In Vitro Antioxidant and Anti-Neuroinflammatory Effects of Elsholtzia blanda Benth
Abstract
:1. Introduction
2. Materials and Methods
2.1. Materials
2.2. Plant Material and Identification
2.3. Cell Culture and Viability
2.4. NO Measurements
2.5. Intracellular ROS Assay
2.6. IL-6 and TNF-α Production
2.7. Western Blot Analysis
2.8. Total RNA Extraction
2.9. Real-Time Reverse Transcription–Polymerase Chain Reaction
2.10. Statistical Analysis
3. Results
3.1. Effects of EBB on NO Production and Cell Viability in LPS-Stimulated BV2 Cells
3.2. Effects of EBB on Cytokine Production and mRNA Expression in LPS-Stimulated BV2 Cells
3.3. Effects of EBB on Inflammatory-Related Proteins of LPS-Stimulated BV2 Cells
3.4. Effects of EBB on ROS Production of LPS-Treated Microglial Cells
3.5. Anti-Inflammatory Effects of EBB Are Mediated by the HO-1 Signaling Pathway
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Gao, C.; Jiang, J.; Tan, Y.; Chen, S. Microglia in Neurodegenerative Diseases: Mechanism and Potential Therapeutic Targets. Signal Transduct. Target. Ther. 2023, 8, 359. [Google Scholar] [CrossRef]
- Kim, Y.S.; Joh, T.H. Microglia, Major Player in the Brain Inflammation: Their Roles in the Pathogenesis of Parkinson’s Disease. Exp. Mol. Med. 2006, 38, 333–347. [Google Scholar] [CrossRef] [PubMed]
- Henn, A.; Lund, S.; Hedtjärn, M.; Schrattenholz, A.; Pörzgen, P.; Leist, M. The Suitability of BV2 Cells as Alternative Model System for Primary Microglia Cultures or for Animal Experiments Examining Brain Inflammation. ALTEX 2009, 26, 83–94. [Google Scholar] [CrossRef] [PubMed]
- Baker, C.A.; Martin, D.; Manuelidis, L. Microglia from Creutzfeldt-Jakob Disease-Infected Brains Are Infectious and Show Specific MRNA Activation Profiles. J. Virol. 2002, 76, 10905–10913. [Google Scholar] [CrossRef] [PubMed]
- Wang-Sheng, C.; Jie, A.; Jian-Jun, L.; Lan, H.; Zeng-Bao, X.; Chang-Qing, L. Piperine Attenuates Lipopolysaccharide (LPS)-Induced Inflammatory Responses in BV2 Microglia. Int. Immunopharmacol. 2017, 42, 44–48. [Google Scholar] [CrossRef]
- Cho, H.; Kim, D.-U.; Oh, J.-Y.; Park, S.-J.; Kweon, B.; Bae, G.-S. Anti-Neuroinflammatory Effects of Arecae Pericarpium on LPS-Stimulated BV2 Cells. Curr. Issues Mol. Biol. 2024, 46, 884–895. [Google Scholar] [CrossRef]
- Kweon, B.; Oh, J.; Lim, Y.; Noh, G.; Yu, J.; Kim, D.; Jang, M.; Kim, D.; Bae, G. Anti-Inflammatory Effects of Honeysuckle Leaf Against Lipopolysaccharide-Induced Neuroinflammation on BV2 Microglia. Nutrients 2024, 16, 3954. [Google Scholar] [CrossRef]
- Nam, H.Y.; Nam, J.H.; Yoon, G.; Lee, J.-Y.; Nam, Y.; Kang, H.-J.; Cho, H.-J.; Kim, J.; Hoe, H.-S. Ibrutinib Suppresses LPS-Induced Neuroinflammatory Responses in BV2 Microglial Cells and Wild-Type Mice. J. Neuroinflammation 2018, 15, 271. [Google Scholar] [CrossRef]
- Xiao, Y.; Yang, C.; Si, N.; Chu, T.; Yu, J.; Yuan, X.; Chen, X.-T. Epigallocatechin-3-Gallate Inhibits LPS/AβO-Induced Neuroinflammation in BV2 Cells through Regulating the ROS/TXNIP/NLRP3 Pathway. J. Neuroimmune Pharmacol. 2024, 19, 31. [Google Scholar] [CrossRef]
- Sun, L.; Apweiler, M.; Tirkey, A.; Klett, D.; Normann, C.; Dietz, G.P.H.; Lehner, M.D.; Fiebich, B.L. Anti-Neuroinflammatory Effects of Ginkgo Biloba Extract EGb 761 in LPS-Activated BV2 Microglial Cells. Int. J. Mol. Sci. 2024, 25, 8108. [Google Scholar] [CrossRef]
- Fei, X.; Chen, L.; Gao, J.; Jiang, X.; Sun, W.; Cheng, X.; Zhao, T.; Zhao, M.; Zhu, L. P53 Lysine-Lactylated Modification Contributes to Lipopolysaccharide-Induced Proinflammatory Activation in BV2 Cell under Hypoxic Conditions. Neurochem. Int. 2024, 178, 105794. [Google Scholar] [CrossRef] [PubMed]
- Mairuae, N.; Buranrat, B.; Cheepsunthorn, P. Crude Extracts of Momordica cochinchinensis (Lour.) Spreng Exerts Antioxidant and Anti-Neuroinflammatory Properties in LPS-Stimulated BV2 Microglia. Trop. J. Pharm. Res. 2024, 23, 91–97. [Google Scholar] [CrossRef]
- Mairuae, N.; Buranrat, B.; Yannasithinon, S.; Cheepsunthorn, P. Oroxylum indicum Kurz (L) Leaf Extract Exerted Antioxidant and Anti-Inflammatory Effects on LPS-Stimulated BV2 Microglial Cells. Trop. J. Pharm. Res. 2024, 23, 1409–1415. [Google Scholar] [CrossRef]
- Foresti, R.; Bains, S.K.; Pitchumony, T.S.; de Castro Brás, L.E.; Drago, F.; Dubois-Randé, J.-L.; Bucolo, C.; Motterlini, R. Small Molecule Activators of the Nrf2-HO-1 Antioxidant Axis Modulate Heme Metabolism and Inflammation in BV2 Microglia Cells. Pharmacol. Res. 2013, 76, 132–148. [Google Scholar] [CrossRef] [PubMed]
- Yu, C.-I.; Cheng, C.-I.; Kang, Y.-F.; Chang, P.-C.; Lin, I.-P.; Kuo, Y.-H.; Jhou, A.-J.; Lin, M.-Y.; Chen, C.-Y.; Lee, C.-H. Hispidulin Inhibits Neuroinflammation in Lipopolysaccharide-Activated BV2 Microglia and Attenuates the Activation of Akt, NF-ΚB, and STAT3 Pathway. Neurotox Res. 2020, 38, 163–174. [Google Scholar] [CrossRef] [PubMed]
- Lo, J.; Wu, H.-E.; Liu, C.-C.; Chang, K.-C.; Lee, P.-Y.; Liu, P.-L.; Huang, S.-P.; Wu, P.-C.; Lin, T.-C.; Lai, Y.-H. Nordalbergin Exerts Anti-Neuroinflammatory Effects by Attenuating MAPK Signaling Pathway, NLRP3 Inflammasome Activation and ROS Production in LPS-Stimulated BV2 Microglia. Int. J. Mol. Sci. 2023, 24, 7300. [Google Scholar] [CrossRef]
- Nguyen, P.L.; Bui, B.P.; Lee, H.; Cho, J. A Novel 1, 8-Naphthyridine-2-Carboxamide Derivative Attenuates Inflammatory Responses and Cell Migration in LPS-Treated BV2 Cells via the Suppression of ROS Generation and TLR4/Myd88/NF-ΚB Signaling Pathway. Int. J. Mol. Sci. 2021, 22, 2527. [Google Scholar] [CrossRef]
- Qin, J.; Ma, Z.; Chen, X.; Shu, S. Microglia Activation in Central Nervous System Disorders: A Review of Recent Mechanistic Investigations and Development Efforts. Front. Neurol. 2023, 14, 1103416. [Google Scholar] [CrossRef]
- Giovannini, M.G.; Scali, C.; Prosperi, C.; Bellucci, A.; Pepeu, G.; Casamenti, F. Experimental Brain Inflammation and Neurodegeneration as Model of Alzheimer’s Disease: Protective Effects of Selective COX-2 Inhibitors. Int. J. Immunopathol. Pharmacol. 2003, 16, 31–40. [Google Scholar]
- Skrzypczak-Wiercioch, A.; Sałat, K. Lipopolysaccharide-Induced Model of Neuroinflammation: Mechanisms of Action, Research Application and Future Directions for Its Use. Molecules 2022, 27, 5481. [Google Scholar] [CrossRef]
- Yang, L.; Zhou, R.; Tong, Y.; Chen, P.; Shen, Y.; Miao, S.; Liu, X. Neuroprotection by Dihydrotestosterone in LPS-Induced Neuroinflammation. Neurobiol. Dis. 2020, 140, 104814. [Google Scholar] [CrossRef] [PubMed]
- Simpson, D.S.A.; Oliver, P.L. ROS Generation in Microglia: Understanding Oxidative Stress and Inflammation in Neurodegenerative Disease. Antioxidants 2020, 9, 743. [Google Scholar] [CrossRef] [PubMed]
- Batista, C.R.A.; Gomes, G.F.; Candelario-Jalil, E.; Fiebich, B.L.; De Oliveira, A.C.P. Lipopolysaccharide-Induced Neuroinflammation as a Bridge to Understand Neurodegeneration. Int. J. Mol. Sci. 2019, 20, 2293. [Google Scholar] [CrossRef] [PubMed]
- Lull, M.E.; Block, M.L. Microglial Activation and Chronic Neurodegeneration. Neurotherapeutics 2010, 7, 354–365. [Google Scholar] [CrossRef]
- Wilks, A. Heme Oxygenase: Evolution, Structure, and Mechanism. Antioxid. Redox. Signal 2002, 4, 603–614. [Google Scholar] [CrossRef]
- Wu, Y.-H.; Hsieh, H.-L. Roles of Heme Oxygenase-1 in Neuroinflammation and Brain Disorders. Antioxidants 2022, 11, 923. [Google Scholar] [CrossRef]
- Guzmán-Beltrán, S.; Espada, S.; Orozco-Ibarra, M.; Pedraza-Chaverri, J.; Cuadrado, A. Nordihydroguaiaretic Acid Activates the Antioxidant Pathway Nrf2/HO-1 and Protects Cerebellar Granule Neurons against Oxidative Stress. Neurosci. Lett. 2008, 447, 167–171. [Google Scholar] [CrossRef]
- Hahn, D.; Shin, S.H.; Bae, J.-S. Natural Antioxidant and Anti-Inflammatory Compounds in Foodstuff or Medicinal Herbs Inducing Heme Oxygenase-1 Expression. Antioxidants 2020, 9, 1191. [Google Scholar] [CrossRef]
- Nwe, Y.Y.; Thwe, K.M.; Wai, T.P.; Moe, M.M. Phytochemical Investigation into Leaves of Elsholtzia Blanda (Benth.) Benth. and Its Antimicrobial Activity. J. Myanmar Acad. Arts Sci. 2020, 18, 11. [Google Scholar]
- Guo, Z.; Liu, Z.; Wang, X.; Liu, W.; Jiang, R.; Cheng, R.; She, G. Elsholtzia: Phytochemistry and Biological Activities. Chem. Cent. J. 2012, 6, 1–8. [Google Scholar] [CrossRef]
- Haiyun, L.; Yijia, L.; Honggang, L.; Honghai, W. Protective Effect of Total Flavones from Elsholtzia Blanda (TFEB) on Myocardial Ischemia Induced by Coronary Occlusion in Canines. J. Ethnopharmacol. 2004, 94, 101–107. [Google Scholar] [CrossRef] [PubMed]
- Devi, N.K.; Dutta, S.; Das, R.; Devi, A.S.; Devi, N.M.; Devi, K.S. Nephroprotective Effect of Elsholtzia Blanda Benth. Paracetamol. Induc. Toxic. Albino Rats. Int. J. Recent. Sci. Res. 2018, 9, 28186–28189. [Google Scholar]
- Ling, H.; Lou, Y. Total Flavones from Elsholtzia Blanda Reduce Infarct Size during Acute Myocardial Ischemia by Inhibiting Myocardial Apoptosis in Rats. J. Ethnopharmacol. 2005, 101, 169–175. [Google Scholar] [CrossRef] [PubMed]
- Chen, H.Y.; Zhou, C.X.; Lou, Y.J.; Duan, Z.H.; Zhao, Y. Chemical Constituents from Elsholtzia Blanda. Zhongguo Zhong Yao Za Zhi 2005, 30, 1589–1591. [Google Scholar]
- Jin-Shun, L.; Tong, S.; Zhen, G.U.O.; Xu-Wei, S.; Shang-Zhen, Z. The Chemical Constituents of Elsholtzia Blanda. J. Integr. Plant Biol. 2001, 43, 545. [Google Scholar]
- Dung, D.T.; Yen, P.H.; Trang, D.T.; Tai, B.H.; Kiem, P. Van Phenolic Constituents of Elsholtzia Blanda Benth. Nat. Prod. Commun. 2023, 18, 1934578X231192213. [Google Scholar]
- Ishwori, L.; Anupam, D.T.; Singh, P.K.; Dutta, C.M.; Deepa, N. Antibacterial Activity of Some Selected Plants Traditionally Used as Medicine in Manipur. Afr. J. Biotechnol. 2014, 13, 1491–1495. [Google Scholar] [CrossRef]
- Thi Dung, D.; Thi Trang, D.; Hai yen, P.; Huy Hoang, N.; Huu Tai, B.; Van Kiem, P. Elsholblanosides A− D, Four New Oleuropeic Acid Derivatives Isolated from Elsholtzia Blanda and Their Inhibition of NO Production in LPS-activated RAW264. 7 Cells. Chem Biodivers 2023, 20, e202300785. [Google Scholar] [CrossRef]
- Saturnino, C.; Sinicropi, M.S.; Parisi, O.I.; Iacopetta, D.; Popolo, A.; Marzocco, S.; Autore, G.; Caruso, A.; Cappello, A.R.; Longo, P. Acetylated Hyaluronic Acid: Enhanced Bioavailability and Biological Studies. Biomed. Res. Int. 2014, 2014, 921549. [Google Scholar] [CrossRef]
- Eruslanov, E.; Kusmartsev, S. Identification of ROS Using Oxidized DCFDA and Flow-Cytometry. In Advanced Protocols in Oxidative Stress II; Springer: Heidelberg, Germany, 2009; pp. 57–72. [Google Scholar]
- Baek, S.-H.; Park, T.; Kang, M.-G.; Park, D. Anti-Inflammatory Activity and ROS Regulation Effect of Sinapaldehyde in LPS-Stimulated RAW 264.7 Macrophages. Molecules 2020, 25, 4089. [Google Scholar] [CrossRef]
- Mishra, M.; Tiwari, S.; Gomes, A. V Protein Purification and Analysis: Next Generation Western Blotting Techniques. Expert. Rev. Proteom. 2017, 14, 1037–1053. [Google Scholar] [CrossRef] [PubMed]
- Sharma, R.; Sharad, S.; Minhas, G.; Sharma, D.R.; Bhatia, K.; Sharma, N.K. DNA, RNA Isolation, Primer Designing, Sequence Submission, and Phylogenetic Analysis. In Basic Biotechniques for Bioprocess and Bioentrepreneurship; Elsevier: Oxford, UK, 2023; pp. 197–206. [Google Scholar]
- Huang, W.; Zhang, M.; Qiu, Q.; Zhang, J.; Hua, C.; Chen, G.; Xie, H. Metabolomics of Human Umbilical Vein Endothelial Cell-Based Analysis of the Relationship between Hyperuricemia and Dyslipidemia. Nutr. Metab. Cardiovasc. Dis. 2024, 34, 1528–1537. [Google Scholar] [CrossRef] [PubMed]
- Balak, C.D.; Han, C.Z.; Glass, C.K. Deciphering Microglia Phenotypes in Health and Disease. Curr. Opin. Genet. Dev. 2024, 84, 102146. [Google Scholar] [CrossRef] [PubMed]
- Zhang, L.; Wang, Y.; Liu, T.; Mao, Y.; Peng, B. Novel Microglia-Based Therapeutic Approaches to Neurodegenerative Disorders. Neurosci. Bull. 2023, 39, 491–502. [Google Scholar] [CrossRef]
- Xu, Y.; Gao, W.; Sun, Y.; Wu, M. New Insight on Microglia Activation in Neurodegenerative Diseases and Therapeutics. Front. Neurosci. 2023, 17, 1308345. [Google Scholar] [CrossRef]
- Hines, D.J.; Choi, H.B.; Hines, R.M.; Phillips, A.G.; MacVicar, B.A. Prevention of LPS-Induced Microglia Activation, Cytokine Production and Sickness Behavior with TLR4 Receptor Interfering Peptides. PLoS ONE 2013, 8, e60388. [Google Scholar] [CrossRef]
- Plata-Salaman, C.R. Brain Cytokines and Disease. Acta Neuropsychiatr. 2002, 14, 262–278. [Google Scholar] [CrossRef]
- Salvemini, D.; Kim, S.F.; Mollace, V. Reciprocal Regulation of the Nitric Oxide and Cyclooxygenase Pathway in Pathophysiology: Relevance and Clinical Implications. Am. J. Physiol. Regul. Integr. Comp. Physiol. 2013, 304, R473–R487. [Google Scholar] [CrossRef]
- Linares, D.; Taconis, M.; Mana, P.; Correcha, M.; Fordham, S.; Staykova, M.; Willenborg, D.O. Neuronal Nitric Oxide Synthase Plays a Key Role in CNS Demyelination. J. Neurosci. 2006, 26, 12672–12681. [Google Scholar] [CrossRef]
- Wei, S.; Yang, D.; Yang, J.; Zhang, X.; Zhang, J.; Fu, J.; Zhou, G.; Liu, H.; Lian, Z.; Han, H. Overexpression of Toll-like Receptor 4 Enhances LPS-Induced Inflammatory Response and Inhibits Salmonella Typhimurium Growth in Ovine Macrophages. Eur. J. Cell Biol. 2019, 98, 36–50. [Google Scholar] [CrossRef]
- Ahmed, T.; Zulfiqar, A.; Arguelles, S.; Rasekhian, M.; Nabavi, S.F.; Silva, A.S.; Nabavi, S.M. Map Kinase Signaling as Therapeutic Target for Neurodegeneration. Pharmacol. Res. 2020, 160, 105090. [Google Scholar] [CrossRef]
- Zarkovic, N. Roles and Functions of ROS and RNS in Cellular Physiology and Pathology. Cells 2020, 9, 767. [Google Scholar] [CrossRef] [PubMed]
- Jin, M.-H.; Chen, D.-Q.; Jin, Y.-H.; Han, Y.-H.; Sun, H.-N.; Kwon, T. Hispidin Inhibits LPS-Induced Nitric Oxide Production in BV-2 Microglial Cells via pendent MAPK Signaling. Exp. Ther. Med. 2021, 22, 970. [Google Scholar] [CrossRef] [PubMed]
- Nguyen, N.T.A.; Selvaraj, B.; Vu, H.T.; Nguyen, Q.N.S.; Oanh, L.H.; Lee, H.; Tran, Q.L.; Oanh, V.T.; Jung, S.H.; Thuong, P.T. The Ethanol Extract of Polyscias Scutellaria (EEPS) Shows Anti-Inflammatory Signaling Pathway Against LPS-Induced Inflammation in RAW 264.7 Macrophages. Nat. Prod. Commun. 2025, 20, 1934578X251324006. [Google Scholar] [CrossRef]
- Meimei, C.; Fei, Z.; Wen, X.; Huangwei, L.; Zhenqiang, H.; Rongjun, Y.; Qiang, Z.; Qiuyang, L.; Xiaozhen, L.; Yuan, Y. Taxus Chinensis (Pilg.) Rehder Fruit Attenuates Aging Behaviors and Neuroinflammation by Inhibiting Microglia Activation via TLR4/NF-ΚB/NLRP3 Pathway. J. Ethnopharmacol. 2025, 337, 118943. [Google Scholar] [CrossRef]
- Minasyan, A.; Pires, V.; Gondcaille, C.; Ginovyan, M.; Mróz, M.; Savary, S.; Cherkaoui-Malki, M.; Kusznierewicz, B.; Bartoszek, A.; Andreoletti, P. Ribes Nigrum Leaf Extract Downregulates Pro-Inflammatory Gene Expression and Regulates Redox Balance in Microglial Cells. BMC Complement. Med. Ther. 2025, 25, 49. [Google Scholar] [CrossRef]
- Lim, J.S.; Li, X.; Lee, D.Y.; Yao, L.; Yoo, G.; Kim, Y.; Eum, S.M.; Cho, Y.-C.; Yoon, S.; Park, S.-J. Antioxidant and Anti-Inflammatory Activities of Methanol Extract of Senna Septemtrionalis (Viv.) HS Irwin & Barneby Through Nrf2/HO-1-Mediated Inhibition of NF-ΚB Signaling in LPS-Stimulated Mouse Microglial Cells. Int. J. Mol. Sci. 2025, 26, 1932. [Google Scholar]
- Gill, A.J.; Kovacsics, C.E.; Cross, S.A.; Vance, P.J.; Kolson, L.L.; Jordan-Sciutto, K.L.; Gelman, B.B.; Kolson, D.L. Heme Oxygenase-1 Deficiency Accompanies Neuropathogenesis of HIV-Associated Neurocognitive Disorders. J. Clin. Investig. 2014, 124, 4459–4472. [Google Scholar] [CrossRef]
- Feng, C.-W.; Chen, N.-F.; Wen, Z.-H.; Yang, W.-Y.; Kuo, H.-M.; Sung, P.-J.; Su, J.-H.; Cheng, S.-Y.; Chen, W.-F. In Vitro and in Vivo Neuroprotective Effects of Stellettin B through Anti-Apoptosis and the Nrf2/HO-1 Pathway. Mar. Drugs 2019, 17, 315. [Google Scholar] [CrossRef]
- Li, Y.C.; Hao, J.C.; Shang, B.; Zhao, C.; Wang, L.J.; Yang, K.L.; He, X.Z.; Tian, Q.Q.; Wang, Z.L.; Jing, H.L. Neuroprotective Effects of Aucubin on Hydrogen Peroxide-Induced Toxicity in Human Neuroblastoma SH-SY5Y Cells via the Nrf2/HO-1 Pathway. Phytomedicine 2021, 87, 153577. [Google Scholar]
- Yang, Y.; Yu, L.; Zhu, T.; Xu, S.; He, J.; Mao, N.; Liu, Z.; Wang, D. Neuroprotective Effects of Lycium Barbarum Polysaccharide on Light-Induced Oxidative Stress and Mitochondrial Damage via the Nrf2/HO-1 Pathway in Mouse Hippocampal Neurons. Int. J. Biol. Macromol. 2023, 251, 126315. [Google Scholar] [CrossRef] [PubMed]
- Ma, Z.; Lu, Y.; Yang, F.; Li, S.; He, X.; Gao, Y.; Zhang, G.; Ren, E.; Wang, Y.; Kang, X. Rosmarinic Acid Exerts a Neuroprotective Effect on Spinal Cord Injury by Suppressing Oxidative Stress and Inflammation via Modulating the Nrf2/HO-1 and TLR4/NF-ΚB Pathways. Toxicol. Appl. Pharmacol. 2020, 397, 115014. [Google Scholar] [CrossRef] [PubMed]
- Ryter, S.W.; Choi, A.M.K. Heme Oxygenase-1: Molecular Mechanisms of Gene Expression in Oxygen-Related Stress. Antioxid. Redox. Signal 2002, 4, 625–632. [Google Scholar] [CrossRef] [PubMed]
- Biswas, C.; Shah, N.; Muthu, M.; La, P.; Fernando, A.P.; Sengupta, S.; Yang, G.; Dennery, P.A. Nuclear Heme Oxygenase-1 (HO-1) Modulates Subcellular Distribution and Activation of Nrf2, Impacting Metabolic and Anti-Oxidant Defenses. J. Biol. Chem. 2014, 289, 26882–26894. [Google Scholar] [CrossRef]
- Balogun, E.; Hoque, M.; Gong, P.; Killeen, E.; Green, C.J.; Foresti, R.; Alam, J.; Motterlini, R. Curcumin Activates the Haem Oxygenase-1 Gene via Regulation of Nrf2 and the Antioxidant-Responsive Element. Biochem. J. 2003, 371, 887–895. [Google Scholar] [CrossRef]
- Kietzmann, T.; Samoylenko, A.; Immenschuh, S. Transcriptional Regulation of Heme Oxygenase-1 Gene Expression by MAP Kinases of the JNK and P38 Pathways in Primary Cultures of Rat Hepatocytes. J. Biol. Chem. 2003, 278, 17927–17936. [Google Scholar] [CrossRef]
- Martin, D.; Rojo, A.I.; Salinas, M.; Diaz, R.; Gallardo, G.; Alam, J.; De Galarreta, C.M.R.; Cuadrado, A. Regulation of Heme Oxygenase-1 Expression through the Phosphatidylinositol 3-Kinase/Akt Pathway and the Nrf2 Transcription Factor in Response to the Antioxidant Phytochemical Carnosol. J. Biol. Chem. 2004, 279, 8919–8929. [Google Scholar] [CrossRef]
- Kaur, V.; Kumar, M.; Kumar, A.; Kaur, K.; Dhillon, V.S.; Kaur, S. Pharmacotherapeutic Potential of Phytochemicals: Implications in Cancer Chemoprevention and Future Perspectives. Biomed. Pharmacother. 2018, 97, 564–586. [Google Scholar] [CrossRef]
Gene | Primer Sequence | Accession No. |
---|---|---|
mouse iNOS | Forward 5′-ATGGACCAGTATAAGGCAAGC-3′ Reverse 5′-GCTCTGGATGAGCCTATATTG-3′ | BC062378 |
mouse TNF-α | Forward 5′-GGTGCCTATGTCTCAGCCTCTT-3′ Reverse 5′-GCCATAGAACTGATGAGAGGGAG-3′ | BC117057 |
mouse IL-6 | Forward 5′-TACCACTTCACAAGTCGGAGGC-3′ Reverse 5′-CTGCAAGTGCATCATCGTTGTTC-3′ | BC132458 |
mouse IL-1β | Forward 5′-TGGACCTTCCAGGATGAGGACA -3′ Reverse 5′- GTTCATCTCGGAGCCTGTAGTG -3′ | BC011437 |
mouse IL-8 | Forward 5′-CTCTATTCTGCCAGATGCTGTCC-3′ Reverse 5′-ACAAGGCTCAGCAGAGTCACCA-3′ | BC051677 |
mouse IL-18 | Forward 5′-GACAGCCTGTGTTCGAGGATATG-3′ Reverse 5′-TGTTCTTACAGGAGAGGGTAGAC-3′ | NM_008360 |
mouse IL-10 | Forward 5′-CGGGAAGACAATAACTGCACCC-3′ Reverse 5′-CGGTTAGCAGTATGTTGTCCAGC-3′ | NM_010548 |
mouse HO-1 | Forward 5′-TTACCTTCCCGAACATCGAC-3′ Reverse 5′-GCATAAATTCCCACTGCCAC-3′ | BC010757 |
mouse GAPDH | Forward 5′-GCGAGACCCCACTAACATCA-3′ Reverse 5′-GAGTTGGGATAGGGCCTCTCTT-3′ | GU214026 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Yoon, Y.D.; Shrestha, K.K.; Baek, S.-H. In Vitro Antioxidant and Anti-Neuroinflammatory Effects of Elsholtzia blanda Benth. Life 2025, 15, 983. https://doi.org/10.3390/life15060983
Yoon YD, Shrestha KK, Baek S-H. In Vitro Antioxidant and Anti-Neuroinflammatory Effects of Elsholtzia blanda Benth. Life. 2025; 15(6):983. https://doi.org/10.3390/life15060983
Chicago/Turabian StyleYoon, Yeo Dae, Krishna K. Shrestha, and Seung-Hwa Baek. 2025. "In Vitro Antioxidant and Anti-Neuroinflammatory Effects of Elsholtzia blanda Benth" Life 15, no. 6: 983. https://doi.org/10.3390/life15060983
APA StyleYoon, Y. D., Shrestha, K. K., & Baek, S.-H. (2025). In Vitro Antioxidant and Anti-Neuroinflammatory Effects of Elsholtzia blanda Benth. Life, 15(6), 983. https://doi.org/10.3390/life15060983