Assessment of Moringa Accessions Performance for Adaptability, Growth and Leaf Yield Under the Subtropical Climate of Pretoria, South Africa
Abstract
1. Introduction
2. Materials and Methods
2.1. Location of the Study
2.2. Germplasm Collection and Seedling Cultivation
2.3. Field Preparation, Transplanting, and Agronomic Management
2.4. Data Collection
2.4.1. Seedling Survival Rate
2.4.2. Vegetative Growth and Morphological Traits
2.4.3. Visual Scoring and Health Assessments
2.4.4. Leaf Yield Estimation
2.5. Statistical Analyses
3. Results
3.1. Seedling Emergence and Growth Performance in the Glasshouse
3.2. The Survival Rate of Accessions in the Field
3.3. Growth Performances of Accessions in the Field
3.4. Plant Vigour, Leaf Greenness, and Leaf Chlorosis
3.5. The Leaf Yield Performances of Accessions in the Field
4. Discussion
4.1. Seedling Emergence and Growth of Accessions in the Glasshouse
4.2. Survival Rate of Accessions in the Field
4.3. Leaf Greenness and Its Implications
4.4. Growth and Leaf Yield Performance of Accessions in the Field
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Peter, A.F.; Wagiran, A.; Rahmat, Z.; Yusop, M.R.; Ridzuan, R. Exploring Genetic Variation and Therapeutic Properties of Moringa oleifera: Progress and Future Potential for Crop Improvements. Pharmacogn. Rev. 2023, 17, 426–438. [Google Scholar] [CrossRef]
- Babiker, E.E.; Juhaimi, F.A.; Ghafoor, K.; Abdoun, K.A. Comparative study on feeding value of Moringa leaves as a partial replacement for alfalfa hay in ewes and goats. Livest. Sci. 2017, 195, 21–26. [Google Scholar] [CrossRef]
- Salaheldeen, M.; Aroua, M.; Mariod, A.A.; Cheng, S.F.; Abdelrahman, M.A.; Atabani, A. Physicochemical characterization and thermal behavior of biodiesel and biodiesel–diesel blends derived from crude Moringa peregrina seed oil. Energy Convers. Manag. 2015, 92, 535–542. [Google Scholar] [CrossRef]
- Soltan, Y.; Morsy, A.; Hashem, N.; Sallam, S. Utilization of Moringa oleifera in ruminant nutrition. In Proceedings of the The 3rd International conference on Sustainable Development of Livestock’s Production Systems (SDLPS2017), Alexandria, Egypt, 7–9 November 2017; Department of Animal Production, Faculty of Agriculture, Alexandra University: Alexandria, Egypt, 2017; pp. 1–11. [Google Scholar]
- Alavilli, H.; Poli, Y.; Verma, K.S.; Kumar, V.; Gupta, S.; Chaudhary, V.; Jyoti, A.; Sahi, S.V.; Kothari, S.L.; Jain, A. Miracle tree Moringa oleifera: Status of the genetic diversity, breeding, in vitro propagation, and a cogent source of commercial functional food and non-food products. Plants 2022, 11, 3132. [Google Scholar] [CrossRef] [PubMed]
- Atreya, K.; Kattel, K.; Tiwari, K.R.; Baral, S.; Adhikari, R.; Kalwar, O.P. Nutritional, ecological and livelihood significance of Moringa oleifera: A review. Arch. Agric. Environ. Sci. 2023, 8, 452–461. [Google Scholar] [CrossRef]
- Leone, A.; Spada, A.; Battezzati, A.; Schiraldi, A.; Aristil, J.; Bertoli, S. Cultivation, genetic, ethnopharmacology, phytochemistry and pharmacology of Moringa oleifera leaves: An overview. Int. J. Mol. Sci. 2015, 16, 12791–12835. [Google Scholar] [CrossRef]
- Padayachee, B.; Baijnath, H. An updated comprehensive review of the medicinal, phytochemical and pharmacological properties of Moringa oleifera. S. Afr. J. Bot. 2020, 129, 304–316. [Google Scholar] [CrossRef]
- Dekeba, S.; Diriba, A.; Gizaw, W.; Mezgebu, M. Evaluation on Growth Performance of Moringa stenopetala Provenance at Daro Lebu and Hawi Gudina Districts, West Hararghe Zone, Oromia, East Ethiopia. Agric. For. Fish. 2024, 13, 1–7. [Google Scholar] [CrossRef]
- Demise, S.; Emire, A.; Giri, T. Growth Performance of Moringa stenopetala and Moringa oleifera Species at Adola Rede District, Guji Zone, Southern Ethiopia. Int. J. Adv. Res. Biol. Sci. 2021, 8, 89–95. [Google Scholar]
- Yisehak, K.; Solomon, M.; Tadelle, M. Contribution of Moringa (Moringa stenopetala, Bac.), a highly nutritious vegetable tree, for food security in south Ethiopia: A review. Asian J. Appl. Sci. 2011, 4, 477–488. [Google Scholar] [CrossRef]
- Parrotta, J.A. Moringa oleifera Lam: Resedá, Horseradish Tree, Moringaceae, Horseradish-Tree Family; International Institute of Tropical Forestry: Rio Piedras, Puerto Rico; US Department of Agriculture: Washington, DC, USA, 1993; pp. 1–6. [Google Scholar]
- Sharma, V.; Paliwal, R.; Sharma, P.; Sharma, S. Phytochemical analysis and evaluation of antioxidant activities of hydro-ethanolic extracts of Moringa oleifera Lam. pods. J. Pharm. Res. 2011, 4, 554–557. [Google Scholar]
- Patricio, H.G.; Palada, M.C. Adaptability and horticultural characterization of different moringa accessions in Central Philippines. Acta Hortic. 2015, 1158, 45–54. [Google Scholar] [CrossRef]
- Bioresources, S. New Cultivars for Sustainable Agriculture: Varieties and Ecotypes of Moringa oleifera. 2023. Available online: https://sustainablebioresources.com/plants/plant-families/moringaceae/moringa-oleifera-2/varieties-ecotypes-moringa-oleifera/?utm_source (accessed on 30 January 2025).
- Rajbhar, Y.P.; Rajbhar, G.; Rawat, P.; Shardulya, S.; Kumar, M. Grow Moringa (Moringa oleifera), the miracle tree on the earth. Horticult. Int. J. 2018, 2, 166–172. [Google Scholar] [CrossRef]
- Nouman, W.; Basra, S.M.A.; Siddiqui, M.T.; Yasmeen, A.; Gull, T.; Alcayde, M.A.C. Potential of Moringa oleifera L. as livestock fodder crop: A review. Turk. J. Agric. For. 2014, 38, 1–14. [Google Scholar] [CrossRef]
- Mokgehle, S.; Araya, N.; Mofokeng, M.; Makgato, M.; Amoo, S.; Maboka, K.; du Plooy, C.; Araya, H. Regrowth response and nutritional composition of Moringa oleifera to cutting Back in three agro-ecological zones in South Africa. Horticulturae 2022, 8, 963. [Google Scholar] [CrossRef]
- Bania, J.K.; Deka, J.R.; Hazarika, A.; Das, A.K.; Nath, A.J.; Sileshi, G.W. Modelling habitat suitability for Moringa oleifera and Moringa stenopetala under current and future climate change scenarios. Sci. Rep. 2023, 13, 20221. [Google Scholar] [CrossRef]
- Mashamaite, C.V.; Ramatsitsi, M.N.; Manyevere, A. Moringa oleifera Lam.: A versatile climate-smart plant for nutritional security and therapeutic usage in semi-arid regions. J. Agric. Food Res. 2024, 16, 101217. [Google Scholar] [CrossRef]
- Salsi, G.; Greco, C.; Laudicina, V.A.; Lucia, C.; Muscarella, S.M.; Greco, G.; Orlando, S.; Fascella, G.; Mammano, M.M. Preliminary results of Moringa oleifera Lam. grown in a semi-arid Mediterranean environment in a climate change scenario. Front. Sustain. Food Syst. 2025, 9, 1576147. [Google Scholar] [CrossRef]
- Bopape-Mabapa, M.; Ayisi, K.; Mariga, I.; Mashao, F. Moringa (Moringa oleifera) leaf nutritional composition as influenced by soil physical and chemical properties and tree age under diverse agro-ecological conditions. Appl. Ecol. Environ. Res. 2021, 19, 953–970. [Google Scholar] [CrossRef]
- Anwar, F.; Latif, S.; Ashraf, M.; Gilani, A.H. Moringa oleifera: A food plant with multiple medicinal uses. Phytother. Res. 2007, 21, 17–25. [Google Scholar] [CrossRef]
- Korsor, M.; Ntahonshikira, C.; Bello, H.M.; Kwaambwa, H.M. Growth performance of Moringa oleifera and Moringa ovalifolia in Central Namibia semi-arid rangeland environment. Agric. Sci. 2019, 10, 131. [Google Scholar] [CrossRef]
- Mabapa, M.; Ayisi, K.; Mariga, I. Effect of planting density and harvest interval on the leaf yield and quality of Moringa (Moringa oleifera) under diverse agroecological conditions of Northern South Africa. Int. J. Agron. 2017, 2017, 2941432. [Google Scholar] [CrossRef]
- Patricio, H.; Palada, M.; Deloso, H.; Garcia, D. Biomass yield of Moringa oleifera as influenced by plant density and harvest frequency. In Proceedings of the I International Symposium on Moringa, Central Philippine University, Iloilo City, Philippines, 15–18 November 2015; pp. 97–104. [Google Scholar] [CrossRef]
- Samuel, D.; Daba, R.; Terefe, M.; Senbeto, M. Evaluation of two Moringa species for adaptability and growth performance under Bako conditions. J. Nat. Sci. Res. 2016, 6, 76–82. [Google Scholar]
- Hadid, A.; Toknok, B.; Syakur, A. Growth of different Moringa variety as rehabilitation plant material on marginal land. IOP Conf. Ser. Earth Environ. Sci. 2023, 1253, 012017. [Google Scholar] [CrossRef]
- Palada, M.; Ebert, A.; Yang, R.; Chang, L.; Chang, J.; Wu, D. Progress in research and development of Moringa at the world vegetable center. In Proceedings of the I International Symposium on Moringa (Acta Horticalturalae 1158), Manila, Philippines, 15–18 November 2015; pp. 425–434. [Google Scholar] [CrossRef]
- Akula, R.; Ravishankar, G.A. Influence of abiotic stress signals on secondary metabolites in plants. Plant Signal. Behav. 2011, 6, 1720–1731. [Google Scholar] [CrossRef] [PubMed]
- Boopathi, N.M.; Abubakar, B.Y. Botanical Descriptions of Moringa spp. In The Moringa Genome: Compendium of Plant Genomes; Springer: Cham, Switzerland, 2021. [Google Scholar] [CrossRef]
- Balaguru, P.; Sathiyamurthy, V.; Janavi, G.; Santha, S. Variability in perennial moringa (Moringa oleifera Lam.) genotypes for quantitative and qualitative traits. Electron. J. Plant Breed. 2020, 11, 515–520. [Google Scholar] [CrossRef]
- Nair, K.R.; Satish, D.; Jagadeesha, R.; Basavraj, N.; Raghavendra, S.; Awatti, M.; Mulla, S. Genetic dissection of variability using morphological traits in Drumstick (Moringa oleifera Lam.) genotypes. Indian J. Pure Appl. Biosci. 2021, 9, 442–449. [Google Scholar] [CrossRef]
- Mpanza, T.D.E. Biomass Yield and Nutritive Value of Stylosanthes scabra Accessions as Forage Source for Goats. Ph.D. Doctoral Thesis, University of Pretoria, Pretoria, South Africa, October 2015. [Google Scholar]
- Muhl, Q.E.; du Toit, E.S.; Robbertse, P.J. Adaptability of Moringa oleifera Lam.(Horseradish) tree seedlings to three temperature regimes. Am. J. Plant Sci. 2011, 2, 776. [Google Scholar] [CrossRef]
- AGROMET. Agricultural Research Council Data Base; Institute for Soil, Climate and Water Research: Pretoria, South Africa, 1994. [Google Scholar]
- Panagos, M.; Westfall, R.; Van Staden, J.; Zacharias, P. The plant communities of the Roodeplaat Experimental Farm, Gauteng, South Africa and the importance of classification verification. S. Afr. J. Bot. 1998, 64, 44–61. [Google Scholar] [CrossRef]
- Soil Classification Working Group (SCWG). Soil Classification: A Taxonomic System for South Africa; Department of Agricultural Development: Pretoria, South Africa, 1991. [Google Scholar]
- FAO. The State of Food Insecurity in the World 2016—Meeting the International Hunger Targets: Taking Stock of Uneven Progress; Food and Agriculture Organization Publications: Rome, Italy, 2016. [Google Scholar]
- Maripa, M.R. Spatial Variability of Hydraulic Properties as Affected by Physical Properties of Selected Soil Types in South Africa. MSc Dissertation, University of Venda, Thohoyandou, South Africa, 2019. [Google Scholar]
- Thomson, A. Soil Data for Sites on Roodeplaat Experimental Farm; Dataset; University of Pretoria: Pretoria, South Africa, 2024. [Google Scholar] [CrossRef]
- Tarawali, S.A.; Tarawali, G.; Larbi, A.; Hanson, J. Methods for the Evaluation of Forage Legumes, Grasses and Fodder Trees for Use as Livestock Feed; International Livestock Research Institute (ILRI): Nairobi, Kenya, 1995; pp. 1–43. [Google Scholar]
- Snowdon, P.; Raison, J.; Keith, H.; Ritson, P.; Grierson, P.; Adams, M.; Montagu, K.; Bi, H.-q.; Burrows; Eamus, D. Protocol for Sampling Tree and Stand Biomass; National Carbon Accounting System Technical Report No. 31; The Australian Greenhouse Office, Commonwealth Agency on Greenhouse Matters: Canberra, Australia, 2002. [Google Scholar] [CrossRef]
- Fick, G.; Holt, D.; Lugg, D. Environmental physiology and crop growth. In Alfalfa and Alfalfa Improvement; Hanson, A.A., Barnes, D.K., Hill, R.R., Jr., Eds.; American Society of Agronomy: Madison WI, USA; Crop Science Society of America: Madison WI, USA; Soil Science Society of America: Madison WI, USA, 1988; pp. 163–194. [Google Scholar]
- Jia, X.; Zhang, Z.; Wang, Y. Forage yield, canopy characteristics, and radiation interception of ten alfalfa varieties in an arid environment. Plants 2022, 11, 1112. [Google Scholar] [CrossRef]
- Motis, T.; D’Aiuto, C. Tolerance of Moringa oleifera to Freeze Events. ECHO Development Notes no. 114. 2012. Available online: https://www.echocommunity.org/resources/fd4b235d-b8db-4323-a560-eb74e6ac30b6 (accessed on 10 August 2025).
- Ararsa, L.; Fikre, L.; Getachew, A. Evaluation of integrated management of common bacterial blight of common bean in Central Rift Valley of Ethiopia. Am. J. Phytomedicine Clin. Ther. 2018, 6, 1–8. [Google Scholar]
- Association of Official Analytical Chemists (AOAC). Official Methods of Analysis; Caracterização, Propagação E Melhoramento Genético De Pitaya Comercial E Nativa Do Cerrado; AOAC: Rockville, MD, USA, 2013; Volume 26, p. 62. [Google Scholar]
- Hill-Lab. Technical Note: Feed Dry Matter Testing; Hill Laboratories: Frazer, PA, USA, 2023. [Google Scholar]
- Sears, C. How to grow and care for Moringa plants. The Spruce. 24 June 2024. Available online: https://www.thespruce.com/how-to-grow-and-care-for-moringa-plants-5076022 (accessed on 16 October 2025).
- Wawrzyniak, M.K.; Michalak, M.; Chmielarz, P. Effect of different conditions of storage on seed viability and seedling growth of six European wild fruit woody plants. Ann. For. Sci. 2020, 77, 58. [Google Scholar] [CrossRef]
- Ponnuswami, V. Advances in Production of Moringa: All India Co-Ordinated Research Project-Vegetable Crops; Horticultural College and Research Institute, Tamil Nadu Agricultural University: Periyakulam, India, 2012; p. 604. [Google Scholar]
- Ciotti, E.; Tomei, C.; Castelan, M. Research note: The adaptation and production of some Stylosanthes scabra species in Corrientes, Argentina. Trop. Grassl. 1999, 33, 165–169. [Google Scholar]
- Li, T.; Zhu, T.; Liu, Z.; Yang, N.; Wang, Z.; Yang, T.; Gao, K. Evaluation of Cold Resistance in Alfalfa Varieties Based on Root Traits and Winter Survival in Horqin Sandy Land. Biology 2024, 13, 1042. [Google Scholar] [CrossRef]
- Ambroise, V.; Legay, S.; Guerriero, G.; Hausman, J.-F.; Cuypers, A.; Sergeant, K. The roots of plant frost hardiness and tolerance. Plant Cell Physiol. 2020, 61, 3–20. [Google Scholar] [CrossRef]
- Hou, W.; Tränkner, M.; Lu, J.Y.; Yan, J.; Huang, S.; Ren, T.; Cong, R.; Li, X. Diagnosis of nitrogen nutrition in rice leaves influenced by potassium levels. Front. Plant Sci. 2020, 11, 165. [Google Scholar] [CrossRef]
- Rorie, R.L.; Purcell, L.C.; Mozaffari, M.; Karcher, D.E.; King, C.A.; Marsh, M.C.; Longer, D.E. Association of “greenness” in corn with yield and leaf nitrogen concentration. Agron. J. 2011, 103, 529–535. [Google Scholar] [CrossRef]
- Virtanen, O.; Constantinidou, E.; Tyystjärvi, E. Chlorophyll does not reflect green light–how to correct a misconception. J. Biol. Educ. 2020, 54, 552–559. [Google Scholar] [CrossRef]
- Peterson, T.A.; Blackmer, T.M.; Francis, D.D.; Schepers, J.S. Using a Chlorophyll Meter to Improve N Management; Cooperative Extension, Institute of Agriculture and Natural Resources: Lincoln, NE, USA, 1993; Available online: https://extensionpubs.unl.edu/publication/g1632/2013/pdf/view/g1632-2013.pdf (accessed on 20 January 2024).
- Knowles, E. Yellow Leaves Can Indicate Plant Problems; University of Illinois Urbana-Champaign: Champaign, IL, USA, 2007; Available online: https://extension.illinois.edu/blogs/extensions-greatest-hits/2007-08-28-yellow-leaves-can-indicate-plant-problems (accessed on 15 May 2019).
- Independent Tree, Healthy Trees and Beautiful Landscapes. Chlorosis in Trees and Shrubs: Symptoms, Causes and Treatment; For quality tree service in Northeast Ohio; Independent Tree, Healthy Trees and Beautiful Landscapes: Newbury, OH, USA, 2020; Available online: https://www.independenttree.com/chlorosis/# (accessed on 18 September 2022).
- Sánchez, N.R.; Ledin, S.; Ledin, I. Biomass production and chemical composition of Moringa oleifera under different management regimes in Nicaragua. Agrofor. Syst. 2006, 66, 231–242. [Google Scholar] [CrossRef]
- Mendieta-Araica, B.; Spörndly, E.; Reyes-Sánchez, N.; Salmerón-Miranda, F.; Halling, M. Biomass production and chemical composition of Moringa oleifera under different planting densities and levels of nitrogen fertilization. Agrofor. Syst. 2013, 87, 81–92. [Google Scholar] [CrossRef]
- Gu, J.; Yin, X.; Stomph, T.-J.; Wang, H.; Struik, P.C. Physiological basis of genetic variation in leaf photosynthesis among rice (Oryza sativa L.) introgression lines under drought and well-watered conditions. J. Exp. Bot. 2012, 63, 5137–5153. [Google Scholar] [CrossRef]
- Hendriks, P.; Kirkegaard, J.; Lilley, J.; Gregory, P.; Rebetzke, G. A tillering inhibition gene influences root–shoot carbon partitioning and pattern of water use to improve wheat productivity in rainfed environments. J. Exp. Bot. 2016, 67, 327–340. [Google Scholar] [CrossRef]
- Cabeza, A.; Casas, A.M.; Larruy, B.; Costar, M.A.; Martínez, V.; Contreras-Moreira, B.; Igartua, E. Genetic control of root/shoot biomass partitioning in barley seedlings. Front. Plant Sci. 2024, 15, 1408043. [Google Scholar] [CrossRef]
Species Name | Collection Area | Country | Accession Number & Code | NSS | DSE | % Emergence | |||
---|---|---|---|---|---|---|---|---|---|
7 | 14 | 21 | 28 | ||||||
Moringa oleifera | Meru | Kenya | Bulk (A1) | 100 | 0 | 6 | 14 | 41 | 41 |
Moringa oleifera | Machakos | Kenya | 07229 (A2) | 100 | 0 | 1 | 14 | 44 | 44 |
Moringa oleifera | Segou | Mali | 07633 (A3) | 100 | 0 | 25 | 44 | 54 | 54 |
Moringa oleifera | Bamako | Mali | 07632 (A4) | 100 | 0 | 15 | 31 | 33 | 33 |
Moringa oleifera | Not available | Kenya | 07627 (A5) | 100 | 0 | 6 | 16 | 44 | 44 |
Moringa oleifera | Mbbolo | Kenya | 03295 (A6) | 100 | 0 | 0 | 2 | 12 | 12 |
Moringa oleifera | Busia | Kenya | 05536 (A7) | 100 | 0 | 4 | 19 | 53 | 53 |
Moringa oleifera | Ramogi | Kenya | 07717 (A8) | 100 | 0 | 4 | 17 | 61 | 61 |
Moringa oleifera | Kibwezl | Kenya | 07316 (A9) | 100 | 0 | 11 | 36 | 81 | 81 |
Moringa oleifera | Ramisi | Kenya | 07216 (A10) | 100 | 0 | 36 | 57 | 69 | 69 |
Moringa oleifera | Pretoria | SA | Pretoria (A11) | 100 | 0 | 46 | 72 | 87 | 87 |
Moringa stenopetala | Not available | Kenya | NA (MS) | 110 | 0 | 60 | 72 | 108 | 98 |
Accessions | Year 1 | Year 2 | Year 3 | Combined Mean |
---|---|---|---|---|
A1 | 52.33 c | 50.67 bc | 47.33 abc | 50.33 bc |
A2 | 78.00 a | 76.00 a | 68.33 a | 74.00 a |
A3 | 73.67 ab | 64.67 ab | 56.67 ab | 65.33 ab |
A4 | 75.33 ab | 62.00 ab | 53.33 abc | 63.33 ab |
A5 | 74.00 ab | 63.33 ab | 52.00 abc | 63.33 ab |
A6 | 61.67 abc | 61.67 ab | 52.33 abc | 58.67 ab |
A7 | 51.67 c | 50.00 bc | 42.67 bc | 48.33 bc |
A8 | 75.33 ab | 60.33 ab | 52.67 abc | 62.67 ab |
A9 | 58.33 bc | 46.67 bc | 30.33 cd | 45.00 bc |
A10 | 45.00 c | 31.33 c | 29.33 cd | 35.00 c |
A11 | 73.67 ab | 63.00 ab | 50.33 abc | 62.33 ab |
MS | 59.33 bc | 35.00 c | 16.00 d | 36.67 c |
p value | 0.005 | 0.048 | 0.014 | 0.015 |
(A) | ||||||||
Accessions | Plant Height (m) | Canopy Diameter (m) | ||||||
Year 1 | Year 2 | Year 3 | Combined Mean | Year 1 | Year 2 | Year 3 | Combined Mean | |
A1 | 1.54 abc | 2.05 a | 1.90 a | 1.83 a | 0.73 cd | 0.93 a | 0.88 bc | 0.85 bc |
A2 | 1.64 ab | 1.88 ab | 1.86 ab | 1.79 a | 0.79 bcd | 0.88 ab | 0.89 bc | 0.85 bc |
A3 | 1.88 a | 1.72 abc | 1.90 a | 1.84 a | 1.05 a | 0.98 a | 1.07 a | 1.03 a |
A4 | 1.60 ab | 1.43 bc | 1.62 ab | 1.55 ab | 0.96 ab | 0.82 abc | 0.94 ab | 0.91 ab |
A5 | 1.66 ab | 1.75 abc | 1.81 ab | 1.74 ab | 0.83 bc | 0.90 ab | 0.91 abc | 0.88 bc |
A6 | 1.28 bc | 1.60 bc | 1.54 ab | 1.48 ab | 0.68 cd | 0.87 ab | 0.83 bcd | 0.79 bcd |
A7 | 1.26 bc | 1.56 bc | 1.51 ab | 1.44 ab | 0.69 cd | 0.73 bcd | 0.76 cd | 0.73 cd |
A8 | 1.51 abc | 1.79 abc | 1.75 ab | 1.68 ab | 0.74 bcd | 0.97 a | 0.91 abc | 0.87 bc |
A9 | 1.38 bc | 1.33 bc | 1.46 b | 1.39 ab | 0.74 bcd | 0.74 bcd | 0.79 bcd | 0.7 cd |
A10 | 1.05 c | 1.48 abc | 1.36 b | 1.30 b | 0.59 d | 0.66 cd | 0.68 d | 0.64 d |
A11 | 1.47 ab | 1.26 c | 1.47 b | 1.40 ab | 0.69 cd | 0.60 d | 0.69 d | 0.66 d |
MS | 0.47 d | 0.60 d | 0.63 c | 0.56 c | 0.60 d | 0.64 cd | 0.67 d | 0.64 d |
p value | 0.002 | 0.009 | 0.002 | 0.002 | 0.010 | 0.001 | 0.002 | 0.002 |
(B) | ||||||||
Accessions | Stem diameter (mm) | Number of primary branches | Tillering capacity | |||||
Year 1 | Year 1 | Year 2 | Year 3 | Combined Mean | ||||
A1 | 23.0 | 0.53 cde | 2.14 bc | 1.29 dc | 1.72 bcd | |||
A2 | 28.0 | 1.40 b | 2.89 ab | 2.17 abc | 2.53 ab | |||
A3 | 30.1 | 2.67 a | 2.44 bc | 2.44 a | 2.45 abc | |||
A4 | 26.4 | 0.80 bcde | 2.11 bc | 1.39 cd | 1.75 bcd | |||
A5 | 25.1 | 0.20 e | 2.33 bc | 1.28 cd | 1.81 bcd | |||
A6 | 18.9 | 0.68 bcde | 1.87 c | 1.05 d | 1.47 d | |||
A7 | 19.5 | 0.47 cde | 1.77 c | 1.22 d | 1.5 d | |||
A8 | 24.7 | 0.73 bcde | 2.78 abc | 1.83 abcd | 2.31 abcd | |||
A9 | 21.4 | 1.07 bcd | 2.11 bc | 1.83 abcd | 1.97 bcd | |||
A10 | 15.9 | 0.27 de | 2.00 bc | 1.17 d | 1.58 cd | |||
A11 | 21.2 | 0.87 bcde | 1.90 bc | 1.50 bcd | 1.70 bcd | |||
MS | 16.7 | 1.27 bc | 3.57 a | 2.39 ab | 2.97 a | |||
p value | 0.073 | 0.001 | 0.049 | 0.037 | 0.029 |
Accession Code | Plant Vigour Score (0–9 Scale) | Leaf Greenness Score (0–9 Scale) | Leaf Chlorosis Score (0–9 Scale) | |||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|
Year 1 | Year 2 | Year 3 | Combined Mean | Year 1 | Year 2 | Year 3 | Combined Mean | Year 1 | Year 2 | Year 3 | Combined Mean | |
A1 | 5.3 bc | 7.0 a | 6.0 abcd | 6.1 abcd | 5.7 ab | 6.7 a | 5.7 bcd | 6.0 abc | 2.7 | 3.0 | 3.3 | 3.0 |
A2 | 7.0 ab | 8.0 a | 7.3 a | 7.4 a | 6.0 ab | 7.0 a | 6.3 ab | 6.4 ab | 2.7 | 2.7 | 3.3 | 2.9 |
A3 | 7.7 a | 7.0 a | 7.0 a | 7.2 ab | 6.3 a | 6.3 ab | 6.0 abc | 6.2 abc | 3.7 | 3.3 | 4.3 | 3.8 |
A4 | 7.0 ab | 6.0 b | 5.7 bcde | 5.9 abcd | 6.3 a | 6.0 b | 6.0 abc | 6.1 abc | 4.0 | 3.7 | 4.3 | 4.0 |
A5 | 6.3 abc | 7.0 a | 6.7 abc | 6.7 bc | 5.0 bc | 7.0 a | 5.7 bcd | 5.9 abc | 3.3 | 2.7 | 3.7 | 3.2 |
A6 | 5.7 bc | 5.0 bc | 5.0 de | 5.2 cd | 5.3 abc | 4.3 c | 4.7 e | 4.8 d | 2.7 | 3.3 | 3.7 | 3.2 |
A7 | 4.7 bc | 5.3 bc | 5.0 de | 5.0 d | 5.3 abc | 6.0 b | 5.3 cde | 5.5 cd | 3.3 | 3.3 | 4.3 | 3.7 |
A8 | 7.0 ab | 7.3 a | 6.7 ab | 7.0 ab | 6.3 a | 7.0 a | 6.7 a | 6.7 a | 3.3 | 2.7 | 3.7 | 3.2 |
A9 | 5.7 bc | 5.0 bc | 5.3 cde | 5.3 cd | 6.3 a | 6.7 a | 6.3 ab | 6.4 a | 4.0 | 3.3 | 4.3 | 3.9 |
A10 | 4.3 dc | 5.3 bc | 4.3 e | 4.7 de | 5.7 ab | 6.3 ab | 5.7 bcd | 5.9 bcd | 3.0 | 2.7 | 3.7 | 3.1 |
A11 | 6.0 abc | 5.7 b | 5.7 bcde | 5.8 bcd | 5.7 ab | 7.0 a | 6.0 ab | 6.2 abc | 4.0 | 3.0 | 4.3 | 3.8 |
MS | 2.0 d | 4.3 c | 3.0 f | 3.1 e | 4.3 c | 6.3 ab | 5.0 de | 5.2 de | 1.7 | 3.0 | 3.3 | 2.7 |
p value | 0.006 | <0.001 | 0.001 | 0.001 | 0.027 | <0.001 | 0.001 | 0.001 | 0.328 | 0.211 | 0.282 | 0.211 |
Accession Code | Fresh Leaf Yield (kg ha−1) | Dry Leaf Yield (kg ha−1) | ||||||
---|---|---|---|---|---|---|---|---|
Year 1 | Year 2 | Year 3 | Combined Mean | Year 1 | Year 2 | Year 3 | Combined Mean | |
A1 | 4454 ab | 6189 ab | 5064 ab | 5235 ab | 1189 ab | 1655 a | 1305 abcd | 1383 bc |
A2 | 5749 a | 6778 a | 6089 a | 6206 a | 1599 a | 1890 a | 1695 a | 1728 a |
A3 | 4353 ab | 5900 b | 4763 bc | 4971 b | 1235 ab | 1656 a | 1356 abc | 1416 b |
A4 | 3431 bcd | 3923 cd | 3253 de | 3536 cd | 1025 bc | 1156 b | 966 def | 1049 d |
A5 | 4222 b | 6065 ab | 4901 b | 5063 b | 1164 b | 1670 a | 1347 abc | 1393 b |
A6 | 2079 d | 3933 cd | 2276 e | 2763 d | 592 d | 1120 b | 648 f | 787 d |
A7 | 3324 bcd | 4204 c | 3279 de | 3602 cd | 960 bcd | 1208 b | 947 ef | 1038 d |
A8 | 4368 ab | 6200 ab | 4886 b | 5124 b | 1249 ab | 1743 a | 1396 ab | 1463 ab |
A9 | 3554 bc | 3966 cd | 3400 de | 3640 cd | 979 bcd | 1082 b | 933 ef | 998 d |
A10 | 2571 cd | 4291 c | 2669 de | 3177 cd | 698 cd | 1163 b | 725 ef | 862 d |
A11 | 4043 b | 3999 cd | 3694 cd | 3912 c | 1130 b | 1104 b | 1027 dce | 1087 cd |
MS | 3377 bcd | 3398 d | 2871 de | 3215 cd | 975 bcd | 968 b | 825 ef | 923 d |
p value | 0.003 | <0.001 | <0.001 | <0.001 | 0.007 | <0.001 | <0.001 | <0.001 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zeru, A.; Hassen, A.; Muller, F.; Tjelele, J.; Bairu, M. Assessment of Moringa Accessions Performance for Adaptability, Growth and Leaf Yield Under the Subtropical Climate of Pretoria, South Africa. Agronomy 2025, 15, 2414. https://doi.org/10.3390/agronomy15102414
Zeru A, Hassen A, Muller F, Tjelele J, Bairu M. Assessment of Moringa Accessions Performance for Adaptability, Growth and Leaf Yield Under the Subtropical Climate of Pretoria, South Africa. Agronomy. 2025; 15(10):2414. https://doi.org/10.3390/agronomy15102414
Chicago/Turabian StyleZeru, Addisu, Abubeker Hassen, Francuois Muller, Julius Tjelele, and Michael Bairu. 2025. "Assessment of Moringa Accessions Performance for Adaptability, Growth and Leaf Yield Under the Subtropical Climate of Pretoria, South Africa" Agronomy 15, no. 10: 2414. https://doi.org/10.3390/agronomy15102414
APA StyleZeru, A., Hassen, A., Muller, F., Tjelele, J., & Bairu, M. (2025). Assessment of Moringa Accessions Performance for Adaptability, Growth and Leaf Yield Under the Subtropical Climate of Pretoria, South Africa. Agronomy, 15(10), 2414. https://doi.org/10.3390/agronomy15102414