Effects of Selection–Evaluation Density Interaction on Genetic Gain and Optimization Pathways in Maize Recurrent Breeding Systems
Abstract
1. Introduction
2. Materials and Methods
2.1. Population Development and Selection
2.2. Hybrid Evaluation
2.3. Measurement Indicators and Statistical Analysis
3. Results
3.1. Analysis of Variance
3.2. Genetic Gain Dynamics
3.3. Combining Ability Responses
4. Discussion
4.1. Response of Yield Genetic Gain to Selection and Planting Densities
4.2. Response of Combining Ability Genetic Gain to Selection and Planting Densities
4.3. Feasibility of High-Density Recurrent Breeding Strategies
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Liu, G.; Yang, Y.; Liu, W.; Guo, X.; Xie, R.; Ming, B.; Xue, J.; Zhang, G.; Li, R.; Wang, K.; et al. Optimized canopy structure improves maize grain yield and resource use efficiency. Food Energy Secur. 2022, 11, e375. [Google Scholar] [CrossRef]
- Zhang, M.D.; Zhang, G.Q.; Wang, K.R.; Xie, R.Z.; Hou, P.; Ming, B.; Xue, J.; Li, S.K. Effects of planting density and irrigation amount on yield and water use efficiency of spring maize in the west Liaohe Plain. J. Maize Sci. 2023, 31, 116–125. [Google Scholar] [CrossRef]
- Liu, Z.; Sha, Y.; Huang, Y.W.; Hao, Z.H.; Guo, W.Q.; Ke, L.H.; Chen, F.J.; Yuan, L.X.; Mi, G.H. Efficient nitrogen allocation and reallocation into the ear in relation to the superior vascular system in low-nitrogen tolerant maize hybrid. Field Crops Res. 2023, 284, 108580. [Google Scholar] [CrossRef]
- Duvick, D.N. The contribution of breeding to yield advances in maize (Zea mays L.). Adv. Agron. 2005, 86, 83–145. [Google Scholar] [CrossRef]
- Egli, D.B. Comparison of corn and soybean yields in the United States: Historical trends and future prospects. Agron. J. 2008, 100, S-79–S-88. [Google Scholar] [CrossRef]
- Hammer, G.L.; Dong, Z.; McLean, G.; Doherty, A.; Messina, C.; Schussler, J.; Zinselmeier, C.; Paszkiewicz, S.; Cooper, M. Can changes in canopy and/or root system architecture explain historical maize yield trends in the U.S. corn belt? Crop Sci. 2009, 49, 299–312. [Google Scholar] [CrossRef]
- Ci, X.; Li, M.; Liang, X.; Xie, Z.; Zhang, D.; Li, X.; Lu, Z.; Ru, G.; Bai, L.; Xie, C.; et al. Genetic contribution to advanced yield for maize hybrids released from 1970 to 2000 in China. Crop Sci. 2011, 51, 13–20. [Google Scholar] [CrossRef]
- Tollenaar, M.; Wu, J. Yield improvement in temperate maize is attributable to greater stress tolerance. Crop Sci. 1999, 39, 1597–1604. [Google Scholar] [CrossRef]
- Cooper, M.; Gho, C.; Leafgren, R.; Tang, T.; Messina, C. Breeding drought-tolerant maize hybrids for the US corn-belt: Discovery to product. J. Exp. Bot. 2014, 65, 6191–6204. [Google Scholar] [CrossRef]
- Messina, C.D.; Sinclair, T.R.; Hammer, G.L.; Curan, D.; Thompson, J.; Oler, Z.; Gho, C.; Cooper, M. Limited-transpiration trait may increase maize drought tolerance in the US corn belt. Agron. J. 2015, 107, 1978–1986. [Google Scholar] [CrossRef]
- Cao, Y.; Zhong, Z.; Wang, H.; Shen, R. Leaf angle: A target of genetic improvement in cereal crops tailored for high-density planting. Plant Biotechnol. J. 2022, 20, 426–436. [Google Scholar] [CrossRef] [PubMed]
- Lu, X.M.; Guo, S.L.; Zhang, X.; Wei, L.M.; Zhang, Q.J.; Cao, L.R.; Liu, H.J.; Deng, Y.Z.; Zhang, Z.; Wang, Z.H. Analysis of yield com position of stem lodging resistance related traits of maize under different densities. J. Henan Agric. Sci. 2023, 52, 44–55. [Google Scholar] [CrossRef]
- Abeledo, L.G.; Savin, R.; Slafer, G.A. Maize senescence under contrasting source-sink ratios during the grain filling period. Environ. Exp. Bot. 2020, 180, 104263. [Google Scholar] [CrossRef]
- Li, R.; Zhang, G.; Liu, G.; Wang, K.; Xie, R.; Hou, P.; Ming, B.; Wang, Z.; Li, S. Improving the yield potential in maize by constructing the ideal plant type and optimizing the maize canopy structure. Food Energy Secur. 2021, 10, e312. [Google Scholar] [CrossRef]
- Shao, H.; Wu, X.; Duan, J.; Zhu, F.; Chi, H.; Liu, J.; Shi, W.; Xu, Y.; Wei, Z.; Mi, G. How does increasing planting density regulate biomass production, allocation, and remobilization of maize temporally and spatially: A global meta-analysis. Field Crops Res. 2024, 315, 109430. [Google Scholar] [CrossRef]
- Sangoi, L.; Gracietti, M.A.; Rampazzo, C.; Bianchetti, P. Response of Brazilian maize hybrids from different eras to changes in plant density. Field Crops Res. 2002, 79, 39–51. [Google Scholar] [CrossRef]
- Tokatlidis, I.S.; Koutroubas, S.D. A review of maize hybrids’ dependence on high plant populations and its implications for crop yield stability. Field Crops Res. 2004, 88, 103–114. [Google Scholar] [CrossRef]
- Maddonni, G.A.; Otegui, M.E. Intra-specific competition in maize: Early establishment of hierarchies among plants affects final kernel set. Field Crops Res. 2004, 85, 1–13. [Google Scholar] [CrossRef]
- Ling, L.; Pei, W.D. Effects of planting density on stem lodging resistance and grain yield of maize at different maturit. J. Maize Sci. 2024, 32, 106–113. [Google Scholar] [CrossRef]
- Zhang, G.; Cui, C.; Lv, Y.; Wang, X.; Wang, X.; Zhao, D.; Hu, F.; Wen, X.; Han, J.; Liao, Y. Is it necessary to increase the maize planting density in China? Eur. J. Agron. 2024, 159, 127235. [Google Scholar] [CrossRef]
- Sergio, F.L.; Alfredo, G.C.; María, E.O. Genetic gains in grain yield and related physiological attributes in Argentine maize hybrids. Field Crops Res. 2006, 95, 383–397. [Google Scholar] [CrossRef]
- Araus, J.L.; Serret, M.D.; Edmeades, G.O. Phenotyping maize for adaptation to drought. Front. Physiol. 2012, 3, 305. [Google Scholar] [CrossRef] [PubMed]
- Zhang, Z.L. Genetic Analysis and Genome-Wide Selection Study on the General Combining Ability of Maize Yield Related Traits. Ph.D. Thesis, Yangzhou University, Yangzhou, China, 2023. [Google Scholar]
- Zhu, X.G.; Long, S.P.; Ort, D.R. Improving photosynthetic efficiency for greater yield. Annu. Rev. Plant Biol. 2010, 61, 235–261. [Google Scholar] [CrossRef] [PubMed]
- Bernardo, R. Genomewide Selection when Major Genes are Known. Crop Sci. 2014, 54, 68–75. [Google Scholar] [CrossRef]
- Lin, M.; Matschi, S.; Vasquez, M.; Chamness, J.; Kaczmar, N.; Baseggio, M.; Gore, M.A. Genome-wide association study for maize leaf cuticular conductance identifies candidate genes involved in the regulation of cuticle development. G3 Genes Genomes Genet. 2020, 10, 1671–1683. [Google Scholar] [CrossRef]
- Xu, Y.; Li, P.; Zou, C.; Lu, Y.; Olsen, M.S. Enhancing genetic gain in the era of molecular breeding. J. Exp. Bot. 2017, 68, 2641–2666. [Google Scholar] [CrossRef]
- Messina, C.D.; Technow, F.; Tang, T.; Totir, R.; Gho, C.; Cooper, M. Leveraging biological insight and environmental variation to improve phenotypic prediction: Integrating crop growth models (CGM) with whole genome prediction (WGP). Eur. J. Agron. 2018, 100, 151–162. [Google Scholar] [CrossRef]
- Zhang, F.Y. Genetic Gain in Maize Selection Lines in Response to Planting Density. Master’s Thesis, Inner Mongolia Agricultural University, Hohhot, China, 2018. [Google Scholar]
- Bai, Y.W.; Zhang, H.J.; Zhu, Y.L.; Zheng, X.H.; Yang, M.; Li, C.F.; Zhang, R.H. Responses of canopy light-nitrogen distribution, senescence characteristics, and light energy utilization to planting density in maize with different plant types. Sci. Agric. Sin. 2020, 53, 3059–3070. [Google Scholar]
- Wang, K.; Wang, K.R.; Wang, Y.H.; Zhao, J.; Zhao, R.L.; Wang, X.M.; Li, J.; Liang, M.X.; Li, S.K. Effects of planting density on maize yield (>15,000 kg · hm−2) and its yield components. Sci. Agric. Sin. 2012, 45, 3437–3445. [Google Scholar]
- Yang, J.Y.; Luo, Y.J.; Song, B.; Zhang, J.; Liu, J.; Lu, P.; Ye, K.M.; Luo, S.K. Analysis of density tolerance in different maize varieties and screening of identification indices. Seed 2019, 38, 80–85. [Google Scholar] [CrossRef]
- Li, J.Z. Evaluation of Density Tolerance and Genetic Research in Maize Under Different Density Selection Pressures. Master’s Thesis, Jilin Agricultural University, Changchun, China, 2013. [Google Scholar]
Material Name | Pedigree | Heterotic Group | Key Characteristics |
---|---|---|---|
Zheng 58 | Variant of Ye478 | PA | High general combining ability (GCA) for yield; low ear height |
LH196 | LH74 × LH119 | SS | High GCA for yield; low ear height; resistance to stalk rot and northern leaf blight |
Chang 7-2 | Huangzaosi × Wei95 | SPT | High GCA for yield; high ear height |
MBUB | LH38 × MANS | NSS | High GCA for yield; low ear height; resistance to stalk rot and northern leaf blight |
Source | D.f. | Mean Square |
---|---|---|
Environment | 1 | 74.02 ** |
Replicate | 1 | 0.15 |
Evaluation Density | 2 | 3.02 ** |
Generational Population | 13 | 2.13 ** |
Environment × Evaluation Density | 2 | 1.16 ** |
Environment × Generational Population | 13 | 1.06 * |
Generational Population × Evaluation Density | 26 | 1.29 ** |
Environment × Generational Population × Evaluation Density | 26 | 0.98 ** |
Error | 83 | 0.37 |
Source | D.f. | ZL Population | CM Population |
---|---|---|---|
Mean Square | Mean Square | ||
Environment | 1 | 272.01 ** | 82.46 ** |
Replicate | 1 | 0.25 | 0.55 |
Evaluation Density | 2 | 4.16 | 7.79 ** |
Population GCA | 6 | 10.38 ** | 13.56 ** |
Tester GCA | 1 | 4.96 | 284.21 ** |
SCA | 13 | 9.65 ** | 28.74 ** |
Environment × Population GCA | 6 | 5.06 * | 1.87 |
Environment × Tester GCA | 1 | 0.58 | 8.60 ** |
Environment × SCA | 13 | 3.61 * | 2.69 |
Evaluation Density × Population GCA | 12 | 4.23 * | 6.41 ** |
Environment × Evaluation Density × Population GCA | 14 | 3.06 | 1.10 |
Error | 97 | 1.87 | 1.15 |
Selection Density | Heterotic Group | Genetic Gain | Evaluation Density (Plants/ha) | ||
---|---|---|---|---|---|
(Plants/ha) | 60,000 | 90,000 | 120,000 | ||
60,000 | ZL | Δ(C2-C0) | 16.94 | 8.86 | 9.63 |
Δ(C4-C2) | 9.99 | 10.11 | −4.33 | ||
Δ(C4-C0) | 26.93 | 18.98 | 5.30 | ||
CM | Δ(C2-C0) | 30.06 | 13.01 | 14.27 | |
Δ(C4-C2) | 10.34 | 12.53 | 6.42 | ||
Δ(C4-C0) | 40.40 | 25.55 | 20.69 | ||
90,000 | ZL | Δ(C2-C0) | 11.41 | 12.73 | 16.06 |
Δ(C4-C2) | 4.87 | 15.91 | 11.05 | ||
Δ(C4-C0) | 16.27 | 28.64 | 27.11 | ||
CM | Δ(C2-C0) | 23.43 | 24.49 | 36.03 | |
Δ(C4-C2) | −4.08 | 15.88 | 3.45 | ||
Δ(C4-C0) | 19.35 | 40.37 | 39.48 | ||
120,000 | ZL | Δ(C2-C0) | 4.89 | 21.03 | 35.60 |
Δ(C4-C2) | −8.99 | 6.76 | 10.26 | ||
Δ(C4-C0) | −4.11 | 27.79 | 45.86 | ||
CM | Δ(C2-C0) | 11.21 | 19.03 | 38.60 | |
Δ(C4-C2) | −34.87 | 8.23 | 15.18 | ||
Δ(C4-C0) | −23.66 | 27.26 | 53.78 |
Selection Density | Heterotic Group | Cycles | Evaluation Density (Plants/ha) | ||
---|---|---|---|---|---|
(Plants/ha) | 60,000 | 90,000 | 120,000 | ||
60,000 | ZL | C0 | −1.03 | −1.43 | −0.71 |
C2 | 0.88 | −0.84 | −0.50 | ||
C4 | 0.18 | −0.22 | −1.38 | ||
Δ(C4-C0) | −117.48% | −84.62% | 94.37% | ||
CM | C0 | −0.92 | −1.46 | −0.85 | |
C2 | 0.78 | −0.71 | −1.5 | ||
C4 | 0.26 | −0.72 | −1.8 | ||
Δ(C4-C0) | −128.26% | −50.68% | 111.76% | ||
90,000 | ZL | C0 | −1.03 | −1.43 | −0.71 |
C2 | 0.27 | −0.26 | −0.23 | ||
C4 | 0.48 | 0.73 | 0.87 | ||
Δ(C4-C0) | −146.60% | −151.05% | −222.54% | ||
CM | C0 | −0.92 | −1.46 | −0.85 | |
C2 | 0.81 | 0.14 | 0.85 | ||
C4 | −0.32 | 0.56 | 0.85 | ||
Δ(C4-C0) | −65.22% | −138.36% | −200.00% | ||
120,000 | ZL | C0 | −1.03 | −1.43 | −0.71 |
C2 | −0.65 | 0.95 | 0.39 | ||
C4 | −0.14 | 1.07 | 1.57 | ||
Δ(C4-C0) | −86.41% | −174.83% | −321.13% | ||
CM | C0 | −0.92 | −1.46 | −0.85 | |
C2 | 0.02 | 0.7 | 0.87 | ||
C4 | −0.63 | 1.49 | 1.57 | ||
Δ(C4-C0) | −31.52% | −202.05% | −284.71% |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zhang, F.; Yang, Z.; Zhang, Y.; Li, M.; Zhang, D.; Han, J.; Zhou, Z.; Xu, Z.; Hao, Z.; Weng, J.; et al. Effects of Selection–Evaluation Density Interaction on Genetic Gain and Optimization Pathways in Maize Recurrent Breeding Systems. Agronomy 2025, 15, 2435. https://doi.org/10.3390/agronomy15102435
Zhang F, Yang Z, Zhang Y, Li M, Zhang D, Han J, Zhou Z, Xu Z, Hao Z, Weng J, et al. Effects of Selection–Evaluation Density Interaction on Genetic Gain and Optimization Pathways in Maize Recurrent Breeding Systems. Agronomy. 2025; 15(10):2435. https://doi.org/10.3390/agronomy15102435
Chicago/Turabian StyleZhang, Fengyi, Zhiyuan Yang, Yuxing Zhang, Mingshun Li, Degui Zhang, Jienan Han, Zhiqiang Zhou, Zhennan Xu, Zhuanfang Hao, Jianfeng Weng, and et al. 2025. "Effects of Selection–Evaluation Density Interaction on Genetic Gain and Optimization Pathways in Maize Recurrent Breeding Systems" Agronomy 15, no. 10: 2435. https://doi.org/10.3390/agronomy15102435
APA StyleZhang, F., Yang, Z., Zhang, Y., Li, M., Zhang, D., Han, J., Zhou, Z., Xu, Z., Hao, Z., Weng, J., Rong, Z., Wang, J., Li, X., & Yong, H. (2025). Effects of Selection–Evaluation Density Interaction on Genetic Gain and Optimization Pathways in Maize Recurrent Breeding Systems. Agronomy, 15(10), 2435. https://doi.org/10.3390/agronomy15102435