Background: Cardiovascular disorders, especially atherosclerosis, have been associated with allergic inflammation. In addition to traditional inflammatory responses, there is evidence that the development and instability of coronary artery plaque may be influenced by effector cells of allergic inflammation. This review examines the
[...] Read more.
Background: Cardiovascular disorders, especially atherosclerosis, have been associated with allergic inflammation. In addition to traditional inflammatory responses, there is evidence that the development and instability of coronary artery plaque may be influenced by effector cells of allergic inflammation. This review examines the phases of allergic pathology, the immunological mechanisms of atherosclerosis, and the clinical link between allergic diseases (asthma, atopic dermatitis, allergic rhinitis, and food allergy) and cardiovascular disease (CVD), along with future therapeutic perspectives.
Material and Method: A literature search was conducted in PubMed, Google scholar; ScienceDirect, Scopus, and studies published between 2014–2024 were taken into consideration. Keywords included allergic inflammation, eosinophils, mast cells, reactive oxygen species, atherosclerosis, Th2 cells, and cytokines. Epidemiological studies and review articles were included.
Results: Emerging evidence suggests that allergic inflammation contributes to atherosclerosis through interconnected mechanisms such as eosinophil activation, reactive oxygen species production, mast cell degranulation, and endothelial dysfunction. Th2-driven immune responses, which are mediated by cytokines such as IL-4, IL-5, and IL-13, as well as eosinophil activity and mast cell degranulation, play a crucial role in vascular inflammation and plaque progression. Additionally, changes in lipid metabolism contribute to this process. Epidemiological studies support this connection, indicating that patients with chronic allergic conditions such as asthma, allergic rhinitis, food allergy, and atopic dermatitis experience increased cardiovascular morbidity. However, most current data are observational, and our understanding of the underlying mechanisms in humans remains limited, often relying on insights gained from preclinical models.
Conclusions: A potential mechanism for cardiovascular risk is suggested by the interaction between atherosclerosis and allergic inflammation. Promising alternatives for treating allergic inflammation and cardiovascular issues include novel treatments like cytokine inhibitors, mast cell stabilizers, and biologics that target certain pathways. Further research is necessary to see whether concentrating on allergy pathways could lead to innovative treatments for cardiovascular disorders or vice versa.
Full article