Platelet Transfusions: Current Practices and Emerging Alternatives in the United States
Abstract
1. Introduction
1.1. Platelet Transfusion Indications
1.2. Conventional Preparation and Storage of Platelet Products
1.3. Platelet Dosing
2. Whole-Blood-Derived Platelets
3. Pathogen Reduction Technology
4. Platelet Additive Solution
5. Cold-Stored Platelets
6. Cryopreserved and Freeze-Dried (Lyophilized) Platelets
7. Platelet Substitutes
8. Paid Platelet Donors
9. Conclusions
Author Contributions
Funding
Conflicts of Interest
References
- Friedman, M.T.; Costa, V.; Rafiee, B.; Hilbert, T.; Jafri, M.; Wu, D.W. A dose of platelets: Getting it just right. Ann. Blood 2024, 9, 1–11. [Google Scholar] [CrossRef]
- Kaufman, R.M.; Djulbegovic, B.; Gernsheimer, T.; Kleinman, S.; Tinmouth, A.T.; Capocelli, K.E.; Cipolle, M.D.; Cohn, C.S.; Fung, M.K.; Grossman, B.J.; et al. Platelet transfusion: A clinical practice guideline from the AABB. Ann. Intern. Med. 2015, 162, 205–213. [Google Scholar] [CrossRef]
- Metcalf, R.A.; Nahirniak, S.; Guyatt, G.; Bathla, A.; White, S.K.; Al-Riyami, A.Z.; Jug, R.C.; La Rocca, U.; Callum, J.L.; Cohn, C.S.; et al. Platelet transfusion. 2025 AABB and ICTMG international clinical practice guidelines. JAMA 2025. [Google Scholar] [CrossRef] [PubMed]
- Holbro, A.; Infanti, L.; Sigle, J.; Buser, A. Platelet transfusion: Basic aspects. Swiss Med. Wkly. 2013, 143, w13885. [Google Scholar] [CrossRef]
- Gammon, R.R.; Devine, D.; Katz, L.M.; Quinley, E.; Wu, Y.Y.; Rowe, K.; Razatos, A.; Min, K.; Reichenberg, S.; Smith, R. Buffy coat platelets coming to America: Are we ready? Transfusion 2021, 61, 627–633. [Google Scholar] [CrossRef] [PubMed]
- United States Food and Drug Administration. Guidance for the Industry: Bacterial Risk Control Strategies for Blood Collection Establishments and Transfusion Services to Enhance the Safety and Availability of Platelets for Transfusion. December 2020. Available online: https://www.fda.gov/regulatory-information/search-fda-guidance-documents/bacterial-risk-control-strategies-blood-collection-establishments-and-transfusion-services-enhance (accessed on 9 April 2025).
- Hillyer, C.D.; Josephson, C.D.; Blajchman, M.A.; Vostal, J.G.; Epstein, J.S.; Goodman, J.L. Bacterial contamination of blood components: Risks, strategies, and regulation: Joint ASH and AABB educational session in transfusion medicine. Hematology Am. Soc. Hematol. Educ. Program 2003, 2003, 575–589. [Google Scholar] [CrossRef]
- Blajchman, M.A.; Beckers, E.A.M.; Dickmeiss, E.; Lin, L.; Moore, G.; Muylle, L. Bacterial detection of platelets: Current problems and possible resolutions. Transfus. Med. Rev. 2005, 19, 259–272. [Google Scholar] [CrossRef]
- Darouiche, R.O.; Wall, M.J., Jr.; Itani, K.M.; Otterson, M.F.; Webb, A.L.; Carrick, M.M.; Miller, H.J.; Awad, S.S.; Crosby, C.T.; Mosier, M.C.; et al. Chlorhexidine-alcohol versus povidone-iodine for surgical-site antisepsis. N. Engl. J. Med. 2010, 362, 18–26. [Google Scholar] [CrossRef]
- AABB Association Bulletin # 04-07. Actions Following an Initial Positive Test for Possible Bacterial Contamination of a Platelet Unit. 14 October 2004, Updated June 2022. Available online: https://www.aabb.org/docs/default-source/default-document-library/resources/association-bulletins/ab04-07.pdf (accessed on 9 April 2025).
- Harm, S.K.; Delaney, M.; Charapata, M.; AuBuchon, J.P.; Triulzi, D.J.; Yazer, M.H. Routine use of a rapid test to detect bacteria at the time of issue for nonleukoreduced, whole blood-derived platelets. Transfusion 2013, 53, 843–850. [Google Scholar] [CrossRef]
- Slichter, S.J.; Kaufman, R.M.; Assmann, S.F.; McCullough, J.; Triulzi, D.J.; Strauss, R.G.; Gernsheimer, T.B.; Granger, S. Dose of prophylactic platelet transfusions and prevention of hemorrhage. N. Engl. J. Med. 2010, 362, 600–613. [Google Scholar] [CrossRef]
- Norol, F.; Bierling, P.; Roudot-Thoraval, F.; Ferrer Le Coeur, F.; Rieux, C.; Lavaux, A.; Kuentz, M.; Duedari, N. Platelet transfusion: A dose-response study. Blood 1998, 92, 1448–1453. [Google Scholar] [CrossRef]
- Klumpp, T.R.; Herman, J.H.; Gaughan, J.P.; Russo, R.R.; Christman, R.A.; Goldberg, S.L.; Ackerman, S.J.; Bleecker, G.C.; Mangan, K.F. Clinical consequences of alterations in platelet transfusion dose: A prospective, randomized, double-blind trial. Transfusion 1999, 39, 674–681. [Google Scholar] [CrossRef]
- Goodnough, L.T.; Kuter, D.J.; McCullough, J.; Slichter, S.J.; DiPersio, J.; Romo, J.; Peterson, R.; Smith, K.J.; Raife, T.; Tomita, D.; et al. Prophylactic platelet transfusions from healthy apheresis platelet donors undergoing treatment with thrombopoietin. Blood 2001, 98, 1346–1351. [Google Scholar] [CrossRef]
- Heddle, N.M.; Cook, R.J.; Tinmouth, A.; Kouroukis, C.T.; Hervig, T.; Klapper, E.; Brandwein, J.M.; Szczepiorkowski, Z.M.; AuBuchon, J.P.; Barty, R.L.; et al. A randomized controlled trial comparing standard- and low-dose strategies for transfusion of platelets (SToP) to patients with thrombocytopenia. Blood 2009, 113, 1564–1573. [Google Scholar] [CrossRef]
- Josephson, C.D.; Granger, S.; Assmann, S.F.; Castillejo, M.-I.; Strauss, R.G.; Slichter, S.J.; Steiner, M.E.; Journeycake, J.M.; Thornburg, C.D.; Bussel, J.; et al. Bleeding risks are higher in children versus adults given prophylactic platelet transfusions for treatment-induced hypoproliferative thrombocytopenia. Blood 2012, 120, 748–760. [Google Scholar] [CrossRef]
- Slichter, S.J. Eliminate prophylactic platelet transfusions? N. Engl. J. Med. 2013, 368, 1837–1838. [Google Scholar] [CrossRef]
- Benjamin, R.J.; Katz, L.; Gammon, R.R.; Stramer, S.L.; Quinley, E.; for the Consortium for Blood Availability. The argument(s) for lowering the US minimum required content of apheresis platelet components. Transfusion 2019, 59, 779–788. [Google Scholar] [CrossRef]
- Jones, J.M.; Sapiano, M.R.P.; Mowla, S.; Bota, D.; Berger, J.J.; Basavaraju, S.V. Has the trend of declining blood transfusions in the United States ended? Findings of the 2019 National Blood Collection and Utilization Survey. Transfusion 2021, 61, S1–S10. [Google Scholar] [CrossRef]
- Stubbs, J.R.; Homer, M.J.; Silverman, T.; Cap, A.P. The current state of the platelet supply in the US and proposed options to decrease the risk of critical shortages. Transfusion 2021, 61, 303–312. [Google Scholar] [CrossRef]
- Seheult, J.N.; Triulzi, D.J.; Yazer, M.H. I am the 9%: Making the case for whole-blood platelets. Transfus. Med. 2016, 26, 177–185. [Google Scholar] [CrossRef]
- Triulzi, D.J.; Assmann, S.F.; Strauss, R.G.; Ness, P.M.; Hess, J.R.; Kaufman, R.M.; Granger, S.; Slichter, S.J. The impact of platelet transfusion characteristics on posttransfusion platelet increments and clinical bleeding in patients with hypoproliferative thrombocytopenia. Blood 2012, 119, 5553–5562. [Google Scholar] [CrossRef]
- Buchholz, D.H.; AuBuchon, J.P.; Snyder, E.L.; Kandler, R.; Piscitelli, V.; Pickard, C.; Napychank, P.; Edberg, S. Effects of white cell reduction on the resistance of blood components to bacterial multiplication. Transfusion 1994, 34, 852–857. [Google Scholar] [CrossRef]
- Blajchman, M.A.; Goldman, M.; Baeza, F. Improving the bacteriological safety of platelet transfusions. Transfus. Med. Rev. 2004, 8, 11–24. [Google Scholar] [CrossRef]
- Dalal, N.; Cheema, N.; Klein, L.M. Single donor versus Acrodose platelets in oncology patients: A single institutional experience. Blood 2014, 124, 4298. [Google Scholar] [CrossRef]
- Yazer, M.H.; Díaz-Valdés, J.R.; Triulzi, D.J.; Spinella, P.C.; Emery, S.P.; Young, P.P.; Seheult, J.N.; Leeper, C.M.; Jones, J.M.; Cap, A.P. Considering equality in transfusion medicine practice. Br. J. Haematol. 2023, 201, 1245–1247. [Google Scholar] [CrossRef]
- Nguyen, J.T.; Rioveros, J.; Ziman, A.; McGonigle, A.M.; Ward, D.C. How do we manage pathogen reduction technology, while maintaining an adequate platelet inventory for our patients? Transfusion 2021, 61, 1014–1022. [Google Scholar] [CrossRef]
- Koepsell, S.A.; Stolla, M.; Sedjo, R.L.; Carson, J.; Knudson, M.; Cook, R.; Fasano, R.; Ngamsuntikul, S.G.; Cohn, C.; Gorlin, J.; et al. Results of clinical effectiveness of conventional versus Mirasol-treated aphresis platelets in patients with hypoproliferative thrombocytopenia (MiPLATE) trial. Transfusion 2024, 64, 457–465. [Google Scholar] [CrossRef]
- Schulze, T.J.; Gravemann, U.; Seltsam, A. THERAFLEX ultraviolet C (UVC)-based pathogen reduction technology for bacterial inactivation in blood components: Advantages and limitations. Ann. Blood 2022, 7, 28. [Google Scholar] [CrossRef]
- Otero, C.A.; Saavedra, A.P.; Fernández, A.C.; López, M.D.V. Comparison of transfusion-outcome in patients with massive bleeding receiving pathogen-reduced platelets prepared with two different technologies. Transfus. Apher. Sci. 2022, 61, 1033359. [Google Scholar] [CrossRef]
- Pati, I.; Masiello, F.; Pupella, S.; Cruciani, M.; De Angelis, V. Efficacy and safety of pathogen-reduced platelets compared with standard apheresis platelets: A systematic review of RCTs. Pathogens 2022, 11, 639. [Google Scholar] [CrossRef]
- Hermida-Nogueira, L.; Barrachina, M.N.; Izquierdo, I.; García-Vence, M.; Lacerenza, S.; Bravo, S.; Castrillo, A.; García, A. Proteomic analysis of extracellular vesicles derived from platelet concentrates treated with Mirasol® identifies biomarkers of platelet storage lesion. J. Proteom. 2020, 210, 103529. [Google Scholar] [CrossRef] [PubMed]
- Kwon, S.Y.; Kim, I.S.; Bae, J.E.; Kang, J.W.; Cho, Y.J.; Cho, N.S.; Lee, S.W. Pathogen inactivation efficacy of Mirasol PRT System and Intercept Blood System for non-leucoreduced platelet-rich plasma-derived platelets suspended in plasma. Vox Sang. 2014, 107, 254–260. [Google Scholar] [CrossRef] [PubMed]
- McDonald, C.P.; Bearne, J.; Aplin, K.; Sawicka, D. Assessing the inactivation capabilities of two commercially available platelet component pathogen inactivation systems: Effectiveness at end of shelf life. Vox Sang. 2021, 116, 416–424. [Google Scholar] [CrossRef] [PubMed]
- Lachert, E. Pathogen inactivation method using ultraviolet C light. J. Transf. Med. 2019, 12, 83–87. [Google Scholar] [CrossRef]
- Li, M.; Irsch, J.; Corash, L.; Benjamin, R.J. Is pathogen reduction an acceptable alternative to irradiation for risk mitigation of transfusion-associated graft versus host disease? Transfus. Apher. Sci. 2022, 61, 103404. [Google Scholar] [CrossRef]
- McCullough, J.; Goldfinger, D.; Gorlin, J.; Riley, W.J.; Sandhu, H.; Stowell, C.; Ward, D.; Clay, M.; Pulkrabek, S.; Chrebtow, V.; et al. Cost implications of implementation of pathogen-inactivated platelets. Transfusion 2015, 55, 2312–2320. [Google Scholar] [CrossRef]
- van der Meer, P.F.; de Korte, D. Platelet additive solutions: A review of the latest developments and their clinical implications. Transfus. Med. Hemotherapy 2018, 45, 98–102. [Google Scholar] [CrossRef]
- United States Food and Drug Administration. Guidance for Industry: Alternative Procedures for the Manufacture of Cold-Stored Platelets Intended for the Treatment of Active Bleeding When Conventional Platelets Are Not Available or Their Use Is Not Practical. June 2023. Available online: https://www.fda.gov/media/169714/download (accessed on 9 April 2025).
- Mack, J.P.; Miles, J.; Stolla, M. Cold-stored platelets: Review of studies in humans. Transfus. Med. Rev. 2020, 34, 221–226. [Google Scholar] [CrossRef]
- Warner, M.A.; Kurian, E.B.; Hammel, S.A.; van Buskirk, C.M.; Kor, D.J.; Stubbs, J.R. Transition from room temperature to cold-stored platelets for the preservation of blood inventories during the COVID-19 pandemic. Transfusion 2021, 61, 72–77. [Google Scholar] [CrossRef]
- Kogler, V.J.; Stolla, M. There and back again: The once and current developments in donor-derived platelet products for hemostatic therapy. Blood 2022, 139, 3688–3698. [Google Scholar] [CrossRef]
- Barnard, M.R.; MacGregor, H.; Ragno, G.; Pivacek, L.E.; Khuri, S.F.; Michelson, A.D.; Valeri, C.R. Fresh, liquid-preserved, and cryopreserved platelets: Adhesive surface receptors and membrane procoagulant activity. Transfusion 1999, 39, 880–888. [Google Scholar] [CrossRef] [PubMed]
- Slichter, S.J.; Dumont, L.J.; Cancelas, J.A.; Jones, M.; Gernsheimer, T.B.; Szczepiorkowski, Z.M.; Dunbar, N.M.; Prakash, G.; Medlin, S.; Rugg, N.; et al. Safety and efficacy of cryopreserved platelets in bleeding patients with thrombocytopenia. Transfusion 2018, 58, 2129–2138. [Google Scholar] [CrossRef]
- Ohanian, M.; Cancelas, J.A.; Davenport, R.; Pullarkat, V.; Hervig, T.; Broome, C.; Marek, K.; Kelly, M.; Gul, Z.; Rugg, N.; et al. Freeze-dried platelets are a promising alternative in bleeding thrombocytopenic patients with hematological malignancies. Am. J. Hematol. 2022, 97, 256–266. [Google Scholar] [CrossRef]
- Okamura, Y.; Fukui, Y.; Kabata, K.; Suzuki, H.; Handa, M.; Ikeda, Y.; Takeoka, S. Novel platelet substitutes: Disk-shaped biodegradable nanosheets and their enhanced effects on platelet aggregation. Bioconjugate Chem. 2009, 20, 1958–1965. [Google Scholar] [CrossRef]
- Shukla, M.; Sekhon, U.D.S.; Betapudi, V.; Li, W.; Hickman, D.A.; Pawlowski, C.L.; Dyer, M.R.; Neal, M.D.; McCrae, K.R.; Gupta, A.S. In vitro characterization of SynthoPlateTM (synthetic platelet) technology and its in vivo evaluation in severely thrombocytopenic mice. J. Thromb. Haemost. 2017, 15, 375–387. [Google Scholar] [CrossRef]
- Kresie, L. Artificial blood: An update on current red cell and platelet substitutes. Bayl. Univ. Med Cent. Proc. 2001, 14, 158–161. [Google Scholar] [CrossRef]
- Blajchman, M.A. Substitutes and alternatives to platelet transfusions in thrombocytopenic patients. J. Thromb. Haemost. 2003, 1, 1637–1641. [Google Scholar] [CrossRef]
- Lee, D.H.; Blajchman, M.A. Novel treatment modalities: New platelet preparations and substitutes. Br J Haematol 2001, 114, 496–505. [Google Scholar] [CrossRef]
- Sung, A.D.; Yen, R.C.; Jiao, Y.; Bernanke, A.; Lewis, D.A.; Miller, S.E.; Li, Z.; Ross, J.R.; Artica, A.; Piryani, S.; et al. Fibrinogen-coated albumin nanospheres prevent thrombocytopenia-related bleeding. Radiat. Res. 2020, 194, 162–172. [Google Scholar] [CrossRef]
- Chan, L.W.G.; White, N.J.; Pun, S.H. Synthetic strategies for engineering intravenous hemostats. Bioconjugate Chem. 2015, 26, 1224–1236. [Google Scholar] [CrossRef] [PubMed]
- Rybak, M.E.; Renzulli, L.A. A liposome based platelet substitute, the plateletsome, with hemostatic efficacy. Biomater. Artif. Cells Immobil. Biotechnol. 1993, 21, 101–118. [Google Scholar] [CrossRef] [PubMed]
- Nishiya, T.; Kainoh, M.; Murata, M.; Handa, M.; Ikeda, Y. Platelet interactions with liposomes carrying recombinant platelet membrane glycoproteins or fibrinogen: Approach to platelet substitutes. Artif. Cells Blood Substit. Immob. Biotechnol. 2001, 29, 453–464. [Google Scholar] [CrossRef] [PubMed]
- Bertram, J.P.; Williams, C.A.; Robinson, R.; Segal, S.S.; Flynn, N.T.; Lavik, E.B. Intravenous hemostat: Nanotechnology to halt bleeding. Sci. Transl. Med. 2009, 1, 11ra22. [Google Scholar] [CrossRef] [PubMed]
- Gao, Y.; Sarode, A.; Kokoroskos, N.; Ukidve, A.; Zhao, Z.; Guo, S.; Flaumenhaft Gupta, A.S.; Saillant, N.; Mitragotri, S. A polymer-based systemic hemostatic agent. Sci. Adv. 2020, 6, eaba0588. [Google Scholar] [CrossRef]
- Girish, A.; Sekhon, U.; Sen Gupta, A. Bioinspired artificial platelets for transfusion applications in traumatic hemorrhage. Transfusion 2020, 60, 229–231. [Google Scholar] [CrossRef]
- Chen, S.J.; Sugimoto, N.; Eto, K. Ex vivo manufacturing of platelets: Beyond the first-in-human clinical trial using autologous iPSC-platelets. Int. J. Hematol. 2022, 117, 349–355. [Google Scholar] [CrossRef]
- Quach, M.E.; Chen, W.; Li, R. Mechanisms of platelet clearance and translation to improve platelet storage. Blood 2018, 131, 1512–1521. [Google Scholar] [CrossRef]
- Alter, H.J.; Klein, H.G. The hazards of blood transfusion in historical perspective. Blood 2008, 112, 2617–2626. [Google Scholar] [CrossRef]
- Shaz, B.H.; Domen, R.E.; France, C.R. Remunerating donors to ensure a safe and available blood supply. Transfusion 2020, 60, S134–S137. [Google Scholar] [CrossRef]
- Stubbs, J.R.; Shaz, B.H.; Vassallo, R.R.; Roback, J.D. Expanding the platelet inventory to mitigate the impact of severe shortages. Hematology Am. Soc. Hematol. Educ. Program. 2022, 2022, 424–429. [Google Scholar] [CrossRef]
- Dodd, R.Y.; Stramer, S.L.; Smith, R.; Young, P.P. Paid platelet donors: Points to consider. Transfusion 2021, 61, 1000–1003. [Google Scholar] [CrossRef] [PubMed]
- Ochoa, A.; Shaefer, H.L.; Grogan-Kaylor, A. The interlinkage between blood plasma donation and poverty in the United States. J. Sociol. Soc. Welfare 2021, 48, 56–71. Available online: https://scholarworks.wmich.edu/jssw/vol48/iss2/4 (accessed on 9 April 2025). [CrossRef]
- Centers for Disease Control and Prevention (CDC). Fatal bacterial infections associated with platelet transfusions—United States, 2004. MMWR Morb. Mortal. Wkly. Rep. 2005, 54, 168–170. [Google Scholar]
- AABB Association Bulletin # 10-06. Information Concerning Platelet Additive Solutions (Updated Table). 22 November 2010. Available online: https://www.aabb.org/docs/default-source/default-document-library/resources/association-bulletins/ab10-06.pdf (accessed on 2 May 2025).
- Lu, W.; Fung, M. Platelets treated with pathogen reduction technology: Current status and future direction. F1000Res. 2020, 9, 40. [Google Scholar] [CrossRef]
Timeline | Platelet Transfusion Innovations in the United States |
---|---|
1960s | The role of platelet transfusions for management of bleeding in cancer patients is first recognized [1]. |
1970s | Apheresis technology for the collection of platelets is developed. Movement toward an all-volunteer blood donor system begins [62]. |
1980s–present | The United States becomes the leading nation in platelet transfusions per capita [1]. |
1990s–2000s | Bacterial contamination rates of platelets are increasingly recognized [66]. |
2004 | The Association for the Advancement of Blood and Biotherapies (formerly the American Association of Blood Banks) implements its Standards to limit and detect bacterial contamination in all platelet components [66]. |
2010 | A platelet additive solution for apheresis platelet storage is introduced [67]. |
2014 | A pathogen inactivation system for platelets is introduced [68]. |
2019 | The Food and Drug Administration Guidance on bacterial risk control strategies to enhance the safety and availability of platelets for transfusion is published (updated December 2020) [5]. |
2020s | Increasing challenges of platelet collection shortages lead to calls for apheresis donor remuneration [62]. |
2020s–present | There is continued advancement into the development of platelet alternative technologies [57,58] |
2023 | The Food and Drug Administration Guidance for the manufacture and labeling of cold-stored platelets is published [40]. |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Friedman, M.; Costa, V.; Rafiee, B.; Hilbert, T.; Jafri, M.; Wu, D.W. Platelet Transfusions: Current Practices and Emerging Alternatives in the United States. Life 2025, 15, 985. https://doi.org/10.3390/life15060985
Friedman M, Costa V, Rafiee B, Hilbert T, Jafri M, Wu DW. Platelet Transfusions: Current Practices and Emerging Alternatives in the United States. Life. 2025; 15(6):985. https://doi.org/10.3390/life15060985
Chicago/Turabian StyleFriedman, Mark, Victoria Costa, Behnam Rafiee, Timothy Hilbert, Mansab Jafri, and Ding Wen Wu. 2025. "Platelet Transfusions: Current Practices and Emerging Alternatives in the United States" Life 15, no. 6: 985. https://doi.org/10.3390/life15060985
APA StyleFriedman, M., Costa, V., Rafiee, B., Hilbert, T., Jafri, M., & Wu, D. W. (2025). Platelet Transfusions: Current Practices and Emerging Alternatives in the United States. Life, 15(6), 985. https://doi.org/10.3390/life15060985