothermal Fluids
5.5.2. Problems with Corrections to CaO Contents and CIA Corrections
6. Conclusions
- Tectonic background and sedimentary provenance. The Lishu paleo-lake developed within a tectonic regime of a continental island arc. The closure of the Mongol-Okhotsk Ocean and the subduction of the paleo-Pacific plate beneath the Paleo-Asian continent, during the Early Cretaceous, induced backarc extension and gravitational collapse, initiating the rifting of the Songliao Basin. REE signatures and Al2O3/TiO2 ratios indicate that the Shahezi Formation deposits have a uniform provenance, primarily derived from felsic igneous sources.
- Chemical weathering intensity. A comprehensive dataset of the Shahezi Formation mudstones, collected from six boreholes across three rift depressions, was analyzed using a rectangular coordinate system and the least squares method to estimate the actual weathering trend, protolith composition, and pre-metasomatized CIA values on A-CN-K diagrams. The results indicate a dominantly tonalitic protolith (plagioclase/K-feldspar = 5.3). The CIAcorr values range from 77.6 to 85.3, with an average of 82.7, these are higher than the CIA values (69.6 to 79.2, averaging 75.0), and indicate a hot and humid paleoclimate. Furthermore, all weathering proxies exhibited stratigraphic variations from the transgressive systems tract (TST-1) to the highstand systems tract (HST-1 to HST-3). Intense chemical weathering occurred during periods of lake expansion, while two transient arid and cooling events, recorded in HST-2 and HST-3, correspond to phases of low lake levels and the rapid progradation of fan deltas.
- Paleoclimate conditions. Sedimentological and palynological analyses provide additional support for paleoclimate assessment. The predominance of siliciclastic materials and the absence of dolomite in shoreline strata of the Shahezi Formation suggest that the Lishu paleo-lake developed under wet climatic conditions. Assemblages of algae, ostracods, and palynomorphs further indicate a mid-tropical environment. Overall, a hot and humid subtropical climate, intermittently interrupted by episodes of cooling and aridity, prevailed in the Songliao Basin (NE Asia) during the Early Cretaceous (Middle Aptian–Early Albian).
- Uncertainty analysis. The method of calculating silicate CaO content, proposed by McLennan (1993), may result in an underestimation of CIA values [59]. Additionally, the K2O correction approach, suggested by Fedo et al. (1995) and Panahi et al. (2000), could reduce the original CIA differences for certain data points [58,95]. Importantly, this correction method is specifically applicable to K addition resulting from the illitization of kaolinite; potassium enrichment derived from the replacement of plagioclase and/or K-feldspar cannot be ignored or adequately corrected using this method. Furthermore, metasomatic K2O addition cannot be simply inferred from deviations of data arrays from the “ideal weathering trend” on A-CN-K diagrams, nor from the presence of abundant authigenic illite and altered plagioclase grains. The decomposition of intraformational detrital K-feldspar can also supply the potassium required for the transformation of smectite or kaolinite to illite, and this process does not necessarily correspond to increases in bulk-rock K2O contents. Therefore, in the absence of robust evidence for external potassium addition, the calculation of “excess K2O” and pre-metasomatized CIA (i.e., CIAcorr) values may be unjustified and could introduce significant errors in the assessment of paleo-weathering intensity.
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
Appendix A
References
- Blok, C.N.; Ineson, J.; Anderskouv, K.; Fantasia, A.; Sheldon, E.; Thibault, N.; Jelby, M.E.; Adatte, T.; Bodin, S. Latitude-dependant climate changes across the Aptian Oceanic Anoxic Event 1a. Palaeogeo Palaeoclim. Palaeoecol. 2022, 601, 111085. [Google Scholar] [CrossRef]
- Huber, B.T.; Norris, R.D.; MacLeod, K.G. Deep-sea paleotemperature record of extreme warmth during the Cretaceous. Geology 2002, 30, 123–126. [Google Scholar] [CrossRef]
- Keller, G. Cretaceous climate, volcanism, impacts, and biotic effects. Cretac. Res. 2008, 29, 754–771. [Google Scholar] [CrossRef]
- Wang, Y.; Huang, C.; Sun, B.; Quan, C.; Wu, J.; Lin, Z. Paleo-CO2 variation trends and the Cretaceous greenhouse climate. Earth Sci. Rev. 2014, 129, 136–147. [Google Scholar] [CrossRef]
- Amiot, R.; Wang, X.; Zhou, Z.; Wang, X.; Buffetaut, E.; Lécuyer, C.; Ding, Z.; Fluteau, F.; Hibino, T.; Kusuhashi, N.; et al. Oxygen isotopes of East Asian dinosaurs reveal exceptionally cold Early Cretaceous climates. Proc. Natl. Acad. Sci. USA 2011, 108, 5179–5183. [Google Scholar] [CrossRef]
- Cavalheiro, L.; Wagner, T.; Steinig, S.; Bottini, C.; Dummann, W.; Esegbue, O.; Gambacorta, G.; Giraldo-Gómez, V.; Farnsworth, A.; Flögel, S.; et al. Impact of global cooling on Early Cretaceous high pCO2 world during the Weissert Event. Nat. Commun. 2021, 12, 5411. [Google Scholar] [CrossRef] [PubMed]
- Jenkyns, H.C. Transient cooling episodes during Cretaceous Oceanic Anoxic Events with special reference to OAE 1a (Early Aptian). Philos. Trans. R. Soc. A Math. Phys. Eng. Sci. 2018, 376, 20170073. [Google Scholar] [CrossRef] [PubMed]
- Nordt, L.; Breecker, D.; White, J. The early Cretaceous was cold but punctuated by warm snaps resulting from episodic volcanism. Commun. Earth Environ. 2024, 5, 223. [Google Scholar] [CrossRef]
- Vickers, M.L.; Jelby, M.E.; Blok, C.N.; Price, G.D.; Jerrett, R.M.; Jensen, M.A.; Jones, M.T. Early Cretaceous giant glendonites: A record of (sub-)millennial-scale cooling? Palaeogeo Palaeoclim. Palaeoecol. 2025, 661, 112739. [Google Scholar] [CrossRef]
- Barral, A.; Gomez, B.; Fourel, F.; Daviero-Gomez, V.; Lécuyer, C. CO2 and temperature decoupling at the million-year scale during the Cretaceous Greenhouse. Sci. Rep. 2017, 7, 8310. [Google Scholar] [CrossRef]
- Huber, B.T.; MacLeod, K.G.; Watkins, D.K.; Coffin, M.F. The rise and fall of the Cretaceous Hot Greenhouse climate. Glob. Planet. Change 2018, 167, 1–23. [Google Scholar] [CrossRef]
- Bodin, S.; Meissner, P.; Janssen, N.M.M.; Steuber, T.; Mutterlose, J. Large igneous provinces and organic carbon burial: Controls on global temperature and continental weathering during the Early Cretaceous. Glob. Planet. Change 2015, 133, 238–253. [Google Scholar] [CrossRef]
- Blattler, C.L.; Jenkyns, H.C.; Reynard, L.M.; Henderson, G.M. Significant increases in global weathering during Oceanic Anoxic Events 1a and 2 indicated by calcium isotopes. Earth Planet. Sci. Lett. 2011, 309, 77–88. [Google Scholar] [CrossRef]
- Jenkyns, H.C. Cretaceous anoxic events: From continents to oceans. J. Geol. Soc. 1980, 137, 171–188. [Google Scholar] [CrossRef]
- Jenkyns, H.C. Geochemistry of oceanic anoxic events. Geochem. Geophys. Geosyst. 2010, 11, 1–30. [Google Scholar] [CrossRef]
- Hu, X.; Scott, R.W.; Cai, Y.; Wang, C.; Melinte-Dobrinescu, M.C. Cretaceous oceanic red beds (CORBs): Different time scales and models of origin. Earth Sci. Rev. 2012, 115, 217–248. [Google Scholar] [CrossRef]
- Wang, C.; Hu, X.; Huang, Y.; Wagreich, M.; Scott, R.; Hay, W. Cretaceous oceanic red beds as possible consequence of oceanic anoxic events. Sediment. Geol. 2011, 235, 27–37. [Google Scholar] [CrossRef]
- He, S.; Wang, T.; Spicer, R.A.; Farnsworth, A.; Mulch, A.; Widdowson, M.; Zhang, Q.; Cai, F.; Valdes, P.J.; Wang, C.; et al. Back to an ice-free future: Early Cretaceous seasonal cycles of sea surface temperature and glacier ice. Sci. Adv. 2025, 11, eadr9417. [Google Scholar] [CrossRef]
- Dummann, W.; Steinig, S.; Hofmann, P.; Flögel, S.; Osborne, A.H.; Frank, M.; Herrle, J.O.; Bretschneider, L.; Sheward, R.M.; Wagner, T. The impact of Early Cretaceous gateway evolution on ocean circulation and organic carbon burial in the emerging South Atlantic and Southern Ocean basins. Earth Planet. Sci. Lett. 2020, 530, 115890. [Google Scholar] [CrossRef]
- Dummann, W.; Steinig, S.; Hofmann, P.; Lenz, M.; Kusch, S.; Flögel, S.; Herrle, J.O.; Hallmann, C.; Rethemeyer, J.; Kasper, H.U.; et al. Driving mechanisms of organic carbon burial in the Early Cretaceous South Atlantic Cape Basin (DSDP Site 361). Clim. Past 2021, 17, 469–490. [Google Scholar] [CrossRef]
- Sun, M.-D.; Lin, Q.; Ramezani, J.; Liu, J.-S.; Lu, Z.-A.; Yang, H.-Q.; Bai, J.-H.; Cai, S.-X.; Chen, J.-C.; Chen, X.-Y.; et al. Terrestrial ecosystem response to Early Cretaceous global environmental change: A calibrated, high-resolution Aptian record from Northeast China. Earth Planet. Sci. Lett. 2025, 653, 119206. [Google Scholar] [CrossRef]
- Wang, C.; Gao, Y.; Wang, P.; Wu, H.; Lv, Q.; Zhu, Y.; Wan, X.; Zou, C.; Huang, Y.; Gao, Y.; et al. International continental scientific drilling project of the Songliao Basin: Terrestrial geological records of the Cretaceous dinosaur age. Earth Sci. Front. 2024, 31, 511–534. [Google Scholar]
- Bohacs, K.M. Contrasting expressions of depositional sequences in mudrocks from marine to non marine environs. In Shales and Mudstones I. Basin Studies, Sedimentology and Paleontology; Schieber, J., Zimmerle, W., Sethi, P.S., Eds.; Schweizerbart’sche Verlagsbuchhandlung: Stuttgart, Germany, 1998; pp. 32–77. [Google Scholar]
- Bohacs, K.M.; Carroll, A.R.; Neal, J.E.; Mankiewicz, P.J.; Gierlowski-Kordesch, E.H.; Kelts, K.R. Lake-basin type, source potential, and hydrocarbon character: An integrated sequence-stratigraphic–geochemical framework. In Lake Basins Through Space and Time; Gierlowski-Kordesch, E.H., Kelts, K.R., Eds.; American Association of Petroleum Geologists: Tulsa, OK, USA, 2000; Volume 46, pp. 3–33. [Google Scholar]
- Cardoso, A.R.; Nogueira, A.C.R.; Rabelo, C.E.N. Lake cyclicity as response to thermal subsidence: A post-CAMP scenario in the Parnaíba Basin, NE Brazil. Sediment. Geol. 2019, 385, 96–109. [Google Scholar] [CrossRef]
- Cardoso, A.R.; Romero, G.R.; Osés, G.L.; Nogueira, A.C.R. Taphonomy of lacustrine fish fossils of the Parnaíba Basin, northeastern Brazil: Spatial and causative relations of Konservat Lagerstätten in West Gondwana during Jurassic-Cretaceous. Palaeogeo Palaeoclim. Palaeoecol. 2020, 542, 109602. [Google Scholar] [CrossRef]
- Haggart, J.W.; Matsukawa, M.; Ito, M. Paleogeographic and paleoclimatic setting of Lower Cretaceous basins of East Asia and western North America, with reference to the nonmarine strata. Cretac. Res. 2006, 27, 149–167. [Google Scholar] [CrossRef]
- Xu, Q.-H.; Wang, L.; Liu, J.; Deloule, E.; Hanski, E.; Gu, X.-Y.; Chen, H.; Xia, Q.-K. Linking the Jehol Biota evolution to the Early Cretaceous volcanism during the North China Craton destruction: Insights From F, Cl, S, and P. J. Geophys. Res. Solid Earth 2022, 127, e2022JB024388. [Google Scholar] [CrossRef]
- Kuypers, M.M.M.; Pancost, R.D.; Nijenhuis, I.A.; Sinninghe Damsté, J.S. Enhanced productivity led to increased organic carbon burial in the euxinic North Atlantic basin during the late Cenomanian oceanic anoxic event. Paleoceanography 2002, 17, 1051. [Google Scholar] [CrossRef]
- Leckie, R.M.; Bralower, T.J.; Cashman, R. Oceanic anoxic events and plankton evolution: Biotic response to tectonic forcing during the mid-Cretaceous. Paleoceanography 2002, 17, 13-11–13-29. [Google Scholar] [CrossRef]
- Wang, P.-J.; Mattern, F.; Didenko, N.A.; Zhu, D.-F.; Singer, B.; Sun, X.-M. Tectonics and cycle system of the Cretaceous Songliao Basin: An inverted active continental margin basin. Earth Sci. Rev. 2016, 159, 82–102. [Google Scholar] [CrossRef]
- Wang, Q.; Li, Y.; Sanei, H.; Gardner, J.; Rudra, A.; Utley, J.E.P.; Worden, R.H. Lacustrine and fan-delta sediments in syn-rift lake basins. Depos. Rec. 2025, 11, 857–892. [Google Scholar] [CrossRef]
- Wang, Q.; Li, Y.; Utley, J.E.P.; Gardner, J.; Liu, B.; Hu, J.; Shao, L.; Wang, X.; Gao, F.; Liu, D.; et al. Terrestrial dominance of organic carbon in an Early Cretaceous syn-rift lake and its correlation with depositional sequences and paleoclimate. Sediment. Geol. 2023, 455, 106472. [Google Scholar] [CrossRef]
- Xiao, B.; Xiong, L.; Zhao, Z.; Fu, X.; Zhao, Z.; Hou, H.; Liu, S. Late Ordovician-Early Silurian extension of the northern margin of the Upper Yangtze Platform (South China) and its impact on organic matter accumulation. J. Petrol. Sci. Eng. 2023, 220, 111238. [Google Scholar] [CrossRef]
- Zhou, T.; Cai, J.; Mou, S.; Zhao, Q.; Shi, Z.; Sun, S.; Guo, W.; Gao, J.; Cheng, F.; Wang, H.; et al. Influence of low-temperature hydrothermal events and basement fault system on low-resistivity shale reservoirs: A case study from the Upper Ordovician to Lower Silurian in the Sichuan Basin, SW China. Minerals 2023, 13, 720. [Google Scholar] [CrossRef]
- Fang, D.; Wang, Z.; Jin, G.; Gao, R.; Ye, D.; Xie, J. Cretaceous magnetostratigraphy in the Songliao Basin, China. Sci. China Ser. B-Chem. Life Sci. Earth Sci. 1990, 33, 246–256. [Google Scholar]
- Wang, H.; Li, R.; Zhu, J.; Yang, X. Origin and evolution of unconformities in a continental rift basin: A case study from the Lishu Depression in Songliao Basin, China. Can. J. Earth Sci. 2021, 58, 1085–1102. [Google Scholar] [CrossRef]
- Wang, H.; Fan, T.; Wu, Y. The subsurface structure and stratigraphic architecture of rift-related units in the Lishu Depression of the Songliao Basin, China. J. Asian Earth Sci. 2015, 99, 13–29. [Google Scholar] [CrossRef]
- Yang, X.; Wang, H.; Li, Z.; Guan, C.; Wang, X. Tectonic-sedimentary evolution of a continental rift basin: A case study of the Early Cretaceous Changling and Lishu fault depressions, southern Songliao Basin, China. Mar. Petrol. Geol. 2021, 128, 105068. [Google Scholar] [CrossRef]
- Liu, H.; Wang, P.; Gao, Y.; Hou, H.; Yin, Y.; Li, H.; Feng, Y. New data from ICDP borehole SK2 and its constraint on the beginning of the Lower Cretaceous Shahezi Formation in the Songliao Basin, NE China. Sci. Bull. 2021, 66, 411–413. [Google Scholar] [CrossRef]
- Yu, Z.; He, H.; Deng, C.; Lu, K.; Shen, Z.; Li, Q. New SIMS U-Pb geochronology for the Shahezi Formation from CCSD-SK-IIe borehole in the Songliao Basin, NE China. Sci. Bull. 2020, 65, 1049–1051. [Google Scholar] [CrossRef]
- Ma, X.; Li, S.; Chu, R.; Fang, Q.; Shi, M.; Wu, H. An astronomical time scale for the Early Cretaceous continental strata in the Songliao Basin, Northeastern China. Quat. Sci. 2023, 43, 1573–1583, (In Chinese with English abstract). [Google Scholar]
- Wang, Q.; Yang, W.; Li, Y.; Jiang, Z.; Wen, M.; Zuo, R.; Wang, X.; Xue, Z.; Wang, Y. In-situ fluid phase variation along the thermal maturation gradient in shale petroleum systems and its impact on well production performance. J. Earth Sci. 2023, 34, 985–1001. [Google Scholar] [CrossRef]
- Wang, Q.; Li, Y.; Sanei, H.; Rudra, A.; Yuan, M.; Wang, Y.; Huang, Y.; Worden, R.H. Restoration of buried organic carbon for catagenesis-affected rocks using Rock-Eval thermal analysis: Assumptions, performance, and uncertainty analysis. Earth Sci. Rev. 2025, 267, 105155. [Google Scholar] [CrossRef]
- Cohen, A.S. Paleolimnology: The History and Evolution of Lake Systems; Oxford University Press: Oxford, UK, 2003; p. 528. [Google Scholar]
- Kelts, K. Environments of deposition of lacustrine petroleum source rocks: An introduction. Geol. Soc. Lond. Spec. Publ. 1988, 40, 3–26. [Google Scholar] [CrossRef]
- Pietras, J.T.; Carroll, A.R. High-resolution stratigraphy of an underfilled lake basin: Wilkins Peak Member, Eocene Green River Formation, Wyoming, U.S.A. J. Sediment. Res. 2006, 76, 1197–1214. [Google Scholar] [CrossRef]
- Renaut, R.W.; Gierlowski-Kordesch, E.H. Lakes. In Facies Models 4; James, N.P., Dalrymple, R.W., Eds.; Geological Association of Canada: St. John’s, NL, Canada, 2010; pp. 541–575. [Google Scholar]
- Vallati, M.; Tomás, S.; Galli, C.; Winterleitner, G.; Mutti, M. Depositional controls in an ancient, closed lake system: A high-resolution and multi-scalar case study from the Yacoraite Formation (Salta Basin, Argentina). Sediment. Geol. 2023, 454, 106456. [Google Scholar] [CrossRef]
- Chen, X.; Fan, J.-x.; Zhang, Y.-d.; Wang, H.-y.; Chen, Q.; Wang, W.-h.; Liang, F.; Guo, W.; Zhao, Q.; Nie, H.-k.; et al. Subdivision and delineation of the Wufeng and Lungmachi black shales in the subsurface areas of the Yangtze Platform. J. Stratigr. 2015, 39, 351–358, (In Chinese with English abstract). [Google Scholar]
- Chen, X.; Rong, J.-y.; Li, Y.; Boucot, A.J. Facies patterns and geography of the Yangtze region, South China, through the Ordovician and Silurian transition. Palaeogeo Palaeoclim. Palaeoecol. 2004, 204, 353–372. [Google Scholar]
- Chen, X.; Zhang, Y.; Li, Y.; Fan, J. Geological Setting of the Ordovician and Silurian Strata of the Yangtze Platform. In Latest Ordovician to Early Silurian Shale Gas Strata of the Yangtze Region, China; Chen, X., Wang, H., Goldman, D., Eds.; Springer Nature: Singapore, 2023; pp. 7–17. [Google Scholar]
- Fan, J.; Melchin, M.J.; Chen, X.; Wang, Y.; Zhang, Y.; Chen, Q.; Chi, Z.; Chen, F. Biostratigraphy and geography of the Ordovician-Silurian Lungmachi black shales in South China. Sci. China Earth Sci. 2011, 54, 1854–1863. [Google Scholar] [CrossRef]
- Hu, X.; Müller, I.A.; Zhao, A.; Ziegler, M.; Chen, Q.; Han, L.; Shi, Z. Clumped isotope thermometry reveals diagenetic origin of the dolomite layer within late Ordovician black shale of the Guanyinqiao Bed (SW China). Chem. Geol. 2022, 588, 120641. [Google Scholar] [CrossRef]
- Zou, C.; Qiu, Z.; Poulton, S.W.; Dong, D.; Wang, H.; Chen, D.; Lu, B.; Shi, Z.; Tao, H. Ocean euxinia and climate change “double whammy” drove the Late Ordovician mass extinction. Geology 2018, 46, 535–538. [Google Scholar] [CrossRef]
- Nesbitt, H.W.; Young, G.M. Early Proterozoic climates and plate motions inferred from major element chemistry of lutites. Nature 1982, 299, 715–717. [Google Scholar] [CrossRef]
- Nesbitt, H.W.; Young, G.M. Formation and diagenesis of weathering profiles. J. Geol. 1989, 97, 129–147. [Google Scholar] [CrossRef]
- Fedo, C.M.; Wayne Nesbitt, H.; Young, G.M. Unraveling the effects of potassium metasomatism in sedimentary rocks and paleosols, with implications for paleoweathering conditions and provenance. Geology 1995, 23, 921–924. [Google Scholar] [CrossRef]
- McLennan, S.M. Weathering and global denudation. J. Geol. 1993, 101, 295–303. [Google Scholar] [CrossRef]
- Cox, R.; Lowe, D.R.; Cullers, R.L. The influence of sediment recycling and basement composition on evolution of mudrock chemistry in the southwestern United States. Geochim. Cosmo Acta 1995, 59, 2919–2940. [Google Scholar] [CrossRef]
- Cullers, R.L.; Podkovyrov, V.N. Geochemistry of the Mesoproterozoic Lakhanda shales in southeastern Yakutia, Russia: Implications for mineralogical and provenance control, and recycling. Precambrian Res. 2000, 104, 77–93. [Google Scholar] [CrossRef]
- Ma, Y.; Fan, M.; Lu, Y.; Liu, H.; Hao, Y.; Xie, Z.; Liu, Z.; Peng, L.; Du, X.; Hu, H. Climate-driven paleolimnological change controls lacustrine mudstone depositional process and organic matter accumulation: Constraints from lithofacies and geochemical studies in the Zhanhua Depression, eastern China. Int. J. Coal Geol. 2016, 167, 103–118. [Google Scholar] [CrossRef]
- Montero-Serrano, J.-C.; Föllmi, K.B.; Adatte, T.; Spangenberg, J.E.; Tribovillard, N.; Fantasia, A.; Suan, G. Continental weathering and redox conditions during the early Toarcian Oceanic Anoxic Event in the northwestern Tethys: Insight from the Posidonia Shale section in the Swiss Jura Mountains. Palaeogeo Palaeoclim. Palaeoecol. 2015, 429, 83–99. [Google Scholar] [CrossRef]
- von Eynatten, H.; Barceló-Vidal, C.; Pawlowsky-Glahn, V. Modelling compositional change: The example of chemical weathering of granitoid rocks. Math. Geol. 2003, 35, 231–251. [Google Scholar] [CrossRef]
- Parker, A. An index of weathering for silicate rocks. Geol. Mag. 1970, 107, 501–504. [Google Scholar] [CrossRef]
- Garzanti, E.; Padoan, M.; Setti, M.; Najman, Y.; Peruta, L.; Villa, I.M. Weathering geochemistry and Sr-Nd fingerprints of equatorial upper Nile and Congo muds. Geochem. Geophys. Geosyst. 2013, 14, 292–316. [Google Scholar] [CrossRef]
- Fathy, D.; Wagreich, M.; Ntaflos, T.; Sami, M. Paleoclimatic variability in the southern Tethys, Egypt: Insights from the mineralogy and geochemistry of Upper Cretaceous lacustrine organic-rich deposits. Cretac. Res. 2021, 126, 104880. [Google Scholar] [CrossRef]
- Zhang, X.; Ji, X.; Han, X.; Wang, W.; Wang, X.; Li, S. Anomalously low silicate weathering in the North China Craton during the hydroclimatic crisis of the Oceanic Anoxic Event 1a interval. Sedimentology 2025, 72, 1205–1232. [Google Scholar] [CrossRef]
- Sawyer, E.W. The influence of source rock type, chemical weathering and sorting on the geochemistry of clastic sediments from the Quetico Metasedimentary Belt, Superior Province, Canada. Chem. Geol. 1986, 55, 77–95. [Google Scholar] [CrossRef]
- Huang, M.; Liu, Y.-n.; Chen, F.-r.; Tao, Y.; Sun, Y.-m. Correlations of chemical weathering indicators with major chemical constituents in sediments to obtain palaeoclimate information from Chaohu Lake, China. Sci. Rep. 2024, 14, 17258. [Google Scholar] [CrossRef] [PubMed]
- Jin, Z.; Wang, S.; Shen, J.; Zhang, E.; Li, F.; Ji, J.; Lu, X. Chemical weathering since the Little Ice Age recorded in lake sediments: A high-resolution proxy of past climate. Earth Surf. Process. Landf. 2001, 26, 775–782. [Google Scholar] [CrossRef]
- Zhang, X.; Li, S. A lacustrine record of the early Aptian climate change by oceanic anoxic event (OAE) 1a in the Jiaolai Basin, Eastern China. J. Asian Earth Sci. 2020, 203, 104537. [Google Scholar] [CrossRef]
- Duggen, S.; Croot, P.; Schacht, U.; Hoffmann, L. Subduction zone volcanic ash can fertilize the surface ocean and stimulate phytoplankton growth: Evidence from biogeochemical experiments and satellite data. Geophys. Res. Lett. 2007, 34, L01612. [Google Scholar] [CrossRef]
- Wang, Q. Chemical Sequence Stratigraphy and Shale Gas Sweet Spot Research of Wufeng Formation to Lower Member of Longmaxi Formation in Upper Yangtz Area. Ph.D. Thesis, China University of Geosciences (Beijing), Beijing, China, 2021. [Google Scholar]
- Taylor, S.R.; McLennan, S.M. The Continental Crust: Its Composition and Evolution An Examination of the Geochemical Record Preserved in Sedimentary Rocks; Blackwell Scientific Publications: Oxford, UK, 1985; p. 312. [Google Scholar]
- Tribovillard, N.; Algeo, T.J.; Lyons, T.; Riboulleau, A. Trace metals as paleoredox and paleoproductivity proxies: An update. Chem. Geol. 2006, 232, 12–32. [Google Scholar] [CrossRef]
- Boynton, W.V. Chapter 3—Cosmochemistry of the Rare Earth Elements: Meteorite Studies. In Developments in Geochemistry; Henderson, P., Ed.; Elsevier: Amsterdam, The Netherlands, 1984; Volume 2, pp. 63–114. [Google Scholar]
- McLennan, S.M. Rare earth elements in sedimentary rocks; influence of provenance and sedimentary processes. Rev. Miner. Geochem. 1989, 21, 169–200. [Google Scholar]
- Bhatia, M.R.; Crook, K.A.W. Trace element characteristics of graywackes and tectonic setting discrimination of sedimentary basins. Contrib. Mineral. Petrol. 1986, 92, 181–193. [Google Scholar] [CrossRef]
- Floyd, P.A.; Leveridge, B.E. Tectonic environment of the Devonian Gramscatho basin, south Cornwall: Framework mode and geochemical evidence from turbiditic sandstones. J. Geol. Soc. 1987, 144, 531–542. [Google Scholar] [CrossRef]
- McLennan, S.M. Relationships between the trace element composition of sedimentary rocks and upper continental crust. Geochem. Geophys. Geosyst. 2001, 2, 2000GC000109. [Google Scholar] [CrossRef]
- Khanchuk, A.I.; Kemkin, I.V.; Kruk, N.N. The Sikhote-Alin orogenic belt, Russian South East: Terranes and the formation of continental lithosphere based on geological and isotopic data. J. Asian Earth Sci. 2016, 120, 117–138. [Google Scholar] [CrossRef]
- Cogné, J.-P.; Kravchinsky, V.A.; Halim, N.; Hankard, F. Late Jurassic-Early Cretaceous closure of the Mongol-Okhotsk Ocean demonstrated by new Mesozoic palaeomagnetic results from the Trans-Baïkal area (SE Siberia). Geophys. J. Int. 2005, 163, 813–832. [Google Scholar] [CrossRef]
- Kravchinsky, V.A.; Cogné, J.-P.; Harbert, W.P.; Kuzmin, M.I. Evolution of the Mongol-Okhotsk Ocean as constrained by new palaeomagnetic data from the Mongol-Okhotsk suture zone, Siberia. Geophys. J. Int. 2002, 148, 34–57. [Google Scholar] [CrossRef]
- Van der Voo, R.; van Hinsbergen, D.J.J.; Domeier, M.; Spakman, W.; Torsvik, T.H.; Anderson, T.H.; Didenko, A.N.; Johnson, C.L.; Khanchuk, A.I.; MacDonald, J.H., Jr. Latest Jurassic–earliest Cretaceous closure of the Mongol-Okhotsk Ocean: A paleomagnetic and seismological-tomographic analysis. In Late Jurassic Margin of Laurasia–A Record of Faulting Accommodating Plate Rotation; Geological Society of America: Boulder, CO, USA, 2015; Volume 513, pp. 589–606. [Google Scholar]
- Zorin, Y.A. Geodynamics of the western part of the Mongolia–Okhotsk collisional belt, Trans-Baikal region (Russia) and Mongolia. Tectonophysics 1999, 306, 33–56. [Google Scholar] [CrossRef]
- Zhu, G.; Jiang, D.; Zhang, B.; Chen, Y. Destruction of the eastern North China Craton in a backarc setting: Evidence from crustal deformation kinematics. Gondwana Res. 2012, 22, 86–103. [Google Scholar] [CrossRef]
- Zhu, R.; Xu, Y.; Zhu, G.; Zhang, H.; Xia, Q.; Zheng, T. Destruction of the North China Craton. Sci. China Earth Sci. 2012, 55, 1565–1587. [Google Scholar] [CrossRef]
- Meng, Q.-R.; Zhou, Z.-H.; Zhu, R.-X.; Xu, Y.-G.; Guo, Z.-T. Cretaceous basin evolution in northeast Asia: Tectonic responses to the paleo-Pacific plate subduction. Natl. Sci. Rev. 2021, 9, nwab088. [Google Scholar] [CrossRef]
- Bhatia, M.R. Rare earth element geochemistry of Australian Paleozoic graywackes and mudrocks: Provenance and tectonic control. Sediment. Geol. 1985, 45, 97–113. [Google Scholar] [CrossRef]
- Taylor, S.R.; Rudnick, R.L.; McLennan, S.M.; Eriksson, K.A. Rare earth element patterns in Archean high-grade metasediments and their tectonic significance. Geochim. Cosmo Acta 1986, 50, 2267–2279. [Google Scholar] [CrossRef]
- Hayashi, K.-I.; Fujisawa, H.; Holland, H.D.; Ohmoto, H. Geochemistry of ∼1.9 Ga sedimentary rocks from northeastern Labrador, Canada. Geochim. Cosmo Acta 1997, 61, 4115–4137. [Google Scholar] [CrossRef] [PubMed]
- Algeo, T.J.; Hong, H.; Wang, C. The chemical index of alteration (CIA) and interpretation of ACNK diagrams. Chem. Geol. 2025, 671, 122474. [Google Scholar] [CrossRef]
- Panahi, A.; Young, G.M. A geochemical investigation into the provenance of the Neoproterozoic Port Askaig Tillite, Dalradian Supergroup, western Scotland. Precambrian Res. 1997, 85, 81–96. [Google Scholar] [CrossRef]
- Panahi, A.; Young, G.M.; Rainbird, R.H. Behavior of major and trace elements (including REE) during Paleoproterozoic pedogenesis and diagenetic alteration of an Archean granite near Ville Marie, Québec, Canada. Geochimica Cosmo Acta 2000, 64, 2199–2220. [Google Scholar] [CrossRef]
- Nesbitt, H.W.; Young, G.M. Prediction of some weathering trends of plutonic and volcanic rocks based on thermodynamic and kinetic considerations. Geochimica Cosmo Acta 1984, 48, 1523–1534. [Google Scholar] [CrossRef]
- Yang, D. Depositional Environment of the Muddy Shales in the Shahezi Formation, Changling Fault Depression. Master’s Thesis, China University of Petroleum (Beijing), Beijing, China, 2019. [Google Scholar]
- Wedepohl, K.H. Environmental influences on the chemical composition of shales and clays. Phys. Chem. Earth 1971, 8, 307–333. [Google Scholar] [CrossRef]
- McLennan, S.M.; Bock, B.; Hemming, S.R.; Hurowitz, J.A.; Lev, S.M.; McDaniel, D.K. The roles of provenance sedimentary processes in the geochemistry of sedimentary rocks. In Geochemistry of Sediments and Sedimentary Rocks: Evolutionary Considerations to Mineral Deposit-Forming Environments; Lentz, D.R., Ed.; Geological Association of Canada: Toronto, ON, Canada, 2003; GeoText 4 GeoText 4; pp. 7–38. [Google Scholar]
- van de Kamp, P.C. Potassium distribution and metasomatism in pelites and schists: How and when, relation to postdepositional events. J. Sediment. Res. 2016, 86, 683–711. [Google Scholar] [CrossRef]
- Zhang, B.; Wignall, P.B.; Yao, S.; Hu, W.; Liu, B. Collapsed upwelling and intensified euxinia in response to climate warming during the Capitanian (Middle Permian) mass extinction. Gondwana Res. 2021, 89, 31–46. [Google Scholar] [CrossRef]
- Li, C.; Yang, S. Is chemical index of alteration (CIA) a reliable proxy for chemical weathering in global drainage basins? Am. J. Sci. 2010, 310, 111–127. [Google Scholar] [CrossRef]
- White, A.F.; Blum, A.E. Effects of climate on chemical weathering in watersheds. Geochimica Cosmo Acta 1995, 59, 1729–1747. [Google Scholar] [CrossRef]
- Singer, A. The paleoclimatic interpretation of clay minerals in soils and weathering profiles. Earth Sci. Rev. 1980, 15, 303–326. [Google Scholar] [CrossRef]
- Harper, D.T.; Suarez, M.B.; Uglesich, J.; You, H.; Li, D.; Dodson, P. Aptian–Albian clumped isotopes from northwest China: Cool temperatures, variable atmospheric pCO2 and regional shifts in the hydrologic cycle. Clim. Past 2021, 17, 1607–1625. [Google Scholar] [CrossRef]
- Ludvigson, G.A.; Joeckel, R.M.; Murphy, L.R.; Stockli, D.F.; González, L.A.; Suarez, C.A.; Kirkland, J.I.; Al-Suwaidi, A. The emerging terrestrial record of Aptian-Albian global change. Cretac. Res. 2015, 56, 1–24. [Google Scholar] [CrossRef]
- Bonis, N.R.; Kürschner, W.M. Vegetation history, diversity patterns, and climate change across the Triassic/Jurassic boundary. Paleobiology 2012, 38, 240–264. [Google Scholar] [CrossRef]
- Wiggins, W.D.; Harris, P.M. Lithofacies, depositional cycles, and stratigraphy of the Lower Green River Formation, southwestern Uinta Basin, Utah. In Lacustrine Reservoirs and Depositional Systems; Lomando, A.J., Schreiber, B.C., Harris, P.M., Eds.; SEPM Society for Sedimentary Geology: Claremore, OK, USA, 1994; Volume 19, pp. 105–141. [Google Scholar]
- Yan, W.; Fan, T.; Wang, H.; Zhu, C.; Gao, Z.; Meng, X.; Sun, Y.; Yang, F. Micropaleontology and palaeoclimate during the early Cretaceous in the Lishu depression, Songliao basin, Northeast China. Geosci. Front. 2017, 8, 93–106. [Google Scholar] [CrossRef]
- Zhang, D.; Zheng, Y.; Zhang, S.; Zhang, J.; Huang, X.; Chen, S.; Sun, L. Early Cretaceous spore-pollen assemblages from the Shahezi Formation in Well SK-2 and their paleoclimate significance. Geol. Bull. China 2024, 43, 429–442, (In Chinese with English abstract). [Google Scholar]
- Fedo, C.M.; Young, G.M.; Nesbitt, H.W.; Hanchar, J.M. Potassic and sodic metasomatism in the Southern Province of the Canadian Shield: Evidence from the Paleoproterozoic Serpent Formation, Huronian Supergroup, Canada. Precambrian Res. 1997, 84, 17–36. [Google Scholar] [CrossRef]
- Glazner, A.F. Stratigraphy, structure, and potassic alteration of Miocene volcanic rocks in the Sleeping Beauty area, central Mojave Desert, California. Geol. Soc. Am. Bull. 1988, 100, 424–435. [Google Scholar] [CrossRef]
- Mensing, T.M.; Faure, G. Identification and age of neoformed Paleozoic feldspar (adularia) in a Precambrian basement core from Scioto County, Ohio, USA. Contrib. Mineral. Petrol. 1983, 82, 327–333. [Google Scholar] [CrossRef]
- Rafiei, M.; Kennedy, M. Weathering in a world without terrestrial life recorded in the Mesoproterozoic Velkerri Formation. Nat. Commun. 2019, 10, 3448. [Google Scholar] [CrossRef] [PubMed]
- Xu, X.-T.; Shao, L.-Y.; Lan, B.; Wang, S.; Hilton, J.; Qin, J.-Y.; Hou, H.-H.; Zhao, J. Continental chemical weathering during the Early Cretaceous Oceanic Anoxic Event (OAE1b): A case study from the Fuxin fluvio-lacustrine basin, Liaoning Province, NE China. J. Palaeogeogr. 2020, 9, 12. [Google Scholar] [CrossRef]
- Yan, D.; Chen, D.; Wang, Q.; Wang, J. Large-scale climatic fluctuations in the latest Ordovician on the Yangtze block, south China. Geology 2010, 38, 599–602. [Google Scholar] [CrossRef]
- Du, W.; Yang, W.; Li, X.; Shi, F.; Lin, R.; Wang, Y.; Zhang, D.; Chen, Y.; Sun, Z.; Zhao, F. Differential Reservoir-Forming Mechanisms of the Lower Paleozoic Wufeng-Longmaxi and Niutitang Marine Gas Shales in Northern Guizhou Province, SW China: Theories and Models. Energies 2022, 15, 5137. [Google Scholar] [CrossRef]
- Gao, P.; He, Z.L.; Li, S.J.; Lash, G.G.; Li, B.Y.; Huang, B.Y.; Yan, D.T. Volcanic and hydrothermal activities recorded in phosphate nodules from the Lower Cambrian Niutitang Formation black shales in South China. Palaeogeo Palaeoclim. Palaeoecol. 2018, 505, 381–397. [Google Scholar] [CrossRef]
- Wu, Y.; Tian, H.; Gong, D.; Li, T.; Zhou, Q. Paleo-environmental variation and its control on organic matter enrichment of black shales from shallow shelf to slope regions on the Upper Yangtze Platform during Cambrian Stage 3. Palaeogeo Palaeoclim. Palaeoecol. 2020, 545, 109653. [Google Scholar] [CrossRef]
- Pirajno, F. Effects of metasomatism on mineral systems and their host rocks: Alkali metasomatism, skarns, greisens, tourmalinites, rodingites, black-wall alteration and listvenites. In Metasomatism and the Chemical Transformation of Rock: The Role of Fluids in Terrestrial and Extraterrestrial Processes; Springer: Berlin/Heidelberg, Germany, 2013; pp. 203–251. [Google Scholar]
- Lei, Z.; Dashtgard, S.E.; Wang, J.; Li, M.; Feng, Q.; Yu, Q.; Zhao, A.; Du, L. Origin of chert in Lower Silurian Longmaxi Formation: Implications for tectonic evolution of Yangtze Block, South China. Palaeogeo Palaeoclim. Palaeoecol. 2019, 529, 53–66. [Google Scholar] [CrossRef]
- Qiu, Z.; Li, Y.; Xiong, W.; Fan, T.; Zhao, Q.; Zhang, Q.; Wang, Y.; Liu, W.; Liang, F.; Zhang, J.; et al. Revisiting paleoenvironmental changes on the Upper Yangtze Block during the Ordovician-Silurian transition: New insights from elemental geochemistry. Sediment. Geol. 2023, 450, 106377. [Google Scholar] [CrossRef]
- Awwiller, D.N. Illite/smectite formation and potassium mass transfer during burial diagenesis of mudrocks; a study from the Texas Gulf Coast Paleocene-Eocene. J. Sediment. Res. 1993, 63, 501–512. [Google Scholar]
- Huang, W.-L. The formation of illitic clays from kaolinite in KOH solution from 225°C to 350°C. Clays Clay Miner. 1993, 41, 645–654. [Google Scholar] [CrossRef]
- Lanson, B.; Beaufort, D.; Berger, G.; Baradat, J.; Lacharpagne, J.-C. Illitization of diagenetic kaolinite-to-dickite conversion series; late-stage diagenesis of the Lower Permian Rotliegend Sandstone reservoir, offshore of the Netherlands. J. Sediment. Res. 1996, 66, 501–518. [Google Scholar]
- McKinley, J.M.; Worden, R.H.; Ruffell, A.H. Smectite in sandstones: A review of the controls on occurrence and behaviour during diagenesis. In Clay Mineral Cements in Sandstones; Worden, R.H., Morad, S., Eds.; Blackwell Publishing: Oxford, UK, 1999; pp. 109–128. [Google Scholar]
- Putnis, A.; Austrheim, H. Fluid-induced processes: Metasomatism and metamorphism. Geofluids 2010, 10, 254–269. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Li, Y.; Wang, Q.; Worden, R.H. Weathering Records from an Early Cretaceous Syn-Rift Lake. Hydrology 2025, 12, 179. https://doi.org/10.3390/hydrology12070179
Li Y, Wang Q, Worden RH. Weathering Records from an Early Cretaceous Syn-Rift Lake. Hydrology. 2025; 12(7):179. https://doi.org/10.3390/hydrology12070179
Chicago/Turabian StyleLi, Yaohua, Qianyou Wang, and Richard H. Worden. 2025. "Weathering Records from an Early Cretaceous Syn-Rift Lake" Hydrology 12, no. 7: 179. https://doi.org/10.3390/hydrology12070179
APA StyleLi, Y., Wang, Q., & Worden, R. H. (2025). Weathering Records from an Early Cretaceous Syn-Rift Lake. Hydrology, 12(7), 179. https://doi.org/10.3390/hydrology12070179