Previous Issue
Volume 15, September
 
 

Agronomy, Volume 15, Issue 10 (October 2025) – 141 articles

  • Issues are regarded as officially published after their release is announced to the table of contents alert mailing list.
  • You may sign up for e-mail alerts to receive table of contents of newly released issues.
  • PDF is the official format for papers published in both, html and pdf forms. To view the papers in pdf format, click on the "PDF Full-text" link, and use the free Adobe Reader to open them.
Order results
Result details
Section
Select all
Export citation of selected articles as:
18 pages, 3726 KB  
Article
Biosynthesis of Selenium Nanoparticles from Rosa rugosa Extract: Mechanisms and Applications for Sustainable Crop Protection
by Le Song, Man Liang, Yingxiu Wang and Yanli Bian
Agronomy 2025, 15(10), 2385; https://doi.org/10.3390/agronomy15102385 (registering DOI) - 13 Oct 2025
Abstract
Selenium nanoparticles (SeNPs) show great potential for sustainable agriculture, but their green synthesis and practical application still need further optimization. This study established a green synthesis method for SeNPs using lyophilized rose (Rosa rugosa Thunb.) powder as both a reducing and stabilizing [...] Read more.
Selenium nanoparticles (SeNPs) show great potential for sustainable agriculture, but their green synthesis and practical application still need further optimization. This study established a green synthesis method for SeNPs using lyophilized rose (Rosa rugosa Thunb.) powder as both a reducing and stabilizing agent to reduce sodium selenite (Na2SeO3), key parameters, including template concentration, Na2SeO3/VC ratio, and reaction temperature were systematically optimized. This process yielded stable, spherical SeNPs with optimal properties, exhibiting a diameter of 90 nm and a zeta potential of −35 mV. Structural characterization confirmed that selenium forms chelation complexes through carboxyl and hydroxyl oxygen-binding sites. The SeNPs exhibited exceptional stability (retained 426 days at 25 °C) and pH tolerance (pH 4–10), though divalent cations (Ca2+) triggered aggregation. In agricultural application tests, 5 mg/L SeNPs increased tomato plant biomass by 84% and antioxidant capacity by 152% compared to controls, and the biosynthesis pathways of salicylic acid and jasmonic acid were upregulated. Moreover, the SeNPs exhibited strong concentration-dependent antifungal activity against several major pathogens. Among these pathogens, tomato gray mold (Botrytis cinerea) was the most sensitive, as evidenced by its low EC50 (4.86 mg/L) and sustained high inhibition rates, which remained substantial even at 1 mg/L and reached 94% at 10 mg/L. These findings highlight SeNPs as a friendly alternative for minimizing agrochemical use in sustainable agriculture. Full article
20 pages, 4630 KB  
Article
Evaluating the Performance of Winter Wheat Under Late Sowing Using UAV Multispectral Data
by Yuanyuan Zhao, Hui Wang, Wei Wu, Yi Sun, Ying Wang, Weijun Zhang, Jianliang Wang, Fei Wu, Wouter H. Maes, Jinfeng Ding, Chunyan Li, Chengming Sun, Tao Liu and Wenshan Guo
Agronomy 2025, 15(10), 2384; https://doi.org/10.3390/agronomy15102384 (registering DOI) - 13 Oct 2025
Abstract
In the lower and middle sections of the Yangtze River Basin Region (YRBR) in China, challenges posed by climate change and delayed harvesting of preceding crops have hindered the timely sowing of wheat, leading to an increasing prevalence of late-sown wheat fields. This [...] Read more.
In the lower and middle sections of the Yangtze River Basin Region (YRBR) in China, challenges posed by climate change and delayed harvesting of preceding crops have hindered the timely sowing of wheat, leading to an increasing prevalence of late-sown wheat fields. This trend has emerged as a significant impediment to achieving high and stable production of wheat in this area. During the growing seasons of 2022–2023 and 2023–2024, an unmanned aerial vehicle (UAV)-based multispectral camera was used to monitor different wheat materials at various growth stages under normal sowing treatment (M1) and late sowing with increased plant density (M2). By assessing yield loss, the wheat tolerance to late sowing was quantified and categorized. The correlation between the differential vegetation indices (D-VIs) and late sowing resistance was examined. The findings revealed that the J2-Logistic model demonstrated optimal classification performance. The precision values of stable type, intermediate type, and sensitive type were 0.92, 0.61, and 1.00, respectively. The recall values were 0.61, 0.92, and 1.00. The mean average precision (mAP) of the model was 0.92. This study proposes a high-throughput and low-cost evaluation method for wheat tolerance to late sowing, which can provide a rapid predictive tool for screening suitable varieties for late sowing and facilitating late-sown wheat breeding. Full article
(This article belongs to the Special Issue Digital Twins in Precision Agriculture)
26 pages, 4926 KB  
Article
Synergistic Optimization of Root–Shoot Characteristics, Nitrogen Use Efficiency and Yield by Combining Planting Density with Nitrogen Level in Cotton (Gossypium hirsutum L.)
by Junwu Liu, Yuanqi Ma, Shulin Wang, Shuo Wang, Lingxiao Zhu, Ke Zhang, Yongjiang Zhang, Cundong Li, Liantao Liu and Hongchun Sun
Agronomy 2025, 15(10), 2383; https://doi.org/10.3390/agronomy15102383 (registering DOI) - 13 Oct 2025
Abstract
To address low nitrogen use efficiency (NUE) derived from excessive fertilization in cotton production in the Yellow River Basin, a field study was conducted to evaluate the effects of two planting densities and six nitrogen (N) rate levels. Key results show that a [...] Read more.
To address low nitrogen use efficiency (NUE) derived from excessive fertilization in cotton production in the Yellow River Basin, a field study was conducted to evaluate the effects of two planting densities and six nitrogen (N) rate levels. Key results show that a N rate of 225 kg ha−1 optimized root length density and root biomass density. High planting density (105,000 plants ha−1) improved the population-level root traits, photosynthetic radiation interception, and boll number per unit area, though it reduced individual plant root development. Total dry matter peaked at 225 kg ha−1 N, and density increased reproductive dry matter by 7.5–11.9%. Higher N rates reduced reproductive partitioning and root–shoot ratio. While the maximum seed cotton yield (SCY) was 225 kg ha−1, near-maximum yield was achieved at 150 kg ha−1. NUE declined with increasing N, but densification improved agronomic NUE and partial factor productivity by 1.5–6.6% and 3.3–39.3%, respectively. Under the “densification with N reduction” mode, combining a planting density of 105,000 plants·ha−1 with an N rate of 150 kg·ha−1 achieved conventional yield. At the same density, an N rate of 225 kg·ha−1 not only enabled high yield and maintained relatively high NUE but also showed better adaptability to the simplified cultivation mode in Yellow River Basin cotton-growing regions. Full article
(This article belongs to the Section Soil and Plant Nutrition)
Show Figures

Figure 1

16 pages, 3046 KB  
Article
Combined Application of Organic Materials Regulates the Microbial Community Composition by Altering Functional Groups of Organic Matter in Coastal Saline–Alkaline Soils
by Qiaobo Song, Jian Ma, Xin Chen, Caiyan Lu, Huaihai Chen, Guangyu Chi and Yanyu Hu
Agronomy 2025, 15(10), 2382; https://doi.org/10.3390/agronomy15102382 (registering DOI) - 13 Oct 2025
Abstract
Different types of organic materials demonstrate varying efficacy in ameliorating saline–alkali soils, while the combined application of organic materials can potentially enhance the remediation effects on saline–alkali land. To verify this assumption, our study conducted a pot experiment with spinach in saline–alkali soil, [...] Read more.
Different types of organic materials demonstrate varying efficacy in ameliorating saline–alkali soils, while the combined application of organic materials can potentially enhance the remediation effects on saline–alkali land. To verify this assumption, our study conducted a pot experiment with spinach in saline–alkali soil, observing the improvement effect of saline–alkali soil and the growth of crops when acid fermentation products of vegetables, humic acid-like substances, and corn straw were applied either individually or in combination. The results revealed that both the sole and combined application of organic materials could enhance the yield of spinach. Particularly, humic acid-like substances increased spinach yield to six times that of the chemical fertilizer treatment. Although the application of organic materials led to a decline in the diversity and richness indices of the microbial community in saline–alkali soil (except fungal richness), the combined use of organic materials contributed to a healthier trend in the soil microbial community structure. Beyond its effects on soil nutrients such as total carbon and total nitrogen, the improvement in soil organic matter activity caused by the joint application of organic materials was identified as the primary factor responsible for enhancing the health of the soil microbial community and the remediation effects on saline–alkali soil. Full article
(This article belongs to the Section Soil and Plant Nutrition)
Show Figures

Figure 1

21 pages, 5231 KB  
Article
Influence of Soil Temperature on Potential Evaporation over Saturated Surfaces—In Situ Lysimeter Study
by Wanxin Li, Zhi Li, Jinyue Cheng, Yi Wang, Fan Wang, Jiawei Wang and Wenke Wang
Agronomy 2025, 15(10), 2381; https://doi.org/10.3390/agronomy15102381 (registering DOI) - 12 Oct 2025
Abstract
Potential evaporation (PE) from saturated bare surfaces is the basis for estimating actual evaporation (Es) in agricultural and related disciplines. Most models estimate PE using meteorological data. Thus, the dependence of soil temperature (T) on PE is often simplified [...] Read more.
Potential evaporation (PE) from saturated bare surfaces is the basis for estimating actual evaporation (Es) in agricultural and related disciplines. Most models estimate PE using meteorological data. Thus, the dependence of soil temperature (T) on PE is often simplified in applications. To address this gap, we conducted an in situ lysimeter experiment in the Guanzhong Basin, China, continuously measuring PE, T, and soil heat flux (G) at high temporal resolution over three fully saturated sandy soils. Results show that annual PE over fine sand was 7.1% and 11.0% higher than that of coarse sand and gravel. The observed PE differences across textures can be quantitatively explained using the surface energy balance equation and a radiatively coupled Penman-Monteith equation, accounting for the dependence of T on net radiation (Rn) and G. In contrast, PE estimates diverged from observations when Rn and G were assumed to be independent of T. We further evaluated the influence of T and other influencing variables on PE. The random forest model identified that near-surface heat storage variations (∆S) contribute most significantly to PE estimation (relative importance = 0.37), followed by surface temperature (0.24) and sensible heat flux (0.23). These findings highlight the critical role of near-surface temperature in PE estimation. Full article
Show Figures

Figure 1

15 pages, 2133 KB  
Article
A LiDAR SLAM and Visual-Servoing Fusion Approach to Inter-Zone Localization and Navigation in Multi-Span Greenhouses
by Chunyang Ni, Jianfeng Cai and Pengbo Wang
Agronomy 2025, 15(10), 2380; https://doi.org/10.3390/agronomy15102380 (registering DOI) - 12 Oct 2025
Abstract
Greenhouse automation has become increasingly important in facility agriculture, yet multi-span glass greenhouses pose both scientific and practical challenges for autonomous mobile robots. Scientifically, solid-state LiDAR is vulnerable to glass-induced reflections, sparse geometric features, and narrow vertical fields of view, all of which [...] Read more.
Greenhouse automation has become increasingly important in facility agriculture, yet multi-span glass greenhouses pose both scientific and practical challenges for autonomous mobile robots. Scientifically, solid-state LiDAR is vulnerable to glass-induced reflections, sparse geometric features, and narrow vertical fields of view, all of which undermine Simultaneous Localization and Mapping (SLAM)-based localization and mapping. Practically, large-scale crop production demands accurate inter-row navigation and efficient rail switching to reduce labor intensity and ensure stable operations. To address these challenges, this study presents an integrated localization-navigation framework for mobile robots in multi-span glass greenhouses. In the intralogistics area, the LiDAR Inertial Odometry-Simultaneous Localization and Mapping (LIO-SAM) pipeline was enhanced with reflection filtering, adaptive feature-extraction thresholds, and improved loop-closure detection, generating high-fidelity three-dimensional maps that were converted into two-dimensional occupancy grids for A-Star global path planning and Dynamic Window Approach (DWA) local control. In the cultivation area, where rails intersect with internal corridors, YOLOv8n-based rail-center detection combined with a pure-pursuit controller established a vision-servo framework for lateral rail switching and inter-row navigation. Field experiments demonstrated that the optimized mapping reduced the mean relative error by 15%. At a navigation speed of 0.2 m/s, the robot achieved a mean lateral deviation of 4.12 cm and a heading offset of 1.79°, while the vision-servo rail-switching system improved efficiency by 25.2%. These findings confirm the proposed framework’s accuracy, robustness, and practical applicability, providing strong support for intelligent facility-agriculture operations. Full article
(This article belongs to the Section Precision and Digital Agriculture)
Show Figures

Figure 1

19 pages, 47146 KB  
Article
Functional Conservation and Redundancy of Duplicated AGAMOUS Homologs in Regulating Floral Organ Development of Tagetes erecta
by Chunling Zhang, Chujun Huang, Ke Zhu, Hang Li, Shiyu Xu, Zhengguo Tao and Yanhong He
Agronomy 2025, 15(10), 2379; https://doi.org/10.3390/agronomy15102379 (registering DOI) - 12 Oct 2025
Abstract
Asteraceae, as the largest angiosperm family, has an architecturally complex capitulum (inflorescences) composed of heteromorphic florets with distinct morphologies and functions. AGAMOUS (AG) MADS-box transcription factors act as key regulators in flower development and are essential for the formation of the characteristic capitulum [...] Read more.
Asteraceae, as the largest angiosperm family, has an architecturally complex capitulum (inflorescences) composed of heteromorphic florets with distinct morphologies and functions. AGAMOUS (AG) MADS-box transcription factors act as key regulators in flower development and are essential for the formation of the characteristic capitulum and florets. To explore the potential functions of the AG genes in Asteraceae, we conducted a genome-wide identification and analysis of 52 AG-like genes across 22 species within this family. Additionally, we studied the functions of the Tagetes erecta class C genes TeAG1 and TeAG2 by introducing these genes into T. erecta and Nicotiana tabacum. Gene structure and phylogenomic analyses indicated that AG-like genes may have conserved and specific biological functions in Asteraceae plants. Phenotypic analyses revealed that the T. erecta class C genes TeAG1 and TeAG2 played a conserved and redundant role in regulating stamen and carpel development. The simultaneous downregulation of TeAG1 and TeAG2 led to the homeotic transformation of both stamens and carpels into corolla-like structures. However, silencing TeAG1 or TeAG2 individually in T. erecta did not affect any floral organ development. Furthermore, the ectopic expression of TeAG1 and TeAG2 in N. tabacum resulted in the transformation of sepals into pistils and corollas into stamens, respectively. Additionally, qRT-PCR analyses revealed that TeAG1 and TeAG2 repressed the expression of class A genes. Our findings expand our understanding of the function of class C genes within Asteraceae and provide strategies for breeding double-flower cultivars. Full article
Show Figures

Figure 1

12 pages, 440 KB  
Article
Use of Cattle Manure as Auxiliary Material to Gypsum to Ameliorate Saline–Alkali Soils
by Jinjing Lu, Longyan Zhang, Ruixin Song, Hanxuan Zeng, Jianpeng Cao, Zefeng Qin, Zhiping Yang, Qiang Zhang, Jianhua Li and Bin Wang
Agronomy 2025, 15(10), 2378; https://doi.org/10.3390/agronomy15102378 (registering DOI) - 12 Oct 2025
Abstract
Soil salinization is a major threat to agriculture and food security globally. The effectiveness of amendments on soil quality and crop production is management-dependent, and low-cost management practices are essential for developing countries. In this 3-year field study, the effects of cattle manure [...] Read more.
Soil salinization is a major threat to agriculture and food security globally. The effectiveness of amendments on soil quality and crop production is management-dependent, and low-cost management practices are essential for developing countries. In this 3-year field study, the effects of cattle manure and gypsum amendments on the physicochemical properties of saline–alkali soil were evaluated. We found that both single gypsum and mixed amendments significantly reduced soil hardness, bulk density, pH, and soil salt content in 20–40 cm in 2015 and 2017. A more significant decrease in soil EC and density was observed with the mixed amendments compared to single gypsum after three years of reclamation. Specifically, applying mixed amendments (M-G15) led to a significant increase in Hordeum yield by 60.94%, whereas the application of single gypsum increased Hordeum yield by 25.20–53.14%. This indicated that co-application of cattle manure can reduce the amount of gypsum needed to achieve similar improvements in soil properties and Hordeum yield, with a long-term cumulative effect. Na+/(Ca2+ + Mg2+) showed the largest negative contribution to Hordeum yield under amendments, while soil bulk density showed the second largest number of negative effects on Hordeum yield under mixed amendments. Single gypsum improved the soil’s physical quality during the early stage of saline–alkali soil remediation, and mixed amendments improved the soil’s physicochemical properties and Hordeum yield during the late stage of remediation. Na+/(Ca2+ + Mg2+) in topsoil was confirmed to be the dominant factor under the mixed amendments affecting Hordeum yield, followed by the soil bulk density. These results confirm that the co-application with cattle manure achieves a similar reclamation effect with a reduced gypsum dosage, thereby lowering the reclamation costs of saline–alkali land in semi-arid areas. Full article
(This article belongs to the Section Soil and Plant Nutrition)
Show Figures

Figure 1

18 pages, 4642 KB  
Article
Genome-Wide Analysis of NLP Genes in Peanut Reveals Significant Roles of AhNINa and AhNINb in Root Nodule Development
by Hongfeng Wang, Yan Ren, Guanghui Chen, Lijun Wu, Yanchen Tian, Yiteng Xu, Zhichao Lu, Yue Wu, Fudong Zhan, Hongwei Wang and Mei Yuan
Agronomy 2025, 15(10), 2377; https://doi.org/10.3390/agronomy15102377 (registering DOI) - 11 Oct 2025
Viewed by 12
Abstract
Nitrogen is an indispensable nutrient for plant growth and crop production, but it is not directly accessible to plants without the help of nitrogen-fixing bacteria. Legume plants can form root nodules in symbiosis with rhizobia. NODULE INCEPTION (NIN), a founding member of the [...] Read more.
Nitrogen is an indispensable nutrient for plant growth and crop production, but it is not directly accessible to plants without the help of nitrogen-fixing bacteria. Legume plants can form root nodules in symbiosis with rhizobia. NODULE INCEPTION (NIN), a founding member of the NIN-like protein (NLP) family, is essential for nodulation in legume species. However, the knowledge of functional characteristics of the NLP family members in peanuts is limited. In this study, a genome-wide analysis of the NLP genes was carried out. A total of 16 NLP genes were identified in the peanut genome, including 2 AhNIN and 14 AhNLP, which were unevenly distributed on nine chromosomes of the peanut genome. Furthermore, transcriptomic profiles and expression pattern analysis showed that both AhNINa and AhNINb genes were specifically expressed in root nodules. Subcellar localization and transcriptional activity analysis revealed that both AhNINa and AhNINb encode transcriptional activators. In addition, the roots that down-regulated the expression of AhNINa and AhNINb genes failed to form nodules. These findings provide significant insights into the molecular functions of AhNINa and AhNINb genes in regulating peanut nodule development. Full article
(This article belongs to the Section Crop Breeding and Genetics)
Show Figures

Figure 1

18 pages, 6804 KB  
Article
Three-Dimensional Spectral Index-Driven Nondestructive Quantification of Chlorophyll in Winter Wheat: Cross-Phenology Extrapolation and Independent Validation
by Zhijun Li, Wei Zhang, Zijun Tang, Youzhen Xiang and Fucang Zhang
Agronomy 2025, 15(10), 2376; https://doi.org/10.3390/agronomy15102376 (registering DOI) - 11 Oct 2025
Viewed by 21
Abstract
As a staple cereal worldwide, winter wheat plays a pivotal role in food security. Leaf chlorophyll serves as a direct indicator of photosynthetic performance and nitrogen nutrition, making it critical for precision management and yield gains. Consequently, rapid, nondestructive, and high-accuracy remote-sensing retrievals [...] Read more.
As a staple cereal worldwide, winter wheat plays a pivotal role in food security. Leaf chlorophyll serves as a direct indicator of photosynthetic performance and nitrogen nutrition, making it critical for precision management and yield gains. Consequently, rapid, nondestructive, and high-accuracy remote-sensing retrievals are urgently needed to underpin field operations and precision fertilization. In this study, canopy hyperspectral reflectance together with destructive chlorophyll assays were systematically acquired from Yangling field trials conducted during 2018–2020. Three families of spectral indices were devised: classical empirical indices; two-dimensional optimal spectral indices (2D OSI) selected by correlation-matrix screening; and novel three-dimensional optimal spectral indices (3D OSI). The main contribution lies in devising novel 3D OSIs that combine three spectral bands and demonstrating how their fusion with classic two-band indices can improve chlorophyll quantification. Correlation analysis showed that most empirical vegetation indices were significantly associated with chlorophyll (p < 0.05), with the new double difference index (NDDI) giving the strongest relationship (R = 0.637). Within the optimal-index sets, the difference three-dimensional spectral index (DTSI; 680, 807, and 1822 nm) achieved a correlation coefficient of 0.703 (p < 0.05). Among all multi-input fusion schemes, fusing empirical indices with 3D OSI and training with RF delivered the best validation performance (R2 = 0.816, RMSE = 0.307 mg g−1, MRE = 11.472%), and external data further corroborated its feasibility. Altogether, integrating 3D spectral indices with classical vegetation indices and deploying RF enabled accurate, nondestructive estimation of winter wheat chlorophyll, offering a new hyperspectral pathway for monitoring crop physiological status and advancing precision agricultural management and fertilization, can guide in-season fertilization to optimize nitrogen use, thereby advancing precision agriculture. Full article
Show Figures

Figure 1

22 pages, 81961 KB  
Article
Synergistic Regulation of Vegetation Greening and Climate Change on the Changes in Evapotranspiration and Its Components in the Karst Area of China
by Geyu Zhang, Qiaotian Shen, Zijun Wang, Hao Li, Zongsen Wang, Tingyi Xue, Dangjun Wang, Haijing Shi, Yangyang Liu and Zhongming Wen
Agronomy 2025, 15(10), 2375; https://doi.org/10.3390/agronomy15102375 (registering DOI) - 11 Oct 2025
Abstract
The fragile karst ecosystem in Southwest China faces severe water scarcity. Since 2000, large-scale ecological restoration programs (e.g., the “Grain for Green” Program) have substantially increased vegetation coverage. Concurrently, climate change has manifested as a distinct warming trend and heightened drought risk in [...] Read more.
The fragile karst ecosystem in Southwest China faces severe water scarcity. Since 2000, large-scale ecological restoration programs (e.g., the “Grain for Green” Program) have substantially increased vegetation coverage. Concurrently, climate change has manifested as a distinct warming trend and heightened drought risk in recent decades. Therefore, understanding the synergistic and competing effects of climate change and vegetation restoration on regional evapotranspiration (ET) is critical for projecting water budgets and ensuring the sustainability of ecosystems and water resources within this vital ecological barrier region. This study employs a dual-scenario PT-JPL model (simulating natural vegetation dynamics versus constant coverage) integrated with Sen + MK trend analysis to quantify the spatiotemporal patterns of ET and its components—canopy transpiration (ETc), interception evaporation (ETi), and soil evaporation (ETs)—in Southwest China’s karst region (2000–2018). Furthermore, multiple regression analysis and SEM were utilized to investigate the driving mechanisms of vegetation and climatic factors (temperature, precipitation, radiation, and relative humidity) on changes in ET and its components. The key results demonstrate the following: (1) Vegetation restoration exerted a net positive effect on total ET (+0.44 mm/a) through enhanced ETi (+0.22 mm/a) and ETs (+0.37 mm/a), despite reducing ETc (−0.08 mm/a), revealing trade-offs in water allocation. (2) Radiation dominated ET variability (66.45% of the area exhibiting >50% contribution), while temperature exhibited the most extensive spatial dominance (44.02% of the region), and relative humidity exhibited drought-mediated dual effects (promoting ETi while suppressing ETc). (3) Precipitation exhibited minimal direct influence. Vegetation restoration and climate change collectively drive ET dynamics, with ETc declines indicating potential water stress. These findings elucidate the synergistic regulation of vegetation restoration and climate change on karst ecohydrology, providing critical insights for water resource management in fragile ecosystems globally. Full article
Show Figures

Figure 1

15 pages, 2228 KB  
Article
Chemical Composition and Insecticidal Activity of Eschweilera jefensis Organic Extracts Against Aphis gossypii
by Lilia Chérigo, Juan Fernández, Ramy Martínez, Emmanuel Santos and Sergio Martínez-Luis
Agronomy 2025, 15(10), 2374; https://doi.org/10.3390/agronomy15102374 (registering DOI) - 11 Oct 2025
Viewed by 30
Abstract
Aphis gossypii is a major pest that harms crops like industrial tomatoes in Panama. Recent resistance to synthetic insecticides has prompted interest in using plant secondary metabolites as eco-friendly alternatives. While some plants with insecticidal properties are well-known, others remain unexplored but could [...] Read more.
Aphis gossypii is a major pest that harms crops like industrial tomatoes in Panama. Recent resistance to synthetic insecticides has prompted interest in using plant secondary metabolites as eco-friendly alternatives. While some plants with insecticidal properties are well-known, others remain unexplored but could offer effective solutions. This study aimed to evaluate the insecticidal activity of ethanolic extracts from the stems and leaves of Eschweilera jefensis against nymphs and adults of Aphis gossypii. Extracts were tested at three concentrations (25, 50, and 100 µg/L), with mortality assessed at 24, 48, and 72 h post-application. The LC50 values for the stem extract were 66.5, 36.8, and 31.0 μg/L, and for the leaf extract, they were 37.3, 28.4, and <25 μg/L at 24, 48, and 72 h, respectively. An advanced metabolomic analysis was conducted to identify the active compounds in each extract. This analysis uncovered several pentacyclic triterpenes, which, known for their insecticidal properties, are likely the key bioactive components responsible for the observed effects. Advanced metabolic analyses also revealed that the leaf extract, displaying the strongest insecticidal activity, is primarily composed of friedelene, while the stem extract contains betulin as their key active compounds. Furthermore, 29 known compounds were identified across both extracts, representing the first comprehensive report on the metabolic composition of E. jefensis, which underscores the significance of these findings. Together, these results suggest that E. jefensis extracts could serve as a promising natural alternative to synthetic insecticides for the management and control of A. gossypii. Full article
(This article belongs to the Section Pest and Disease Management)
Show Figures

Figure 1

32 pages, 475 KB  
Review
Biological Strategies and Innovations in Pest Control and Fruit Storage in Apple Orchards: A Step Towards Sustainable Agriculture
by Ewa Szpyrka, Sergio Migdal-Pecharroman and Paulina Książek-Trela
Agronomy 2025, 15(10), 2373; https://doi.org/10.3390/agronomy15102373 (registering DOI) - 11 Oct 2025
Viewed by 31
Abstract
The production of apples plays a crucial role in global agriculture. In 2023, the world production of these fruits amounted to nearly 150 million tonnes, cultivated on 6.6 million ha. Today’s horticulture faces the difficult challenge of maintaining high productivity while simultaneously reducing [...] Read more.
The production of apples plays a crucial role in global agriculture. In 2023, the world production of these fruits amounted to nearly 150 million tonnes, cultivated on 6.6 million ha. Today’s horticulture faces the difficult challenge of maintaining high productivity while simultaneously reducing negative environmental impact. Traditional methods based on chemical pesticides encounter increasing problems, such as biodiversity loss, toxic residues in food, development of pest resistance, and disrupted balance of ecosystems. Integrated Pest Management (IPM) responds to these challenges by combining biological and agrotechnical methods with selective use of chemicals. Biopesticides are a crucial component of IPM, and they include antagonist microorganisms, substances of natural origin, and other biological methods of control, which represent effective alternatives to conventional measures. Their development is driven by consumer requirements concerning food safety, as well as by the need to protect the environment. The aim of this article is to highlight current problems in apple production, describe microorganisms and natural substances used as biopesticides used for the protection of apple orchards, as well as present the characteristics of modern technologies used for biocontrol in apple orchards. Full article
20 pages, 1316 KB  
Article
Effects of Alternate Wetting and Drying (AWD) Irrigation on Rice Growth and Soil Available Nutrients on Black Soil in Northeast China
by Chaoyin Dou, Chen Qian, Yuping Lv and Yidi Sun
Agronomy 2025, 15(10), 2372; https://doi.org/10.3390/agronomy15102372 (registering DOI) - 10 Oct 2025
Viewed by 128
Abstract
Extensive practice has demonstrated that the continuous pursuit of high yields in the black soil region of Northeast China resulted in imbalances in soil nutrients and declines in both soil quality and water use efficiency. Alternate wetting and drying (AWD) irrigation offers a [...] Read more.
Extensive practice has demonstrated that the continuous pursuit of high yields in the black soil region of Northeast China resulted in imbalances in soil nutrients and declines in both soil quality and water use efficiency. Alternate wetting and drying (AWD) irrigation offers a promising solution for increasing rice yield and maintaining soil fertility. However, the success of this irrigation method largely depends on its scheduling. This study examined the threshold effects of AWD on rice growth, yield, and soil nutrient availability in the Sanjiang Plain, a representative black soil region in Northeast China. A two-year trial was conducted from 2023 to 2024 at the Qixing National Agricultural Science and Technology Park. “Longjing 31”, a local cultivar, was selected as the experimental material. The lower limit of soil water content under AWD was set as the experimental factor, with three levels: −10 kPa (LA), −20 kPa (MA), and −30 kPa (SA). The local traditional irrigation practice, continuous flooding, served as the control treatment (CK). Indicators of rice growth and soil nutrient content were measured and analyzed at five growth stages: tillering, jointing, heading, milk ripening, and yellow ripening. The results showed that, compared to CK, AWD had minimal impact on rice plant height and tiller number, with no significant differences (p > 0.05). However, AWD affected leaf area index (LAI), shoot dry matter (SDM), yield, and soil nutrient availability. In 2023, control had little effect on rice plant height and tiller number among the different irrigation treatments. The LAI of LA was 11.1% and 22.5% higher than that of MA and SA, respectively, while SDM in LA was 10.5% and 17.2% higher than in MA and SA. Significant differences were found between LA and MA, as well as between LA and SA, whereas no significant differences were observed between MA and SA. The light treatment is beneficial to the growth and development of rice, while the harsh growth environment caused by the moderate and severe treatments is unfavorable to rice growth. The average contents of nitrate nitrogen (NO3-N), available phosphorus (AP), and available potassium (AK) in LA were 11.4%, 8.4%, and 9.3% higher than in MA, and 16.7%, 11.5%, and 15.0% higher than in SA, respectively. Significant differences were observed between LA and SA. This is because the light treatment facilitates the release of available nutrients in the soil, while the moderate and severe treatments hinder this process. Although panicle number per unit area and grain number per panicle in LA were 7.5% and 2.3% higher than in MA, and 10.8% and 2.2% higher than in SA, these differences were not statistically significant. Seed setting rate and thousand-grain weight showed little variation across irrigation treatments. The yield of LA was 10,233.3 kg hm−2, 9.1% and 14.1% higher than that of MA and SA, respectively, with significant differences observed. Compared with the moderate and severe treatments, the light treatment increases indicators such as the number of panicles per unit area, grains per panicle, thousand-grain weight, and seed setting rate, resulting in significant differences among the treatments. Water use efficiency (WUE) decreased as the control level increased. The WUE of all AWD irrigation treatments was significantly higher than that of the control treatment (CK). Compared with CK, AWD reduces evaporation, percolation, and other water losses, leading to a significant decrease in water consumption. Meanwhile, the yield remains basically unchanged or even slightly increases, thus resulting in a higher WUE than CK. The trends in rice growth, soil nutrient indicators, and WUE in 2024 were generally consistent with those observed in 2023. In 2024, the yield of LA was 9832.7 kg hm−2, 14.9% and 17.3% higher than that of MA and SA, respectively, with significant differences observed. Based on the results, the following conclusions are drawn: (1) AWD irrigation can affect the growth of rice, alter the status of available nutrients in the soil, and thereby cause changes in yield and WUE; (2) LA is the optimal treatment for increasing rice yield, improving the availability of soil available nutrients, and improving WUE; (3) Both MA and SA enhanced WUE; however, these practices negatively impacted rice growth and the concentration of soil available nutrients, leading to a concurrent decline in yield. To increase rice yield and maintain soil fertility, LA, with an irrigation upper limit of 30 mm and a soil water potential threshold of −10 kPa, is recommended for the Sanjiang Plain region. Full article
Show Figures

Figure 1

16 pages, 2535 KB  
Article
Straw-Increased C/N Ratio Mitigates Nitrate Leaching in Fluvial Soil by Enhancing Microbial N Pool and Reducing N Mineralization
by Yuhan Hu, Chunyuan Zhao, Wenwen Zhang, Peng Zhao, Shiyu Qin, Yupeng Zhang and Fuqing Sui
Agronomy 2025, 15(10), 2371; https://doi.org/10.3390/agronomy15102371 (registering DOI) - 10 Oct 2025
Viewed by 74
Abstract
Excessive application of nitrogen (N) fertilizer increases the risk of soil NO3-N leaching in fluvial soil, threatening soil and groundwater quality and safety. Enhancing soil carbon (C) by returning straw to the field can efficiently improve soil quality. The process [...] Read more.
Excessive application of nitrogen (N) fertilizer increases the risk of soil NO3-N leaching in fluvial soil, threatening soil and groundwater quality and safety. Enhancing soil carbon (C) by returning straw to the field can efficiently improve soil quality. The process of increasing C/N by straw returning to regulate soil nitrogen transformation and mitigate NO3-N leaching, and the ecological threshold of straw application rate in fluvial soil need to be further explored. This study aims to research a series of soil C/N ratio treatments (including no straw, CK; C/N of 15, 20, 25, 30, 35 and 40), which were set up by adding straw at different application rates, and to investigate the underlying process of increasing C/N ratio by incorporating straw to mitigate NO3-N leaching. As the soil C/N ratio increased, the total soil nitrogen showed a fluctuating increase with the highest value in S40 treatment (increased by 358 mg kg−1), while the NO3-N leaching amount reached the lowest value at the C/N ratio of 20, with an average reduction of 45% (decreased by 29.3 mg kg−1). Increasing soil C/N ratio significantly increased soil microbial biomass, cellulase, urease and N-acetyl-β-D-glucosaminidase activities while it decreased the net N mineralization rate, ammonification rate and nitrification rate. Principal component analysis showed that the NO3-N leaching was positively correlated with the ammonification rate, nitrification rate and net N mineralization rate, and negatively correlated with the abundances of bacteria, fungi and nitrogen-fixing genes (nifH) (p < 0.01). Structural equation model analysis showed that straw-regulated C/N, dissolved organic N and soil fungi were the most important factors affecting NO3-N leaching, followed by the ammonification rate. Overall, increasing soil C/N by adding straw could enhance soil microbial biomass (especially fungi) and enzyme activities to promote soil N storage and reduce net N mineralization, ammonification and nitrification to decrease NO3-N leaching. Full article
Show Figures

Figure 1

18 pages, 1949 KB  
Review
Advances of QTL Localization and GWAS Application in Crop Resistances Against Plant-Parasitic Nematodes
by Jing-Wen Yu, Ling-Wei Wan, Huan-Huan Hao, Wen-Cui Wu, Ya-Qin Liu, Xi-Yue Yu, De-Liang Peng, Huan Peng, Shi-Ming Liu, Ling-An Kong, Hou-Xiang Kang and Wen-Kun Huang
Agronomy 2025, 15(10), 2370; https://doi.org/10.3390/agronomy15102370 (registering DOI) - 10 Oct 2025
Viewed by 101
Abstract
Plant-parasitic nematodes (PPNs) pose a significant threat to agricultural production and global food security. To mitigate this challenge, quantitative trait locus (QTL) mapping and genome-wide association studies (GWAS) have been extensively employed in crop resistance breeding research. These methods have identified resistance-related genes [...] Read more.
Plant-parasitic nematodes (PPNs) pose a significant threat to agricultural production and global food security. To mitigate this challenge, quantitative trait locus (QTL) mapping and genome-wide association studies (GWAS) have been extensively employed in crop resistance breeding research. These methods have identified resistance-related genes and genetic markers, offering a solid scientific basis and practical tools for resistance breeding. This review summarizes recent advances in QTL and GWAS applications for enhancing resistance to cyst nematodes (Heterodera glycines, H. filipjevi, and H. avenae), root-knot nematodes (Meloidogyne graminicola and M. incognita), and root-lesion nematodes (Pratylenchus spp.). It also evaluates the commercial deployment of resistance genes, discusses integrated breeding strategies, and highlights future research directions toward developing durable nematode-resistant crops. Full article
(This article belongs to the Section Pest and Disease Management)
Show Figures

Figure 1

15 pages, 558 KB  
Article
Benefits and Trade-Offs of Long-Term Organic Fertilization Substitution: Wheat Grain Nutrition and Heavy Metal Risks in an 11-Year Field Trial
by Yumin Liu, Xiaolin Zhou, Zishuang Li, Lei Ma, Yan Li, Huanyu Zhao, Yu Xu and Deshui Tan
Agronomy 2025, 15(10), 2369; https://doi.org/10.3390/agronomy15102369 - 10 Oct 2025
Viewed by 161
Abstract
Optimizing organic fertilizer substitution is essential for enhancing the sustainability of agriculture and achieving a balance between crop productivity, nutritional quality, and environmental safety. Here, we conducted an 11-year field experiment to evaluate the effects of substituting 50% of mineral fertilizers with pig [...] Read more.
Optimizing organic fertilizer substitution is essential for enhancing the sustainability of agriculture and achieving a balance between crop productivity, nutritional quality, and environmental safety. Here, we conducted an 11-year field experiment to evaluate the effects of substituting 50% of mineral fertilizers with pig manure (PM) or cattle manure (CM) on the nutritional quality of wheat grain, heavy metal (HM) accumulation, and associated human health risks. The yield and protein content were highest in the mineral fertilizer (MF) treatment, and grain micronutrients (Fe, Mn, Cu, Zn) were 6.7–13.8% higher under organic substitution (PM/CM) than in the MF treatment. The Ni, Pb, and As contents were 35.4–43.0% higher in the PM treatment than in the MF treatment, which stems from the higher HM content in pig manure. Health risk assessments indicated that the Hazard Index (HI) for children exceeded 1 in the PM treatment, primarily due to As, which accounted for 69.6% of the HI. All treatments remained within safe thresholds, although As and Pb posed detectable carcinogenic health risks. The higher levels of Ni and As in pig manure likewise led to a significant increase in the health risk associated with the PM treatment compared to the MF treatment. We developed a novel Grain Quality Index (GQI) that combined nutrient and HM data, which indicated that the nutritional quality of wheat grain was similar in the CM and MF treatments. The GQI was 9.1% lower in the PM treatment than in the MF treatment. These findings suggest that the substitution of mineral fertilizer with cow manure can help achieve a balance between yield, nutrition, and safety, and more stringent regulation of HMs is required for the use of pig manure. Our findings provide actionable insights with implications for sustainable wheat production policies. Full article
(This article belongs to the Special Issue Nutrient Enrichment and Crop Quality in Sustainable Agriculture)
Show Figures

Figure 1

19 pages, 1563 KB  
Article
Foliar Biofortification with Sodium Selenate Enhances Selenium Content in Ocimum basilicum L. Cultivars in a Totally Controlled Environment System
by Cosimo M. Profico, Saeed Fattahi Siah Kamari, Vali Rabiei, Saeid Hazrati and Silvana Nicola
Agronomy 2025, 15(10), 2368; https://doi.org/10.3390/agronomy15102368 - 10 Oct 2025
Viewed by 200
Abstract
Selenium (Se) is an essential micronutrient for human health, yet its dietary intake is insufficient in many populations worldwide. Agronomic biofortification represents an effective strategy to enrich crops with Se, and Totally Controlled Environment Agriculture (TCEA) provides a reliable platform to evaluate cultivar-specific [...] Read more.
Selenium (Se) is an essential micronutrient for human health, yet its dietary intake is insufficient in many populations worldwide. Agronomic biofortification represents an effective strategy to enrich crops with Se, and Totally Controlled Environment Agriculture (TCEA) provides a reliable platform to evaluate cultivar-specific responses under standardized conditions. This study evaluated the effects of foliar sodium selenate doses of 0, 5, 10, and 15 µM on two basil (Ocimum basilicum L.) cultivars, ‘Fine Verde’ (FV) and ‘Red Rubin’ (RR), in a micro-TCEA system. The yield was not significantly different at 5–10 µM but declined by 21% at 15 µM, particularly for FV. RR out-yielded FV (+14%), whereas FV produced taller shoots. The 5 µM Se concentration did not affect the total chlorophyll content and quantum yield of photosystem II under control conditions. The highest Se dose (15 µM) decreased the chlorophyll content and electron transport rate by 18% and 12%, respectively, while increasing the stomatal conductance (50%) and transpiration rate (120%). The total phenolics content in RR was double that in FV and increased with Se, whereas the NO3 concentration in RR decreased by 9% at 10 µM. Principal component analysis separated treatments by Se dose (PC1 = 44.5%) and cultivar (PC2 = 42.7%), showing RR’s stronger connection of RR to biomass and antioxidant accumulation under moderate Se. Overall, a single foliar application of 5 µM sodium selenate appears optimal to achieve effective Se enrichment while maintaining productivity and quality. These findings support basil as a promising candidate for Se biofortification in TCEA systems, with potential contributions to dietary Se intake. Full article
Show Figures

Figure 1

25 pages, 1817 KB  
Article
Effect of Varying Dairy Cow Size and Live Weight on Soil Structure and Pasture Attributes
by Mary Negrón, Ignacio F. López, José Dörner, Andrew D. Cartmill, Oscar A. Balocchi and Eladio Saldivia
Agronomy 2025, 15(10), 2367; https://doi.org/10.3390/agronomy15102367 - 10 Oct 2025
Viewed by 331
Abstract
Grazing systems’ production efficiency is a dynamic interaction between soil, pasture, livestock, and climate. The magnitude of the changes is related to the mechanical stress applied by the livestock and their feeding behaviour. In Southern Chile, dairy cattle present a high heterogeneity in [...] Read more.
Grazing systems’ production efficiency is a dynamic interaction between soil, pasture, livestock, and climate. The magnitude of the changes is related to the mechanical stress applied by the livestock and their feeding behaviour. In Southern Chile, dairy cattle present a high heterogeneity in breeds, size, live weight, and milk production. This study investigated whether cows of contrasting size/live weight can improve degraded pasture and positively modify soil (Andosol-Duric Hapludand) physical features. Three pasture types were used as follows: (i) cultivated fertilised Lolium perenne L. (perennial ryegrass) and Trifolium repens L. (white clover) mixture (BM); (ii) cultivated fertilised L. perenne, T. repens, Bromus valdivianus Phil. (pasture brome), Holcus lanatus L. (Yorkshire fog), and Dactylis glomerata L. (cocksfoot) mixture (MSM); and (iii) naturalised fertilised pasture Agrostis capillaris L. (browntop), B. valdivianus, and T. repens (NFP). Pastures were grazed with two groups of dairy cows of contrasting size and live weight: light cows (LC) [live weight: 464 ± 5.4 kg; height at the withers: 132 ± 0.6 cm (average ± s.e.m.)] and heavy cows (HC) [live weight: 600 ± 8.7 kg; height at the withers: 141 ± 0.9 cm (average ± s.e.m.)]. Hoof area was measured, and the pressure applied by cows on the soil was calculated. Soil differences in penetration resistance (PR) and macro-porosity (wCP > 50 μm) between pastures were explained by tillage and seeding, rather than as a result of livestock presence and movement (animal trampling). The PR variation during the year was associated with the soil water content (SWC). Grazing dairy cows of contrasting live weight caused changes in soil and pasture attributes, and they behaved differently during grazing. Light cows were linked to more intense grazing, a stable soil structure, and pastures with competitive species and greater tiller density. In MSM, pasture consumption increased, and the soil was more resilient to hoof compression. In general, grazing with heavy cows in these three different pasture systems did not negatively impact soil physical properties. These findings indicate that volcanic soils are resilient and that during renovation, the choice of pasture type has a greater initial impact on soil structure than the selection of cow size, but incorporating lighter cows can be a strategy to promote denser pasture swards in these grazing systems. Full article
(This article belongs to the Section Grassland and Pasture Science)
Show Figures

Figure 1

26 pages, 1489 KB  
Review
A Framework for Understanding Crop–Weed Competition in Agroecosystems
by Aleksandra Savić, Aleksandar Popović, Sanja Đurović, Boris Pisinov, Milan Ugrinović and Marijana Jovanović Todorović
Agronomy 2025, 15(10), 2366; https://doi.org/10.3390/agronomy15102366 - 9 Oct 2025
Viewed by 164
Abstract
Competition is a fundamental ecological interaction among plants, arising when species utilise the same limited resources such as light, water, nutrients, and space. Resource limitations reduce the growth and survival of less competitive species, altering ecosystem structure. In agroecosystems, weed–crop competition is a [...] Read more.
Competition is a fundamental ecological interaction among plants, arising when species utilise the same limited resources such as light, water, nutrients, and space. Resource limitations reduce the growth and survival of less competitive species, altering ecosystem structure. In agroecosystems, weed–crop competition is a major challenge, reducing yield and quality. Weeds often exhibit greater adaptability and resource efficiency, enabling them to outcompete crops. Competition intensity is influenced by population density, morphology, phenology and survival strategies. Understanding plant competitive interactions is crucial for ecologists and agronomists to develop sustainable weed management and resource optimization strategies. Climate change further alters competitive dynamics, favoring resilient and plastic species. Mechanisms like allelopathy, aboveground and belowground competition and adaptive growth responses shape community structure. Strategies to reduce weed pressure include breeding competitive crops and integrating cultural practices such as optimal sowing density, narrow row spacing, and cover cropping. Future research should address plant responses to multiple simultaneous stressors, the ecological role of allelochemicals under varying conditions, and the genetic mechanisms of competitive adaptability. A comprehensive understanding of these interactions is essential for designing resilient, high-performing agroecosystems in changing environmental conditions. Full article
(This article belongs to the Section Weed Science and Weed Management)
Show Figures

Figure 1

17 pages, 2725 KB  
Article
Asymmetric Response of Grassland Greenhouse Gases to Nitrogen Addition: A Global Meta-Analysis
by Xiaoqing Cui, Yu Zhang and Xiping Song
Agronomy 2025, 15(10), 2365; https://doi.org/10.3390/agronomy15102365 - 9 Oct 2025
Viewed by 148
Abstract
Grassland ecosystems, a major component of the global carbon (C) and nitrogen (N) cycles, are increasingly impacted by anthropogenic N addition. However, a comprehensive, integrated assessment of all three major greenhouse gas (GHG) responses in grasslands is lacking. Here, we present the first [...] Read more.
Grassland ecosystems, a major component of the global carbon (C) and nitrogen (N) cycles, are increasingly impacted by anthropogenic N addition. However, a comprehensive, integrated assessment of all three major greenhouse gas (GHG) responses in grasslands is lacking. Here, we present the first global meta-analysis to evaluate the effects of N addition on all three major GHGs (i.e., nitrous oxide (N2O), methane (CH4), and carbon dioxide (CO2) fluxes) in grasslands. Our results show that N addition significantly and consistently stimulates N2O emissions, a response primarily modulated by key drivers such as grassland type, management, N addition rate and forms, humidity index (HI), and soil pH, clay, and total nitrogen (TN) content. In contrast, N addition has a minimal and non-significant overall effect on soil CO2 fluxes. For CH4, N addition causes a context-dependent reduction in uptake, an effect that is exacerbated by high mean annual precipitation (MAP) and soil bulk density (BD) but alleviated by high soil organic carbon (SOC) content. Notably, both CO2 and N2O showed a dose-dependent effect, while soil CO2 fluxes were unexpectedly suppressed by nitrate nitrogen (NO3) addition. Our findings indicate that the pronounced and consistent increase in N2O emissions is the dominant factor in GHG-related impacts in grasslands, implying a net positive climate forcing in grasslands from N enrichment, even if there is insufficient data to calculate net climate forcing directly. Our study highlights the heterogeneous nature of grassland GHG responses and provides critical insights for developing sustainable N management strategies to mitigate climate change. Full article
(This article belongs to the Section Grassland and Pasture Science)
Show Figures

Figure 1

22 pages, 11891 KB  
Article
Limitations in the Valorization of Food Waste as Fertilizer: Cytogenotoxicity Assessment of Apple and Tomato Juices By-Products
by Silvica Padureanu and Antoanela Patras
Agronomy 2025, 15(10), 2364; https://doi.org/10.3390/agronomy15102364 - 9 Oct 2025
Viewed by 241
Abstract
Apples and tomatoes are among the most consumed products all over the world, as well as the natural juices prepared from each of them. The large quantities of resulting by-products should be reused in various directions within the circular economy. In this study, [...] Read more.
Apples and tomatoes are among the most consumed products all over the world, as well as the natural juices prepared from each of them. The large quantities of resulting by-products should be reused in various directions within the circular economy. In this study, apple and tomato pomaces were tested as potential biofertilizers for agricultural crops. To this end, aqueous extracts of apple pomace and tomato pomace were prepared in two concentrations (0.05% and 0.5%) and used to treat wheat caryopses and sprouts. The following were evaluated: mitotic index, genotoxic index, caryopses germination rate, and wheat sprout growth. The biotic response of wheat to treatments with the apple and tomato pomace extracts consisted of reduced mitotic activity, i.e., cytotoxicity, and the formation of genetic abnormalities, i.e., genotoxicity. The cytotoxicity and the genotoxicity were reflected at the macro level in phytotoxic effects, manifested by a reduction in the germination rate of caryopses and a decrease in the length of wheat roots and shoots. Physiological parameters were positively correlated with the mitotic index and negatively correlated with the genotoxic index. The obtained results point us not to recommend the use of unprocessed apple and tomato pomaces as biofertilizers, but, on the contrary, as bioherbicides. Full article
(This article belongs to the Section Agricultural Biosystem and Biological Engineering)
Show Figures

Figure 1

18 pages, 5469 KB  
Article
Trade-Offs Between Soil Environmental Impacts and Economic Returns in Optimizing Drip Fertigation for North China Greenhouse Tomatoes
by Lijuan Wang, Hanbo Wang, Tieqiang Wang and Daozhi Gong
Agronomy 2025, 15(10), 2363; https://doi.org/10.3390/agronomy15102363 - 9 Oct 2025
Viewed by 205
Abstract
Balancing soil nitrogen leaching with production benefits remains a critical challenge in sustainable greenhouse tomato cultivation. This study evaluated the effects of reduced water-soluble nitrogen fertilizer (N) application rates on soil environmental parameters and production outcomes to optimize nitrogen management strategies. Four treatments [...] Read more.
Balancing soil nitrogen leaching with production benefits remains a critical challenge in sustainable greenhouse tomato cultivation. This study evaluated the effects of reduced water-soluble nitrogen fertilizer (N) application rates on soil environmental parameters and production outcomes to optimize nitrogen management strategies. Four treatments were implemented across two growing seasons: control (CK), high-N (H), medium-N (M), and low-N (L) nitrogen fertilizer applications in soil solution (SS) and autumn–winter (AW) systems. Results demonstrated that reduced nitrogen inputs significantly decreased soil electrical conductivity and soil nitrogen retention by 88% and 83% in SS and AW, respectively, while reducing soil residual nitrate nitrogen. The tomato yield decreased by 14–26% under low fertilizer treatment, while fruit quality was substantially enhanced, with soluble solid content increasing by 56% in SS and 217% in AW for the L treatment compared to the CK. Nitrogen-use efficiency improved by 54.7% and 34.78% in SS and AW, respectively, demonstrating superior resource utilization under reduced fertilizer applications. Principal component analysis revealed that fruit quality was primarily influenced by soluble solid content, organic acid, total soluble solids, and sugar–acid ratio. Gray relational analysis identified the L treatment (361.62 kg ha−1 in SS and 182.6 kg ha−1 in AW) as optimal for comprehensive performance evaluation. The findings demonstrate that strategic nitrogen reduction effectively balances production benefits with environmental sustainability, providing a practical framework for sustainable nitrogen management in controlled environment agriculture. Full article
Show Figures

Figure 1

20 pages, 2156 KB  
Article
Erosion Control Effects of a Polymer-Based Soil Conditioner on Red Soil in Okinawa, Japan
by Yang Xin, Kazutoshi Osawa, Hiroyuki Matsui, Susumu Chiba, Junpei Takahashi and Kazuma Honda
Agronomy 2025, 15(10), 2362; https://doi.org/10.3390/agronomy15102362 - 9 Oct 2025
Viewed by 179
Abstract
Preventing soil degradation caused by water erosion is essential for sustainable agriculture and long-term agroecological development. The objective of this study was to evaluate the effectiveness of an ethylene-vinyl acetate (EVA) polymer-based soil conditioner in mitigating soil erosion, a key driver of soil [...] Read more.
Preventing soil degradation caused by water erosion is essential for sustainable agriculture and long-term agroecological development. The objective of this study was to evaluate the effectiveness of an ethylene-vinyl acetate (EVA) polymer-based soil conditioner in mitigating soil erosion, a key driver of soil degradation. Laboratory experiments and simulations employing the Water Erosion Prediction Project (WEPP) model were conducted to assess soil erodibility parameters and sediment yield of two soil types from Okinawa, Japan. A key contribution of this work is the integration of these experimentally determined erodibility parameters into the WEPP model for robust validation. Interrill and rill erosion processes were analyzed under different soil conditioner application rates. Laboratory results showed that applying the soil conditioner reduced interrill erodibility by 59 to 99% and rill erodibility by 65 to 100%, while increasing critical shear stress and water infiltration rate. The effectiveness varied between the two soil types due to differences in particle-size distribution and inherent erodibility. The soil conditioner exhibited a more pronounced impact on rill erosion. WEPP simulations confirmed sediment yield reductions of 73% to 99%, primarily influenced by changes in rill erodibility and critical shear stress. While its practical application will be subject to various field conditions, our findings confirm the significant potential of this soil conditioner as a strategy for preserving topsoil resources. Full article
Show Figures

Figure 1

24 pages, 18260 KB  
Article
DWG-YOLOv8: A Lightweight Recognition Method for Broccoli in Multi-Scene Field Environments Based on Improved YOLOv8s
by Haoran Liu, Yu Wang, Changyuan Zhai, Huarui Wu, Hao Fu, Haiping Feng and Xueguan Zhao
Agronomy 2025, 15(10), 2361; https://doi.org/10.3390/agronomy15102361 - 9 Oct 2025
Viewed by 172
Abstract
Addressing the challenges of multi-scene precision pesticide application for field broccoli crops and computational limitations of edge devices, this study proposes a lightweight broccoli detection method named DWG-YOLOv8, based on an improved YOLOv8s architecture. Firstly, Ghost Convolution is introduced into the C2f module, [...] Read more.
Addressing the challenges of multi-scene precision pesticide application for field broccoli crops and computational limitations of edge devices, this study proposes a lightweight broccoli detection method named DWG-YOLOv8, based on an improved YOLOv8s architecture. Firstly, Ghost Convolution is introduced into the C2f module, and the standard CBS module is replaced with Depthwise Separable Convolution (DWConv) to reduce model parameters and computational load during feature extraction. Secondly, a CDSL module is designed to enhance the model’s feature extraction capability. The CBAM attention mechanism is incorporated into the Neck network to strengthen the extraction of channel and spatial features, enhancing the model’s focus on the target. Experimental results indicate that compared to the original YOLOv8s, the DWG-YOLOv8 model has a size decreased by 35.6%, a processing time reduced by 1.9 ms, while its precision, recall, and mean Average Precision (mAP) have increased by 1.9%, 0.9%, and 3.4%, respectively. In comparative tests on complex background images, DWG-YOLOv8 showed reductions of 1.4% and 16.6% in miss rate and false positive rate compared to YOLOv8s. Deployed on edge devices using field-collected data, the DWG-YOLOv8 model achieved a comprehensive recognition accuracy of 96.53%, representing a 5.6% improvement over YOLOv8s. DWG-YOLOv8 effectively meets the lightweight requirements for accurate broccoli recognition in complex field backgrounds, providing technical support for object detection in intelligent precision pesticide application processes for broccoli. Full article
(This article belongs to the Section Precision and Digital Agriculture)
Show Figures

Figure 1

18 pages, 3564 KB  
Article
Influence of Air-Jet Configuration on Spray Deposit and Drift in a Blackcurrant Plantation
by Ryszard Hołownicki, Grzegorz Doruchowski, Waldemar Świechowski, Andrzej Bartosik, Paweł Konopacki and Artur Godyń
Agronomy 2025, 15(10), 2360; https://doi.org/10.3390/agronomy15102360 - 9 Oct 2025
Viewed by 151
Abstract
The subject of the research was a prototype two-row sprayer, equipped with a centrifugal fan and directed air-jet emission system, dedicated to the chemical protection of berry plantations, and, in particular, blackcurrants. The prototype was set up with two configurations: “offset”, in which [...] Read more.
The subject of the research was a prototype two-row sprayer, equipped with a centrifugal fan and directed air-jet emission system, dedicated to the chemical protection of berry plantations, and, in particular, blackcurrants. The prototype was set up with two configurations: “offset”, in which the opposing air streams were “offset” by 0.5 m, and “face-to-face”, when they were positioned opposite each other. The field experiments were carried out on a blackcurrant plantation (Tisel cv.; bush spacing of 4.0 × 0.5 m; height 1.2 m; width 2.5 m). The spray deposition within the crop canopies as well as spray drift to the air and to the ground were assessed using the fluorescence method in order to compare the quality of treatments performed with the two-row sprayer and a conventional axial fan sprayer with radial air discharge system. Spray applications were performed at spray volume 300 L∙ha−1 and working speed 6 km h−1 by both sprayers. The plantation was sprayed with 0.25% water solution of a fluorescent tracer BF7G. The in-canopy spray deposit and spray drift were evaluated using artificial targets made of filter paper. Although directed air-jet sprayer in two configurations (“offset” and “face-to-face”) and conventional one produced similar deposits within the bushes, the spray loss from the directed air-jet sprayer was considerably lower (25.1–32.2%) than that from the conventional sprayer (76.9–81.8%) generating considerably greater airflow volume. Lower PPP losses mean lower environmental impact, which is in line with integrated plant protection. The research responds to numerous inquiries from sprayer manufacturers and blackcurrant growers regarding the most appropriate configuration of the air flow outlet planes. The results obtained will contribute to increasing the efficiency of spraying and facilitate the implementation of the European Green Deal and the achievement of the target of a 50% reduction in the use of plant protection products after 2030 in the EU. Full article
(This article belongs to the Section Agricultural Biosystem and Biological Engineering)
Show Figures

Figure 1

16 pages, 842 KB  
Article
Traceability and Heavy Metal Contamination in Agrosystems of Two Rice-Producing Areas of the Ecuadorian Coast
by Jairo Jaime-Carvajal, Jaime Naranjo-Morán, Kevin Cedeño Vinces, José Ballesteros, Fernando Espinoza-Lozano, Ivan Chóez-Guaranda and Simón Pérez-Martinez
Agronomy 2025, 15(10), 2359; https://doi.org/10.3390/agronomy15102359 - 9 Oct 2025
Viewed by 218
Abstract
Rice (Oryza sativa) plays a fundamental role in the Ecuadorian diet. This study evaluated traceability and contamination by heavy metals in two rice-producing areas of Ecuador. Microwave-assisted digestion was used to process samples from rice agrosystems including irrigation water, soil, roots, [...] Read more.
Rice (Oryza sativa) plays a fundamental role in the Ecuadorian diet. This study evaluated traceability and contamination by heavy metals in two rice-producing areas of Ecuador. Microwave-assisted digestion was used to process samples from rice agrosystems including irrigation water, soil, roots, stems, and leaves. Inductively coupled plasma optical emission spectroscopy (ICP-OES) was employed for elemental analysis. Arsenic (As), cadmium (Cd), lead (Pb), and chromium (Cr) were measured in samples collected in Daule and Ventanas. In soils, the concentrations of As (1.50–2.82 mg/kg) and Cd (1.22–1.45 mg/kg) exceeded the internationally recommended safety thresholds. In irrigation water, the content of As (0.85–1.12 mg/L), Pb (0.25–0.38 mg/L), and Cr (0.37–0.53 mg/L) surpass the international/national permissible limits. However, the limits established by Ecuadorian legislation indicate that As in soils did not exceed contamination thresholds. Additionally, the bioaccumulation of As and Pb in roots from Daule and Ventanas, respectively, was observed, along with the movement of Pb to aerial parts in Daule. Finally, preliminary As found in commercial rice grains suggest a potential health concern to the Ecuadorian population. These findings highlight the need for stricter heavy metal restrictions for rice agrosystems and effective agricultural pollution mitigation. Full article
(This article belongs to the Section Agroecology Innovation: Achieving System Resilience)
Show Figures

Figure 1

25 pages, 8828 KB  
Review
Agronomic Practices vs. Climate Factors: A Meta-Analysis of Influences on Nitrous Oxide Emissions from Corn and Soybean Fields
by Jamshid Ansari, Morgan P. Davis, Chenhui Li and Sheel Bansal
Agronomy 2025, 15(10), 2358; https://doi.org/10.3390/agronomy15102358 - 9 Oct 2025
Viewed by 242
Abstract
Nitrous oxide (N2O), a potent greenhouse gas (GHG) and major contributor to climate change, is primarily released through agricultural activities. To better understand and quantify how land management practices, local climate conditions, and soil physicochemical properties affect these agricultural N2 [...] Read more.
Nitrous oxide (N2O), a potent greenhouse gas (GHG) and major contributor to climate change, is primarily released through agricultural activities. To better understand and quantify how land management practices, local climate conditions, and soil physicochemical properties affect these agricultural N2O emissions, we conducted a review of the peer-reviewed literature on N2O emission from corn [Zea mays L.] and soybean [Glycine max (L.) Merr.] fields. We evaluated the seasonal, cumulative effects of three nitrogen fertilizer rates—no fertilizer (0), low (<188 kg N ha−1), and high (188–400 kg N ha−1)—tillage practices, local climate (precipitation and temperature), soil texture, and soil pH on soil N2O emissions. This meta-analysis included 77 articles for corn and 22 articles for soybean fields. Average N2O emissions during the corn rotation were 2.34 and 2.45 kg N2O-N ha−1 season−1 under low and high N fertilizer rates, respectively, and were both substantially (p < 0.0001) greater than those of non-fertilized corn fields (0.91 kg N2O-N ha−1 season−1). Non-fertilized soybean fields showed seasonal N2O emissions of 0.74 kg N2O-N ha−1, while low fertilizer application triggered a sharp increase (1.87 kg N2O-N ha−1) in N2O emissions by roughly 2.5 times (p < 0.028). Increased temperature did not significantly (p > 0.05) affect the emission of N2O from fertilized or non-fertilized corn fields. Regardless of fertilization and tillage practices, our analysis, including Principal Component Analysis, revealed that in corn fields, precipitation and soil pH are the dominant factors influencing soil N2O emissions. This study uniquely quantifies the influence of climate–soil factors, such as precipitation and soil pH, alongside agronomic practices, on N2O emissions, offering new insights beyond previous reviews focused primarily on fertilizer rates or tillage effects. Full article
(This article belongs to the Section Soil and Plant Nutrition)
Show Figures

Figure 1

19 pages, 1241 KB  
Review
Histological and Immunolabeling Techniques in Arabidopsis thaliana: A Practical Guide and Standardization Roadmap
by Samuel Valdebenito, Alexis Rubio, Alejandra Moller, Javier Santa Cruz, Priscila Castillo, Mayra Lirayén Providell, Camila Cáceres, Diego Calbucheo, Ignacia Hernández and Patricia Peñaloza
Agronomy 2025, 15(10), 2357; https://doi.org/10.3390/agronomy15102357 - 8 Oct 2025
Viewed by 407
Abstract
Arabidopsis thaliana is a widely used model in plant biology, where histology (HT), histochemistry (HC), immunohistochemistry (IHC), and immunofluorescence (IF) are applied to study cellular structures, macromolecules, and antigens. Despite their extensive use, protocols lack standardization and exhibit substantial variability in critical aspects [...] Read more.
Arabidopsis thaliana is a widely used model in plant biology, where histology (HT), histochemistry (HC), immunohistochemistry (IHC), and immunofluorescence (IF) are applied to study cellular structures, macromolecules, and antigens. Despite their extensive use, protocols lack standardization and exhibit substantial variability in critical aspects such as reagent handling, exposure times, and the proper use of controls. This methodological heterogeneity represents a major gap, limiting reproducibility and comparability between studies. Unlike previous methodological reviews, this work focuses exclusively on A. thaliana, systematically identifies reporting omissions, and proposes a roadmap for standardization. A narrative review of literature retrieved from Scopus and Web of Science was conducted with the aim of analyzing methodological approaches, identifying inconsistencies, and offering recommendations for improved laboratory practices. The analysis revealed frequent omissions in the reporting of critical steps such as dehydration, clearing, antigen retrieval, enzyme blocking, and the incorporation of positive and negative controls, which compromise the reliability of results and hinder inter-laboratory validation. Based on this evidence, three key recommendations are emphasized: (i) organ-specific selection and explicit justification of fixatives and stains; (ii) mandatory incorporation of positive and negative controls in IHC and IF; and (iii) adoption of a minimum reporting checklist to enhance reproducibility. Beyond cell morphology, the reviewed studies demonstrate applications in plant physiology, phytogenetics, and pathophysiology. By combining critical analysis with actionable guidelines, this review contributes a practical reference to strengthen methodological rigor in histological and immunological studies of plants. Full article
Show Figures

Figure 1

19 pages, 1263 KB  
Article
Drought Recovery Responses in Grain Sorghum: Insights into Genotypic Variation and Adaptation
by Samuel Ssebulime, Ephraim Nuwamanya, Ronald Kakeeto, Emmanuel Opolot, Ephraim Echodu, Herbert Ochan Alinaitwe, Loyce Migamba, Moses Biruma and Scovia Adikini
Agronomy 2025, 15(10), 2356; https://doi.org/10.3390/agronomy15102356 - 8 Oct 2025
Viewed by 376
Abstract
In Uganda, rain-fed crops frequently encounter cycles of drought stress followed by rewatering. Thus, with escalating fluctuations in water supply, drought recovery has become a critical focus for future sorghum drought phenotyping, genetics, and breeding research. However, there is currently a low knowledge [...] Read more.
In Uganda, rain-fed crops frequently encounter cycles of drought stress followed by rewatering. Thus, with escalating fluctuations in water supply, drought recovery has become a critical focus for future sorghum drought phenotyping, genetics, and breeding research. However, there is currently a low knowledge of the drought recovery potential of prospective genotypes in Uganda’s National Sorghum Improvement Program. The present study aimed to assess the response of selected genotypes to rewatering after drought. Sixteen sorghum genotypes and two check varieties were evaluated under two contrasting moisture regimes: well-watered and drought stress-rewatering in a split-plot layout using a randomized complete block design (RCBD). Watering regimes were assigned to whole plots, while sorghum genotypes were assigned to subplots, with three replications. The results showed highly significant effects (p < 0.05) of drought stress on key agronomic traits, decreased dry weight, grain weight, and biomass yield by 39%, 43% and 37%, respectively, and delayed flowering by an average of 11 days. Key genotype-specific traits associated with drought recovery included rapid rehydration, compensatory growth, and maintenance of high relative chlorophyll content, all of which were essential for optimizing yields after stress. Leveraging drought tolerance indices, genotypes were ranked by their recovery potential and further classified into four distinct groups (A–D) based on their yield performance and stability under the two watering regimes. Genotypes in category A demonstrated high yield stability and strong recovery potential. Conversely, genotypes in category D exhibited the poorest recovery response. Overall, the information generated from this study will support future sorghum breeding efforts for drought resilience. Full article
Show Figures

Figure 1

Previous Issue
Back to TopTop