HISLIS: Histology, Sarcopenia, and Lung Inflammation Score—A New Perspective for Lung Cancer Patients?
Abstract
:1. Introduction
2. Materials and Methods
2.1. Definition of the Analyzed Parameters
- The tumor stage at diagnosis: the patients’ tumor stage was established, considering the TNM classification of malignant tumors. In this classification, T describes the primary tumor size and site, N describes the involvement of the regional lymph nodes, and M represents the presence of distant metastasis. In our study group, the 8th edition of the TNM grading system was used to determine the proper tumor staging of the patients [26].
- The histological type of lung carcinoma: NSCLC (adenocarcinoma, squamous cell carcinoma, adenosquamous carcinoma, NSCLC that is not otherwise specified (NOS)), and SCLC.
- Sarcopenia was assessed, using the CT scans that were performed at the time of initial diagnosis. For this purpose, we used the ODIASP software tool (2.2.9), which automatically detected and calculated the skeletal muscle cross-sectional area (SMA) at the third lumbar vertebra level (L3) [29,30,31,32]. Patients were classified as sarcopenic if their SMA values were below the following cut-off values described in the literature: 92.2 cm in females and 144.3 cm in males [33].
- The inflammatory status of the patients at the time of initial diagnosis was assessed based on the analysis of parameters derived from their CBCs. The following cellular lines, similar to CBC-derived inflammatory indexes, were calculated and analyzed for each patient: leucocyte count, neutrophil count, lymphocyte count, monocyte count, eosinophil count, and platelet count, used to calculate the neutrophil-to-lymphocyte ratio (NLR), derived neutrophil-to-lymphocyte ratio (d-NLR), monocyte-to-lymphocyte ratio (MLR), platelet-to-lymphocyte ratio (PLR), eosinophil-to-neutrophil ratio (ENR), eosinophil-to-monocyte ratio (EMR), systemic inflammatory index (SII), systemic inflammatory response index (SIRI), and aggregate index of systemic inflammation (AISI).
- A prognostic severity score—the HISLIS: histology, sarcopenia, and lung inflammation score—was calculated for each patient. Sarcopenia and CBC-derived inflammatory biomarkers were assessed as binary variables. Patients were awarded 1 point if sarcopenia was present or if the CBC-derived inflammatory biomarkers were increased above the threshold values. The TNM stage was evaluated as an ordinal variable, with patients being awarded points from 0 to 3, depending on the TNM stage at diagnosis. The histological subtype was also considered and graded based on pre-existing literature data about the associated severity of each histological subtype [5,10,11,12]. The total prognostic score was obtained by summing the points assigned to each clinical and inflammatory predictor according to the predefined scheme.
- Severity grades of the prognostic HISLIS score: the final score was divided into three severity grades, using percentile-based thresholds to enable clinically practical interpretation and risk stratification. Based on the empirical distribution of scores within the analyzed cohort, the patients were stratified into three severity grades (low, intermediate, and high). The classification was performed using the 33rd and 66th percentiles (P33 and P66) to provide an objective stratification of patients without relying on arbitrary thresholds and to reflect the natural distribution of the score in our study population. The score thresholds were defined as follows:
- ✓
- Score < P33 (below 8.42): Low severity
- ✓
- Score between P33 and P66 (8.42–10.00): Intermediate severity
- ✓
- Score > P66 (above 10.00): High severity
- BMI was calculated using the following formula: BMI = kg/m2. Based on their BMI, patients were classified as underweight (BMI < 18.5 kg/m2), normal weight (BMI between 18.5 and 24.99 kg/m2), overweight (BMI between 25 and 29.99 kg/m2), grade I obesity (BMI between 30 and 34.99 kg/m2), grade II obesity (BMI between 35 and 39.99 kg/m2), and grade III obesity (BMI > 40 kg/m2).
- Data regarding the exposure to tobacco smoke, the presence of COPD as a comorbidity for the current disease, living environment (urban/rural), the gender, and the age of the patients at diagnosis were also analyzed.
2.2. Statistical Analysis
3. Results
3.1. Characterization of the Study Population
3.1.1. General Characteristics
3.1.2. The Histological Type of the Tumor
3.1.3. The TNM Stage at Diagnosis
3.2. The Sarcopenia Assessment and Its Impact on the Study Population
3.2.1. Association Between Sarcopenic Changes and Clinical and Biological Parameters
3.2.2. Association Between SMA and Clinical and Biological Parameters
3.3. The Inflammatory Profile of the Study Population
3.3.1. General Considerations
3.3.2. Assessment of the Relationship Between Systemic Inflammatory Markers and Clinical Parameters
3.4. The Severity Score and Its Global Impact
3.4.1. Correlation Analysis Between Severity Grade and Clinico-Biological Variables
3.4.2. Parameters That Influence the Degree of Severity
3.5. Main Differences Between Sarcopenic and Non-Sarcopenic Patients
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Abbreviations
COPD | chronic obstructive pulmonary disorder |
SCLC | small cell lung carcinoma |
NSCLC | non-small cell lung carcinoma |
EGFR | epidermal growth factor |
BIA | bioelectrical impedance analysis |
okDXA | dual-energy X-ray absorptiometry |
CT scans | computed tomography scans |
SMA | skeletal muscle area |
L3SMA | skeletal muscle area determined at the third lumbar vertebra level |
CBC | complete blood count |
NLR | neutrophil-to-lymphocyte ratio |
d-NLR | derived neutrophil-to-lymphocyte ratio |
MLR | monocyte-to-lymphocyte ratio |
PLR | platelet-to-lymphocyte ratio |
ENR | eosinophil-to-neutrophil ratio |
EMR | eosinophil-to-monocyte ratio |
SII | systemic inflammatory index |
SIRI | systemic inflammatory response index |
AISI | aggregate index of systemic inflammation |
BMI | body mass index |
TNM | tumor, node, metastasis |
HISLIS | histology, sarcopenia, and lung inflammation score |
NOS | not otherwise specified |
P 33 | 33rd percentile |
P 66 | 66th percentile |
Hb | Hemoglobin |
Ht | Hematocrit |
References
- Kratzer, T.B.; Bandi, P.; Freedman, N.D.; Smith, R.A.; Travis, W.D.; Jemal, A.; Siegel, R.L. Lung cancer statistics, 2023. Cancer 2024, 130, 1330–1348. [Google Scholar] [CrossRef]
- Midha, A.; Dearden, S.; McCormack, R. EGFR mutation incidence in non-small-cell lung cancer of adenocarcinoma histology: A systematic review and global map by ethnicity (mutMapII). Am. J. Cancer Res. 2015, 5, 2892–2911. [Google Scholar] [PubMed] [PubMed Central]
- WHO. WHO Report on the Global Tobacco Epidemic, 2017; WHO: Geneva, Switzerland, 2018. [Google Scholar]
- Benusiglio, P.R.; Fallet, V.; Sanchis-Borja, M.; Coulet, F.; Cadranel, J. Lung cancer is also a hereditary disease. Eur. Respir. Rev. 2021, 30, 210045. [Google Scholar] [CrossRef]
- Chao, L.; Shaoyuan, L.; Li, D.; Yan, X.; Xiaonan, W.; Hui, W.; Zijin, Z.; Ting, G.; Yongqiang, Z.; Lin, L. Global burden and trends of lung cancer incidence and mortality. Chin. Med. J. 2023, 136, 1583–1590. [Google Scholar] [CrossRef]
- Brenner, D.R.; Boffetta, P.; Duell, E.J.; Bickeboller, H.; Rosenberger, A.; McCormack, V.; Muscat, J.E.; Yang, P.; Wichmann, H.-E.; Brueske-Hohlfeld, I.; et al. Previous Lung Diseases and Lung Cancer Risk: A Pooled Analysis from the International Lung Cancer Consortium. Am. J. Epidemiol. 2012, 176, 573–585. [Google Scholar] [CrossRef] [PubMed]
- Brenner, D.R.; McLaughlin, J.R.; Hung, R.J. Previous Lung Diseases and Lung Cancer Risk: A Systematic Review and Meta-Analysis. PLoS ONE 2011, 6, e17479. [Google Scholar] [CrossRef]
- Ang, L.; Ghosh, P.; Seow, W.J. Association between previous lung diseases and lung cancer risk: A systematic review and meta-analysis. Carcinogenesis 2021, 42, 1461–1474. [Google Scholar] [CrossRef]
- Khusnurrokhman, G.; Wati, F.F. Tumor-promoting inflammation in lung cancer: A literature review. Ann. Med. Surg. 2022, 79, 104022. [Google Scholar] [CrossRef] [PubMed]
- Han, J.Y.; Park, K.; Kim, S.W.; Lee, D.H.; Kim, H.Y.; Kim, H.T.; Ahn, M.J.; Yun, T.; Ahn, J.S.; Suh, C.; et al. First-SIGNAL: First-Line Single-Agent Iressa Versus Gemcitabine and Cisplatin Trial in Never-Smokers with Adenocarcinoma of the Lung. J. Clin. Oncol. 2012, 30, 1122–1128. [Google Scholar] [CrossRef]
- Maemondo, M.; Inoue, A.; Kobayashi, K.; Sugawara, S.; Oizumi, S.; Isobe, H.; Gemma, A.; Harada, M.; Yoshizawa, H.; Kinoshita, I.; et al. Gefitinib or Chemotherapy for Non–Small-Cell Lung Cancer with Mutated EGFR. N. Engl. J. Med. 2010, 362, 2380–2388. [Google Scholar] [CrossRef]
- Ramalingam, S.S.; Vansteenkiste, J.; Planchard, D.; Cho, B.C.; Gray, J.E.; Ohe, Y.; Zhou, C.; Reungwetwattana, T.; Cheng, Y.; Chewaskulyong, B.; et al. Overall Survival with Osimertinib in Untreated, EGFR-Mutated Advanced NSCLC. N. Engl. J. Med. 2020, 382, 41–50. [Google Scholar] [CrossRef] [PubMed]
- Kara, M.; Kaymak, B.; Frontera, W.; Ata, A.M.; Ricci, V.; Ekiz, T.; Chang, K.; Han, D.-S.; Michail, H.; Quittan, M.; et al. Diagnosing sarcopenia: Functional perspectives and a new algorithm from the ISarcoPRM. J. Rehabil. Med. 2021, 53, jrm00209. [Google Scholar] [CrossRef] [PubMed]
- Santilli, V.; Bernetti, A.; Mangone, M.; Paoloni, M. Clinical definition of sarcopenia. Clin. Cases Min. Bone Metab. 2014, 11, 177. [Google Scholar] [CrossRef]
- Cruz-Jentoft, A.J.; Bahat, G.; Bauer, J.; Boirie, Y.; Bruyère, O.; Cederholm, T.; Cooper, C.; Landi, F.; Rolland, Y.; Sayer, A.A.; et al. Sarcopenia: Revised European consensus on definition and diagnosis. Age Ageing 2019, 48, 16–31. [Google Scholar] [CrossRef]
- Han, D.S.; Wu, W.T.; Hsu, P.C.; Chang, H.C.; Huang, K.C.; Chang, K.V. Sarcopenia is associated with increased risks of rotator cuff tendon diseases among community-dwelling elders: A cross-sectional quantitative ultrasound study. Front. Med. 2021, 8, 630009. [Google Scholar] [CrossRef]
- Collins, J.; Noble, S.; Chester, J.; Coles, B.; Byrne, A. The assessment and impact of sarcopenia in lung cancer: A systematic literature review. BMJ Open 2014, 4, e003697. [Google Scholar] [CrossRef] [PubMed]
- Nishimura, J.M.; Ansari, A.Z.; D’Souza, D.M.; Moffatt-Bruce, S.D.; Merritt, R.E.; Kneuertz, P.J. Computed tomography-assessed skeletal muscle mass as a predictor of outcomes in lung cancer surgery. Ann. Thorac. Surg. 2019, 108, 1555–1564. [Google Scholar] [CrossRef]
- Kawaguchi, Y. The process to overcome lung cancer sarcopenia. J. Thorac. Dis. 2023, 15, 1530–1532. [Google Scholar] [CrossRef]
- Kawaguchi, Y.; Watanabe, A.; Shiratori, T.; Kaku, R.; Ueda, K.; Okamoto, K.; Kataoka, Y.; Ohshio, Y.; Hanaoka, J. Myostatin expression in lung cancer induces sarcopenia and promotes cancer progression. Gen. Thorac. Cardiovasc. Surg. 2024, 72, 232–239. [Google Scholar] [CrossRef]
- Nam, K.; Lee, J.Y.; Ko, Y.; Kim, K.W.; Lee, H.-S.; Hong, S.W.; Park, J.H.; Hwang, S.W.; Yang, D.-H.; Ye, B.D.; et al. Impact of sarcopenia on clinical course of inflammatory bowel disease in Korea. Dig. Dis. Sci. 2023, 68, 2165–2179. [Google Scholar] [CrossRef]
- Nie, X.; Zou, M.; Song, C.; Zhang, P.; Ma, D.; Cui, D.; Cheng, G.; Li, L. Survival impact and risk factors of skeletal muscle loss during first-line EGFR-TKIs therapy in advanced lung adenocarcinoma patients. BMC Cancer 2025, 25, 393. [Google Scholar] [CrossRef] [PubMed]
- Mountzios, G.; Samantas, E.; Senghas, K.; Zervas, E.; Krisam, J.; Samitas, K.; Bozorgmehr, F.; Kuon, J.; Agelaki, S.; Baka, S.; et al. Association of the advanced lung cancer inflammation index (ALI) with immune checkpoint inhibitor efficacy in patients with advanced non-small-cell lung cancer. ESMO Open 2021, 6, 100254. [Google Scholar] [CrossRef] [PubMed]
- Lenci, E.; Cantini, L.; Pecci, F.; Cognigni, V.; Agostinelli, V.; Mentrasti, G.; Lupi, A.; Ranallo, N.; Paoloni, F.; Rinaldi, S.; et al. The gustave roussy immune (GRIm)-score variation is an early-on-treatment biomarker of outcome in advanced non-small cell lung cancer (NSCLC) patients treated with first-line pembrolizumab. J. Clin. Med. 2021, 10, 1005. [Google Scholar] [CrossRef]
- Ali, W.A.S.; Hui, P.; Ma, Y.; Wu, Y.; Zhang, Y.; Chen, Y.; Hong, S.; Yang, Y.; Huang, Y.; Zhao, Y.; et al. Determinants of survival in advanced non-small cell lung cancer patients treated with anti-PD-1/PD-L1 therapy. Ann. Transl. Med. 2021, 9, 1639. [Google Scholar] [CrossRef]
- Peng, L.; Wang, Y.; Liu, F.; Qiu, X.; Zhang, X.; Fang, C.; Quian, X.; Li, Y. Peripheral blood markers predictive of outcome and immune-related adverse events in advanced non-small cell lung cancer treated with PD-1 inhibitors. Cancer Immunol. Immunother. 2020, 69, 1813–1822. [Google Scholar] [CrossRef]
- Cederholm, T.; Compher, C.; Correia, M.I.T.D.; Gonzalez, M.C.; Fukushima, R.; Higashiguchi, T.; Van Gossum, A.; Jensen, G.L. Response to the Letter: Comment on “GLIM Criteria for the Diagnosis of Malnutrition—A Consensus Report from the Global Clinical Nutrition Community”. Some Considerations about the GLIM Criteria—A Consensus Report for the Diagnosis of Malnutrition by Drs. LB Da Silva Passos and DA De-Souza. Clin. Nutr. 2019, 38, 1480–1481. [Google Scholar]
- Mariean, C.R.; Tiucă, O.M.; Mariean, A.; Cotoi, O.S. Cancer Cachexia: New Insights and Future Directions. Cancers 2023, 15, 5590. [Google Scholar] [CrossRef]
- Charrière, K.; Ragusa, A.; Genoux, B.; Vilotitch, A.; Artemova, S.; Dumont, C.; Beaudoin, P.A.; Madiot, P.E.; Ferretti, R.; Bricault, I.; et al. ODIASP: An Open User-Friendly Software for Automated SMI Determination—Application to an Inpatient Population. medRxiv 2024. [Google Scholar] [CrossRef]
- Magudia, K.; Bridge, C.P.; Bay, C.P.; Babic, A.; Fintelmann, F.J.; Troschel, F.M.; Miskin, N.; Wrobel, W.C.; Brais, L.K.; Andriole, K.P.; et al. Population-Scale CT-based Body Composition Analysis of a Large Outpatient Population Using Deep Learning to Derive Age-, Sex-, and Race-specific Reference Curves. Radiology 2021, 298, 319–329. [Google Scholar] [CrossRef]
- Bridge, C.P.; Rosenthal, M.; Wright, B.; Kotecha, G.; Fintelmann, F.; Troschel, F.; Miskin, N.; Desai, K.; Wrobel, W.; Babic, A.; et al. Fully-Automated Analysis of Body Composition from CT in Cancer Patients Using Convolutional Neural Networks. In OR 2.0 Context-Aware Operating Theaters, Computer Assisted Robotic Endoscopy, Clinical Image-Based Procedures, and Skin Image Analysis (CARE 2018, CLIP 2018, OR 2.0 2018, ISIC 2018): Proceedings; [Internet]; Stoyanov, D., Taylor, Z., Sarikaya, D., McLeod, J., González Ballester, M.A., Codella, N.C.F., Martell, A., Maier-Hein, L., Malpani, A., Zenati, M.A., et al., Eds.; Springer International Publishing: Cham, Germany, 2018; pp. 204–213. [Google Scholar]
- Paris, M.T.; Tandon, P.; Heyland, D.K.; Furberg, H.; Premji, T.; Low, G.; Mourtzakis, M. Automated body composition analysis of clinically acquired computed tomography scans using neural networks. Clin. Nutr. 2020, 39, 3049–3055. [Google Scholar] [CrossRef]
- Derstine, B.A.; Holcombe, S.A.; Ross, B.E.; Wang, N.C.; Su, G.L.; Wang, S.C. Skeletal muscle cutoff values for sarcopenia diagnosis using T10 to L5 measurements in a healthy US population. Sci. Rep. 2018, 8, 11369. [Google Scholar] [CrossRef] [PubMed]
- Mandaliya, H.; Jones, M.; Oldmeadow, C.; Nordman, I.I.C. Prognostic biomarkers in stage IV non-small cell lung cancer (NSCLC): Neutrophil to lymphocyte ratio (NLR), lymphocyte to monocyte ratio (LMR), platelet to lymphocyte ratio (PLR) and advanced lung cancer inflammation index (ALI). Transl. Lung Cancer Res. 2019, 8, 886–894. [Google Scholar] [CrossRef]
- Detterbeck, F.C. The eighth edition TNM stage classification for lung cancer: What does it mean on main street? J. Thorac. Cardiovasc. Surg. 2018, 155, 356–359. [Google Scholar] [CrossRef]
- Guo, B.; Liu, X.; Si, Q.; Zhang, D.; Li, M.; Li, X.; Zhao, Y.; Hu, F.; Zhang, M.; Liu, Y.; et al. Associations of CBC-Derived inflammatory indicators with sarcopenia and mortality in adults: Evidence from Nhanes 1999–2006. BMC Geriatr. 2024, 24, 432. [Google Scholar] [CrossRef] [PubMed]
- Wei, J.; Brown, L.; Gao, B.; Nagrial, A.; da Silva, I.P. P1.21-08 Eosinophil to Neutrophil Ratio Predicts Efficacy in Patients Receiving Immunotherapy in Metastatic Non-small Cell Lung Cancer (mNSCLC). J. Thorac. Oncol. 2023, 18, S237. [Google Scholar] [CrossRef]
- Dubinett, S.M. (Ed.) Inflammation and Lung Cancer; Springer: New York, NY, USA, 2015; 212p. [Google Scholar]
- Engels, E.A. Inflammation in the development of lung cancer: Epidemiological evidence. Expert. Rev. Anticancer Ther. 2008, 8, 605–615. [Google Scholar] [CrossRef]
- Zappa, C.; Mousa, S.A. Non-small cell lung cancer: Current treatment and future advances. Transl. Lung Cancer Res. 2016, 5, 288–300. [Google Scholar] [CrossRef]
- ALQudah, M.A.; ALFaqih, M.A.; Hamouri, S.; Al-Shaikh, A.F.; Haddad, H.K.; Al-Quran, W.Y.; Alebbini, M.M.; Amer, N.B.; AL-Smadi, H.I.; Alzoubi, K.H. Epidemiology and histopathological classification of lung cancer: A study from Jordan, retrospective observational study. Ann. Med. Surg. [Internet] 2021, 65, 102330. [Google Scholar] [CrossRef]
- Resende, L.S.D.A.; Amorim, F.V.D.; Conceição, M.S.; Jales, R.M.; Pereira, P.N.; Sarian, L.O.; Baiocchi, G.; Derchain, S.; da Silva Filho, A.L. Sarcopenia and Anemia Are Predictors of Poor Prognostic in Cervical Cancer Patients. Open J. Obstet. Gynecol. 2024, 14, 693–704. [Google Scholar] [CrossRef]
- Bozzetti, F. Forcing the vicious circle: Sarcopenia increases toxicity, decreases response to chemotherapy and worsens with chemotherapy. Ann. Oncol. 2017, 28, 2107–2118. [Google Scholar] [CrossRef]
- Chindapasirt, J. Sarcopenia in Cancer Patients. Asian Pac. J. Cancer Prev. 2016, 16, 8075–8077. [Google Scholar] [CrossRef]
- Caro, J.J.; Salas, M.; Ward, A.; Goss, G. Anemia as an independent prognostic factor for survival in patients with cancer: A systemic, quantitative review. Cancer 2001, 91, 2214–2221. [Google Scholar] [CrossRef]
- Mazzella, A.; Maiolino, E.; Maisonneuve, P.; Loi, M.; Alifano, M. Systemic Inflammation and Lung Cancer: Is It a Real Paradigm? Prognostic Value of Inflammatory Indexes in Patients with Resected Non-Small-Cell Lung Cancer. Cancers 2023, 15, 1854.a. [Google Scholar] [CrossRef]
- Łochowski, M.; Chałubińska-Fendler, J.; Zawadzka, I.; Łochowska, B.; Rębowski, M.; Brzeziński, D.; Kozak, J. The Prognostic Significance of Preoperative Platelet-to-Lymphocyte and Neutrophil-to-Lymphocyte Ratios in Patients Operated for Non-Small Cell Lung Cancer. Cancer Manag. Res. 2021, 13, 7795–7802. [Google Scholar] [CrossRef]
- Şahin, F.; Aslan, A.F. Relationship between Inflammatory and Biological Markers and Lung Cancer. J. Clin. Med. 2018, 7, 160. [Google Scholar] [CrossRef]
- Jurasz, P.; Alonso-Escolano, D.; Radomski, M.W. Platelet–cancer interactions: Mechanisms and pharmacology of tumour cell-induced platelet aggregation. Br. J. Pharmacol. 2004, 143, 819–826. [Google Scholar] [CrossRef]
- Cho, W.C.; Kwan, C.K.; Yau, S.; So, P.P.; Poon, P.C.; Au, J.S. The role of inflammation in the pathogenesis of lung cancer. Expert. Opin. Ther. Targets 2011, 15, 1127–1137. [Google Scholar] [CrossRef]
- Hu, B.; Yang, X.R.; Xu, Y.; Sun, Y.F.; Sun, C.; Guo, W.; Zhang, X.; Wang, W.-M.; Qiu, S.-J.; Zhou, J.; et al. Systemic Immune-Inflammation Index Predicts Prognosis of Patients after Curative Resection for Hepatocellular Carcinoma. Clin. Cancer Res. 2014, 20, 6212–6222. [Google Scholar] [CrossRef]
- Choi, J.E.; Villarreal, J.; Lasala, J.; Gottumukkala, V.; Mehran, R.J.; Rice, D.; Yu, J.; Feng, L.; Cata, J.P. Perioperative neutrophil:lymphocyte ratio and postoperative NSAID use as predictors of survival after lung cancer surgery: A retrospective study. Cancer Med. 2015, 4, 825–833. [Google Scholar] [CrossRef]
- Glasner, A.; Avraham, R.; Rosenne, E.; Benish, M.; Zmora, O.; Shemer, S.; Meiboom, H.; Ben-Eliyahu, S. Improving survival rates in two models of spontaneous postoperative metastasis in mice by combined administration of a beta-adrenergic antagonist and a cyclooxygenase-2 inhibitor. J. Immunol. 2010, 184, 2449–2457. [Google Scholar] [CrossRef]
- Sarraf, K.M.; Belcher, E.; Raevsky, E.; Nicholson, A.G.; Goldstraw, P.; Lim, E. Neutrophil/lymphocyte ratio and its association with survival after complete resection in non-small cell lung cancer. J. Thorac. Cardiovasc. Surg. 2009, 137, 425–428. [Google Scholar] [CrossRef]
- Zhai, B.; Chen, J.; Wu, J.; Yang, L.; Guo, X.; Shao, J.; Xu, H.; Shen, A. Predictive value of the hemoglobin, albumin, lymphocyte, and platelet (HALP) score and lymphocyte-to-monocyte ratio (LMR) in patients with non-small cell lung cancer after radical lung cancer surgery. Ann. Transl. Med. 2021, 9, 976. [Google Scholar] [CrossRef]
- Yang, N.; Han, X.; Yu, J.; Shu, W.; Qiu, F.; Han, J. Hemoglobin, albumin, lymphocyte, and platelet score and neutrophil-to-lymphocyte ratio are novel significant prognostic factors for patients with small-cell lung cancer undergoing chemotherapy. J. Cancer Res. Ther. 2020, 16, 1134–1139. [Google Scholar] [CrossRef]
- Martin, L.; Birdsell, L.; MacDonald, N.; Reiman, T.; Clandinin, M.T.; McCargar, L.J.; Murphy, R.; Ghosh, S.; Sawyer, M.B.; Baracos, V.E. Cancer Cachexia in the Age of Obesity: Skeletal Muscle Depletion Is a Powerful Prognostic Factor, Independent of Body Mass Index. J. Clin. Oncol. 2013, 31, 1539–1547. [Google Scholar] [CrossRef]
Parameter | Formula |
---|---|
Neutrophil-to-lymphocyte ratio (NLR) | Neutrophil count/lymphocyte count [×103/μL] [34] |
Derived-neutrophil-to-lymphocyte ratio (d-NLR) | Neutrophil count/(WBC − neutrophil count) [×103/μL] [35] |
Monocyte-to-lymphocyte ratio (MLR) | Monocyte count/lymphocyte count [×103/μL] [35] |
Platelet-to-lymphocyte ratio (PLR) | Platelet count/lymphocyte count [×103/μL] [34] |
Eosinophil-to-neutrophil ratio (ENR) | Eosinophil count/neutrophil count [×103/μL] [36] |
Eosinophil-to-monocyte ratio (EMR) | Eosinophil count/monocyte count [×103/μL] [37] |
Systemic inflammatory index (SII) | (Neutrophil count × platelet count)/lymphocyte count [×103/μL] [38] |
Systemic inflammatory response index (SIRI) | (Neutrophil count × monocyte count)/lymphocyte count [×103/μL] [35] |
Component | Variable Type | Assigned Score |
Sarcopenia | Binary categorical | 1 point if present |
TNM Stage | Ordinal (1–4) | Stage 1 = 0 points Stage 2 = 1 point Stage 3 = 2 points Stage 4 = 3 points |
Histological Subtype | Encoded categorical (0–3) | SCLC = 2 points Squamous/other NSCLC = 1 point Adenocarcinoma = 0 points |
CBC-derived inflammatory indexes | Binary categorical | 1 point for each elevated marker |
Parameter | Stage II | Stage III | Stage IV | |||
---|---|---|---|---|---|---|
Elevated Values | Normal Values | Elevated Values | Normal Values | Elevated Values | Normal Values | |
AISI | 2 | 0 | 23 | 6 | 36 | 3 |
EMR | 0 | 2 | 11 | 18 | 18 | 21 |
ENR | 0 | 2 | 5 | 24 | 5 | 34 |
Eosinophils | 0 | 2 | 2 | 27 | 5 | 34 |
Leukocytes | 0 | 2 | 9 | 20 | 14 | 25 |
MLR | 1 | 1 | 13 | 16 | 22 | 17 |
Monocytes | 0 | 2 | 0 | 29 | 3 | 36 |
NLR | 1 | 1 | 19 | 10 | 32 | 7 |
Neutrophils | 0 | 2 | 10 | 19 | 20 | 19 |
PLR | 1 | 1 | 17 | 12 | 28 | 11 |
SII | 1 | 1 | 22 | 7 | 33 | 6 |
SIRI | 1 | 1 | 19 | 10 | 33 | 6 |
Platelets | 0 | 2 | 7 | 22 | 14 | 25 |
d-NLR | 1 | 1 | 18 | 11 | 31 | 8 |
Severity Grade | Tumor Stage | SCLC | Adenocarcinoma | Squamous Cell Carcinoma | Other NSCLC |
---|---|---|---|---|---|
Low | II | 0 | 1 | 0 | 0 |
Low | III | 1 | 5 | 4 | 2 |
Low | IV | 1 | 5 | 1 | 0 |
Medium | III | 0 | 3 | 5 | 0 |
Medium | IV | 0 | 3 | 1 | 1 |
High | II | 0 | 0 | 0 | 1 |
High | III | 1 | 0 | 7 | 1 |
High | IV | 3 | 16 | 7 | 1 |
Variable | Median (Without Sarcopenia) | Median(With Sarcopenia) | p-Value | Difference Direction |
---|---|---|---|---|
BMI | 24.3 | 23.84 | 0.1693 | Higher without sarcopenia |
SMA | 138.5 | 99.0 | 0.0000 | Higher without sarcopenia |
Tumor Stage | 3.0 | 4.0 | 0.0104 | Higher with sarcopenia |
Age | 65.0 | 70.0 | 0.0177 | Higher with sarcopenia |
Severity Score | 9.0 | 11.0 | 0.0038 | Higher with sarcopenia |
NLR | 4.19 | 6.62 | 0.1169 | Higher with sarcopenia |
d-NLR | 2.89 | 3.29 | 0.2122 | Higher with sarcopenia |
PLR | 237.98 | 276.19 | 0.6249 | Higher with sarcopenia |
SII | 1670.5 | 2308.06 | 0.2959 | Higher with sarcopenia |
SIRI | 2.39 | 3.6 | 0.1056 | Higher with sarcopenia |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Mariean, C.R.; Tiucă, O.M.; Al-Akel, C.F.; Cotoi, O.S. HISLIS: Histology, Sarcopenia, and Lung Inflammation Score—A New Perspective for Lung Cancer Patients? Life 2025, 15, 963. https://doi.org/10.3390/life15060963
Mariean CR, Tiucă OM, Al-Akel CF, Cotoi OS. HISLIS: Histology, Sarcopenia, and Lung Inflammation Score—A New Perspective for Lung Cancer Patients? Life. 2025; 15(6):963. https://doi.org/10.3390/life15060963
Chicago/Turabian StyleMariean, Claudia Raluca, Oana Mirela Tiucă, Cristina Flavia Al-Akel, and Ovidiu Simion Cotoi. 2025. "HISLIS: Histology, Sarcopenia, and Lung Inflammation Score—A New Perspective for Lung Cancer Patients?" Life 15, no. 6: 963. https://doi.org/10.3390/life15060963
APA StyleMariean, C. R., Tiucă, O. M., Al-Akel, C. F., & Cotoi, O. S. (2025). HISLIS: Histology, Sarcopenia, and Lung Inflammation Score—A New Perspective for Lung Cancer Patients? Life, 15(6), 963. https://doi.org/10.3390/life15060963