Characterization of Anthocyanins and Lipid Components in Berries of Nine Red Grapevine Cultivars
Abstract
1. Introduction
2. Materials and Methods
2.1. Plant Material
2.2. Climatic Characteristics
2.3. Chemical Reagents
2.4. Extraction and Determination of Anthocyanins
2.4.1. Preparation of Anthocyanin Fraction
2.4.2. HPLC-DAD Analysis of Anthocyanins
2.4.3. HPLC-ESI-MS Analysis
2.5. Determination of Total Flavonoid Content
2.6. Determination of Total Phenolic Content
2.7. Physicochemical Parameters
2.8. Extraction and Determination of Fatty Acids
Fatty Acid Analysis by GC-MS
2.9. Statistical Analysis
3. Results
3.1. Identification and Quantification of Anthocyanins in Grapes
3.2. Determination of Total Polyphenols and Total Flavonoids
3.3. Physicochemical Parameters
3.4. Identification and Quantification of Fatty Acids in Grapes
3.5. Metabolic Correlations—Principal Component Analysis and Heatmap Visualization
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Alston, J.M.; Sambucci, O. Grapes in the World Economy. In The Grape Genome. Compendium of Plant Genomes; Cantu, D., Walker, M., Eds.; Springer: Berlin/Heidelberg, Germany, 2019. [Google Scholar]
- Kandylis, P. Grapes and Their Derivatives in Functional Foods. Foods 2021, 10, 672. [Google Scholar] [CrossRef] [PubMed]
- Zhu, F.; Du, B.; Zheng, L.; Li, J. Advance on the Bioactivity and Potential Applications of Dietary Fibre from Grape Pomace. Food Chem. 2015, 186, 207–212. [Google Scholar] [CrossRef]
- Giovinazzo, G.; Grieco, F. Functional Properties of Grape and Wine Polyphenols. Plant Foods Hum. Nutr. 2015, 70, 454–462. [Google Scholar] [CrossRef] [PubMed]
- Gouot, J.C.; Smith, J.P.; Holzapfel, B.P.; Walker, A.R.; Barril, C. Grape Berry Flavonoids: A Review of Their Biochemical Responses to High and Extreme High Temperatures. J. Exp. Bot. 2019, 70, 397–423. [Google Scholar] [CrossRef]
- Tena, N.; Martín, J.; Asuero, A.G. State of the Art of Anthocyanins: Antioxidant Activity, Sources, Bioavailability, and Therapeutic Effect in Human Health. Antioxidants 2020, 9, 451. [Google Scholar] [CrossRef]
- Sabra, A.; Netticadan, T.; Wijekoon, C. Grape Bioactive Molecules, and the Potential Health Benefits in Reducing the Risk of Heart Diseases. Food Chem. X 2021, 12, 100149. [Google Scholar] [CrossRef]
- Lupoli, R.; Ciciola, P.; Costabile, G.; Giacco, R.; Di Minno, M.N.D.; Capaldo, B. Impact of Grape Products on Lipid Profile: A Meta-Analysis of Randomized Controlled Studies. J. Clin. Med. 2020, 9, 313. [Google Scholar] [CrossRef]
- Feringa, H.H.H.; Laskey, D.A.; Dickson, J.E.; Coleman, C.I. The Effect of Grape Seed Extract on Cardiovascular Risk Markers: A Meta-Analysis of Randomized Controlled Trials. J. Am. Diet. Assoc. 2011, 111, 1173–1181. [Google Scholar] [CrossRef] [PubMed]
- Kar, P.; Laight, D.; Rooprai, H.K.; Shaw, K.M.; Cummings, M. Effects of Grape Seed Extract in Type 2 Diabetic Subjects at High Cardiovascular Risk: A Double Blind Randomized Placebo Controlled Trial Examining Metabolic Markers, Vascular Tone, Inflammation, Oxidative Stress and Insulin Sensitivity. Diabet. Med. 2009, 26, 526–531. [Google Scholar] [CrossRef]
- Sarkhosh-Khorasani, S.; Hosseinzadeh, M. The Effect of Grape Products Containing Polyphenols on C-Reactive Protein Levels: A Systematic Review and Meta-Analysis of Randomised Controlled Trials. Br. J. Nutr. 2021, 125, 1230–1245. [Google Scholar] [CrossRef]
- Magrone, T.; Magrone, M.; Russo, M.A.; Jirillo, E. Recent Advances on the Anti-Inflammatory and Antioxidant Properties of Red Grape Polyphenols: In Vitro and In Vivo Studies. Antioxidants 2019, 9, 35. [Google Scholar] [CrossRef]
- Quero, J.; Jiménez-Moreno, N.; Esparza, I.; Osada, J.; Cerrada, E.; Ancín-Azpilicueta, C.; Rodríguez-Yoldi, M.J. Grape Stem Extracts with Potential Anticancer and Antioxidant Properties. Antioxidants 2021, 10, 243. [Google Scholar] [CrossRef] [PubMed]
- Sharma, A.; Kaur, M.; Katnoria, J.K.; Nagpal, A.K. Polyphenols in Food: Cancer Prevention and Apoptosis Induction. Curr. Med. Chem. 2018, 25, 4740–4757. [Google Scholar] [CrossRef] [PubMed]
- Briguglio, G.; Costa, C.; Pollicino, M.; Giambò, F.; Catania, S.; Fenga, C. Polyphenols in Cancer Prevention: New Insights (Review). Int. J. Funct. Nutr. 2020, 1, 9. [Google Scholar] [CrossRef]
- Rebello, L.P.G.; Lago-Vanzela, E.S.; Barcia, M.T.; Ramos, A.M.; Stringheta, P.C.; Da-Silva, R.; Castillo-Muñoz, N.; Gómez-Alonso, S.; Hermosín-Gutiérrez, I. Phenolic Composition of the Berry Parts of Hybrid Grape Cultivar BRS Violeta (BRS Rubea×IAC 1398-21) Using HPLC–DAD–ESI-MS/MS. Food Res. Int. 2013, 54, 354–366. [Google Scholar] [CrossRef]
- Górnaś, P.; Rudzińska, M.; Grygier, A.; Lācis, G. Diversity of Oil Yield, Fatty Acids, Tocopherols, Tocotrienols, and Sterols in the Seeds of 19 Interspecific Grapes Crosses. J. Sci. Food Agric. 2019, 99, 2078–2087. [Google Scholar] [CrossRef] [PubMed]
- Wang, T.Y.; Liu, M.; Portincasa, P.; Wang, D.Q. -H. New Insights into the Molecular Mechanism of Intestinal Fatty Acid Absorption. Eur. J. Clin. Investig. 2013, 43, 1203–1223. [Google Scholar] [CrossRef]
- Glatz, J.F.C.; Luiken, J.J.F.P. Fatty Acids in Cell Signaling: Historical Perspective and Future Outlook. Prostaglandins Leukot. Essent. Fat. Acids 2015, 92, 57–62. [Google Scholar] [CrossRef]
- Perestrelo, R.; Lu, Y.; Santos, S.A.O.; Silvestre, A.J.D.; Neto, C.P.; Câmara, J.S.; Rocha, S.M. Phenolic Profile of Sercial and Tinta Negra Vitis Vinifera L. Grape Skins by HPLC–DAD–ESI-MSn. Food Chem. 2012, 135, 94–104. [Google Scholar] [CrossRef]
- Yang, B.; He, S.; Liu, Y.; Liu, B.; Ju, Y.; Kang, D.; Sun, X.; Fang, Y. Transcriptomics Integrated with Metabolomics Reveals the Effect of Regulated Deficit Irrigation on Anthocyanin Biosynthesis in Cabernet Sauvignon Grape Berries. Food Chem. 2020, 314, 126170. [Google Scholar] [CrossRef]
- Ruiz, J.; Kiene, F.; Belda, I.; Fracassetti, D.; Marquina, D.; Navascués, E.; Calderón, F.; Benito, A.; Rauhut, D.; Santos, A.; et al. Effects on Varietal Aromas during Wine Making: A Review of the Impact of Varietal Aromas on the Flavor of Wine. Appl. Microbiol. Biotechnol. 2019, 103, 7425–7450. [Google Scholar] [CrossRef]
- Mendes Ferreira, A.; Mendes-Faia, A. The Role of Yeasts and Lactic Acid Bacteria on the Metabolism of Organic Acids during Winemaking. Foods 2020, 9, 1231. [Google Scholar] [CrossRef]
- Tian, M.-B.; Hu, R.-Q.; Liu, Z.-L.; Shi, N.; Lu, H.-C.; Duan, C.-Q.; Wang, J.; Sun, Y.-F.; Kong, Q.-S.; He, F. The PH Adjustment of Vitis Amurensis Dry Red Wine Revealed the Evolution of Organic Acids, Volatomics, and Sensory Quality during Winemaking. Food Chem. 2024, 436, 137730. [Google Scholar] [CrossRef] [PubMed]
- Guaita, M.; Bosso, A. Polyphenolic Characterization of Grape Skins and Seeds of Four Italian Red Cultivars at Harvest and after Fermentative Maceration. Foods 2019, 8, 395. [Google Scholar] [CrossRef] [PubMed]
- Dușa, D.Ș.; Heizer, R.T.; Heizer, M.G.; Baniță, S.I.; Călugăr, A.; Constantinescu, D.G.; Dobrei, A.; Bunea, C.I. Romanian Vineyard Areas and the Evolution of Wines with Traceability in the Period 2007–2022, Using European Restructuring/Reconversion Funds. Sci. Papers. Ser. B Hortic. 2024, 68, 283–291. [Google Scholar]
- Stroe, M. Ampelografie; Ceres: Bucuresti, Romania, 2012; ISBN 978-973-40-0943-5. [Google Scholar]
- Geana, I.; Andreea Maria, I.; Roxana, I.; Irina Geana, E.; Maria Iordache, A.; Elena Ionete, R. Assessing the Wine Anthocyanin Profile for Red Grape Varieties Identification. Prog. Cryog. Isot. 2011, 14, 127–133. [Google Scholar]
- Ivanisevic, D.; Kalajdzic, M.; Di Gaspero, G.; Drenjancevic, M.; Korac, N.; Schwander, F.; Braun, U.; Barac, G.; Foria, S. Genetic, Morphological and Chemical Characterisation of the Grape Variety “Probus” (Vitis vinifera L.). Genetika 2019, 51, 1061–1073. [Google Scholar] [CrossRef]
- García, S.; Santesteban, L.G.; Miranda, C.; Royo, J.B. Variety and Storage Time Affect the Compositional Changes That Occur in Grape Samples after Frozen Storage. Aust. J. Grape Wine Res. 2011, 17, 162–168. [Google Scholar] [CrossRef]
- Gnamus, A.; Chioncel, M. Transformative Innovation for Better Climate Change Adaptation—Case Study: Nord-Vest and Cluj-Napoca, Romania; Publications Office of the European Union: Luxembourg, 2025. [Google Scholar]
- Pieptenaru, M.-L.; Stoica, R.-M.; Halada, S.; Milian, N. Temperature Records in the Summer of 2024 in Transylvania. Air Water Compon. Environ. Aerul Compon. Mediu. 2025, 27–41. [Google Scholar]
- Balík, J.; Kumšta, M.; Rop, O. Comparison of Anthocyanins Present in Grapes of Vitis vinifera L. Varieties and Interspecific Hybrids Grown in the Czech Republic. Chem. Pap. 2013, 67, 1285–1292. [Google Scholar] [CrossRef]
- Hariram Nile, S.; Hwan Kim, D.; Keum, Y.-S. Determination of Anthocyanin Content and Antioxidant Capacity of Different Grape Varieties. Ciência Técnica Vitivinícola 2015, 30, 60–68. [Google Scholar] [CrossRef]
- Meyers, K.J.; Watkins, C.B.; Pritts, M.P.; Liu, R.H. Antioxidant and Antiproliferative Activities of Strawberries. J. Agric. Food Chem. 2003, 51, 6887–6892. [Google Scholar] [CrossRef] [PubMed]
- Shin, Y. Correlation between Antioxidant Concentrations and Activities of Yuja (Citrus Junos Sieb Ex Tanaka) and Other Citrus Fruit. Food. Sci. Biotechnol. 2012, 21, 1477–1482. [Google Scholar] [CrossRef]
- International Organization of Vine and Wine. Compendium of International Methods of Wine and Must Analysis. In International Organisation of Vine and Wine; International Organization of Vine and Wine: Paris, France, 2021; Volume 1, pp. 1–520. ISBN 9782850380334. [Google Scholar]
- Folch, J.; Lees, M.; Stanley, G.H.S. A Simple Method for the Isolation of Total Lipides from Animal Tissues. J. Biol. Chem. 1957, 226, 497–509. [Google Scholar] [CrossRef]
- Dulf, F. V Fatty Acids in Berry Lipids of Six Sea Buckthorn (Hippophae rhamnoides L., Subspecies Carpatica) Cultivars Grown in Romania. Chem. Cent. J. 2012, 6, 106. [Google Scholar] [CrossRef]
- Kong, J.-M.; Chia, L.-S.; Goh, N.-K.; Chia, T.-F.; Brouillard, R. Analysis and Biological Activities of Anthocyanins. Phytochemistry 2003, 64, 923–933. [Google Scholar] [CrossRef]
- Mazza, G. Anthocyanins in Fruits, Vegetables, and Grains; Mazza, G., Miniati, E., Eds.; CRC Press: Boca Raton, FL, USA, 2018; ISBN 9781351069700. [Google Scholar]
- Guerrero, R.F.; Liazid, A.; Palma, M.; Puertas, B.; González-Barrio, R.; Gil-Izquierdo, Á.; García-Barroso, C.; Cantos-Villar, E. Phenolic Characterisation of Red Grapes Autochthonous to Andalusia. Food Chem. 2009, 112, 949–955. [Google Scholar] [CrossRef]
- Costa, E.; da Silva, J.F.; Cosme, F.; Jordão, A.M. Adaptability of Some French Red Grape Varieties Cultivated at Two Different Portuguese Terroirs: Comparative Analysis with Two Portuguese Red Grape Varieties Using Physicochemical and Phenolic Parameters. Food Res. Int. 2015, 78, 302–312. [Google Scholar] [CrossRef]
- Budić-Leto, I.; Mucalo, A.; Ljubenkov, I.; Zdunić, G. Anthocyanin Profile of Wild Grape Vitis vinifera in the Eastern Adriatic Region. Sci. Hortic. 2018, 238, 32–37. [Google Scholar] [CrossRef]
- Kőrösi, L.; Molnár, S.; Teszlák, P.; Dörnyei, Á.; Maul, E.; Töpfer, R.; Marosvölgyi, T.; Szabó, É.; Röckel, F. Comparative Study on Grape Berry Anthocyanins of Various Teinturier Varieties. Foods 2022, 11, 3668. [Google Scholar] [CrossRef] [PubMed]
- Ribeéreau-Gayon, P.; Glories, Y.; Maujean, A.; Dubourdieu, D. Phenolic Compounds. In Handbook of Enology: The Chemistry of Wine Stabilization and Treatments; John Wiley & Sons: Hoboken, NJ, USA, 2021; Volume 2, p. 161. ISBN 9780470010372. [Google Scholar]
- Alcalde-Eon, C.; Escribano-Bailón, M.T.; Santos-Buelga, C.; Rivas-Gonzalo, J.C. Changes in the Detailed Pigment Composition of Red Wine during Maturity and Ageing. Anal. Chim. Acta 2006, 563, 238–254. [Google Scholar] [CrossRef]
- Ortega-Regules, A.; Romero-Cascales, I.; López-Roca, J.M.; Ros-García, J.M.; Gómez-Plaza, E. Anthocyanin Fingerprint of Grapes: Environmental and Genetic Variations. J. Sci. Food Agric. 2006, 86, 1460–1467. [Google Scholar] [CrossRef]
- Silva, L.R.; Queiroz, M. Bioactive Compounds of Red Grapes from Dão Region (Portugal): Evaluation of Phenolic and Organic Profile. Asian Pac. J. Trop. Biomed. 2016, 6, 315–321. [Google Scholar] [CrossRef]
- Núñez, V.; Monagas, M.; Gomez-Cordovés, M.C.; Bartolomé, B. Vitis vinifera L. Cv. Graciano Grapes Characterized by Its Anthocyanin Profile. Postharvest Biol. Technol. 2004, 31, 69–79. [Google Scholar] [CrossRef]
- Ju, Y.; Yang, B.; He, S.; Tu, T.; Min, Z.; Fang, Y.; Sun, X. Anthocyanin Accumulation and Biosynthesis Are Modulated by Regulated Deficit Irrigation in Cabernet Sauvignon (Vitis vinifera L.) Grapes and Wines. Plant Physiol. Biochem. 2019, 135, 469–479. [Google Scholar] [CrossRef]
- Adams, D.O. Phenolics and Ripening in Grape Berries. Am. J. Enol. Vitic. 2006, 57, 249–256. [Google Scholar] [CrossRef]
- Conde, C.; Silva, P.; Fontes, N.; Dias, A.C.P.; Tavares, R.M.; Sousa, M.J.; Agasse, A.; Delrot, S.; Gerós, H. Biochemical Changes throughout Grape Berry Development and Fruit and Wine Quality; Special Feature Food; Global Science Books: Hershey, PA, USA, 2007. [Google Scholar]
- Mattivi, F.; Guzzon, R.; Vrhovsek, U.; Stefanini, M.; Velasco, R. Metabolite Profiling of Grape: Flavonols and Anthocyanins. J. Agric. Food Chem. 2006, 54, 7692–7702. [Google Scholar] [CrossRef]
- Orak, H.H. Total Antioxidant Activities, Phenolics, Anthocyanins, Polyphenoloxidase Activities of Selected Red Grape Cultivars and Their Correlations. Sci. Hortic. 2007, 111, 235–241. [Google Scholar] [CrossRef]
- Romero-Cascales, I.; Ortega-Regules, A.; López-Roca, J.M.; Fernández-Fernández, J.I.; Gómez-Plaza, E. Differences in Anthocyanin Extractability from Grapes to Wines According to Variety. Am. J. Enol. Vitic. 2005, 56, 212–219. [Google Scholar] [CrossRef]
- Kliewer, W.M. Influence of Temperature, Solar Radiation and Nitrogen on Coloration and Composition of Emperor Grapes. Am. J. Enol. Vitic. 1977, 28, 96–103. [Google Scholar] [CrossRef]
- Buttrose, M.S.; Hale, C.R.; Kliewer, W.M. Effect of Temperature on the Composition of “Cabernet Sauvignon” Berries. Am. J. Enol. Vitic. 1971, 22, 71–75. [Google Scholar] [CrossRef]
- Spayd, S.E.; Tarara, J.M.; Mee, D.L.; Ferguson, J.C. Separation of Sunlight and Temperature Effects on the Composition of Vitis Vinifera Cv. Merlot Berries. Am. J. Enol. Vitic. 2002, 53, 171–182. [Google Scholar] [CrossRef]
- Tarara, J.M.; Lee, J.; Spayd, S.E.; Scagel, C.F. Berry Temperature and Solar Radiation Alter Acylation, Proportion, and Concentration of Anthocyanin in Merlot Grapes. Am. J. Enol. Vitic. 2008, 59, 235–247. [Google Scholar] [CrossRef]
- Cohen, S.D.; Tarara, J.M.; Kennedy, J.A. Assessing the Impact of Temperature on Grape Phenolic Metabolism. Anal. Chim. Acta 2008, 621, 57–67. [Google Scholar] [CrossRef]
- Downey, M.O.; Dokoozlian, N.K.; Krstic, M.P. Cultural Practice and Environmental Impacts on the Flavonoid Composition of Grapes and Wine: A Review of Recent Research. Am. J. Enol. Vitic. 2006, 57, 257–268. [Google Scholar] [CrossRef]
- Movahed, N.; Pastore, C.; Cellini, A.; Allegro, G.; Valentini, G.; Zenoni, S.; Cavallini, E.; D’Incà, E.; Tornielli, G.B.; Filippetti, I. The Grapevine VviPrx31 Peroxidase as a Candidate Gene Involved in Anthocyanin Degradation in Ripening Berries under High Temperature. J. Plant Res. 2016, 129, 513–526. [Google Scholar] [CrossRef]
- Xu, W.; Dubos, C.; Lepiniec, L. Transcriptional Control of Flavonoid Biosynthesis by MYB–BHLH–WDR Complexes. Trends Plant Sci. 2015, 20, 176–185. [Google Scholar] [CrossRef]
- Mori, K.; Sugaya, S.; Gemma, H. Regulatory Mechanism of Anthocyanin Biosynthesis in “Kyoho” Grape Berries Grown under Different Temperature Conditions. Environ. Control. Biol. 2004, 42, 21–30. [Google Scholar] [CrossRef]
- Mori, K.; Goto-Yamamoto, N.; Kitayama, M.; Hashizume, K. Loss of Anthocyanins in Red-Wine Grape under High Temperature. J. Exp. Bot. 2007, 58, 1935–1945. [Google Scholar] [CrossRef] [PubMed]
- Yamane, T.; Jeong, S.T.; Goto-Yamamoto, N.; Koshita, Y.; Kobayashi, S. Effects of Temperature on Anthocyanin Biosynthesis in Grape Berry Skins. Am. J. Enol. Vitic 2006, 57, 54–59. [Google Scholar] [CrossRef]
- de Rosas, I.; Deis, L.; Baldo, Y.; Cavagnaro, J.B.; Cavagnaro, P.F. High Temperature Alters Anthocyanin Concentration and Composition in Grape Berries of Malbec, Merlot, and Pinot Noir in a Cultivar-Dependent Manner. Plants 2022, 11, 926. [Google Scholar] [CrossRef]
- Sunil, L.; Shetty, N.P. Biosynthesis and Regulation of Anthocyanin Pathway Genes. Appl. Microbiol. Biotechnol. 2022, 106, 1783–1798. [Google Scholar] [CrossRef]
- Xing, R.-R.; He, F.; Xiao, H.-L.; Duan, C.-Q.; Pan, Q.-H. Accumulation Pattern of Flavonoids in Cabernet Sauvignon Grapes Grown in a Low-Latitude and High-Altitude Region. South Afr. J. Enol. Vitic. 2016, 36, 32–43. [Google Scholar] [CrossRef]
- Coklar, H. Antioxidant Capacity and Phenolic Profile of Berry, Seed, and Skin of Ekşikara (Vitis vinifera L.) Grape: Influence of Harvest Year and Altitude. Int. J. Food Prop. 2017, 20, 2071–2087. [Google Scholar] [CrossRef]
- Mansour, G.; Ghanem, C.; Mercenaro, L.; Nassif, N.; Hassoun, G.; Del Caro, A. Effects of Altitude on the Chemical Composition of Grapes and Wine: A Review. OENO One 2022, 56, 227–239. [Google Scholar] [CrossRef]
- Zhao, C.-L.; Yu, Y.-Q.; Chen, Z.-J.; Wen, G.-S.; Wei, F.-G.; Zheng, Q.; Wang, C.-D.; Xiao, X.-L. Stability-Increasing Effects of Anthocyanin Glycosyl Acylation. Food Chem. 2017, 214, 119–128. [Google Scholar] [CrossRef]
- Oliveira, H.; Perez-Gregório, R.; de Freitas, V.; Mateus, N.; Fernandes, I. Comparison of the in Vitro Gastrointestinal Bioavailability of Acylated and Non-Acylated Anthocyanins: Purple-Fleshed Sweet Potato vs Red Wine. Food Chem. 2019, 276, 410–418. [Google Scholar] [CrossRef] [PubMed]
- Orak, H.H.; Yagar, H.; Isbilir, S.S. Comparison of Antioxidant Activities of Juice, Peel, and Seed of Pomegranate (Punica granatum L.) and Inter-Relationships with Total Phenolic, Tannin, Anthocyanin, and Flavonoid Contents. Food. Sci. Biotechnol. 2012, 21, 373–387. [Google Scholar] [CrossRef]
- Muflihah, Y.M.; Gollavelli, G.; Ling, Y.-C. Correlation Study of Antioxidant Activity with Phenolic and Flavonoid Compounds in 12 Indonesian Indigenous Herbs. Antioxidants 2021, 10, 1530. [Google Scholar] [CrossRef]
- Shibata, Y.; Ohara, K.; Matsumoto, K.; Hasegawa, T.; Akimoto, M. Total Anthocyanin Content, Total Phenolic Content, and Antioxidant Activity of Various Blueberry Cultivars Grown in Togane, Chiba Prefecture, Japan. J. Nutr. Sci. Vitaminol. 2021, 67, 201–209. [Google Scholar] [CrossRef]
- Dudek, A.; Spiegel, M.; Strugała-Danak, P.; Gabrielska, J. Analytical and Theoretical Studies of Antioxidant Properties of Chosen Anthocyanins; A Structure-Dependent Relationships. Int. J. Mol. Sci. 2022, 23, 5432. [Google Scholar] [CrossRef]
- Payan, C.; Gancel, A.-L.; Jourdes, M.; Christmann, M.; Teissedre, P.-L. Wine Acidification Methods: A Review. OENO One 2023, 57, 113–126. [Google Scholar] [CrossRef]
- Pastore, C.; Allegro, G.; Valentini, G.; Muzzi, E.; Filippetti, I. Anthocyanin and Flavonol Composition Response to Veraison Leaf Removal on Cabernet Sauvignon, Nero d’Avola, Raboso Piave and Sangiovese Vitis vinifera L. Cultivars. Sci. Hortic. 2017, 218, 147–155. [Google Scholar] [CrossRef]
- Pajovic, R.; Raicevic, D.; Popovic, T.; Sivilotti, P.; Lisjak, K.; Vanzo, A. Polyphenolic Characterisation of Vranac, Kratosija and Cabernet Sauvignon (Vitis vinifera L. Cv.) Grapes and Wines from Different Vineyard Locations in Montenegro. S. Afr. J. Enol. Vitic. 2016, 35, 139–148. [Google Scholar] [CrossRef]
- Zheng, B.; Zhao, L.; Jiang, X.; Cherono, S.; Liu, J.; Ogutu, C.; Ntini, C.; Zhang, X.; Han, Y. Assessment of Organic Acid Accumulation and Its Related Genes in Peach. Food Chem. 2021, 334, 127567. [Google Scholar] [CrossRef]
- Mira de Orduña, R. Climate Change Associated Effects on Grape and Wine Quality and Production. Food Res. Int. 2010, 43, 1844–1855. [Google Scholar] [CrossRef]
- Mattioli, R.; Francioso, A.; Mosca, L.; Silva, P. Anthocyanins: A Comprehensive Review of Their Chemical Properties and Health Effects on Cardiovascular and Neurodegenerative Diseases. Molecules 2020, 25, 3809. [Google Scholar] [CrossRef] [PubMed]
- Hornedo-Ortega, R.; Reyes González-Centeno, M.; Chira, K.; Jourdes, M.; Teissedre, P.-L. Phenolic Compounds of Grapes and Wines: Key Compounds and Implications in Sensory Perception. In Chemistry and Biochemistry of Winemaking, Wine Stabilization and Aging; IntechOpen: London, UK, 2021. [Google Scholar]
- Bruno, G.; Sparapano, L. Effects of Three Esca-Associated Fungi on Vitis vinifera L.: V. Changes in the Chemical and Biological Profile of Xylem Sap from Diseased Cv. Sangiovese Vines. Physiol. Mol. Plant. Pathol. 2007, 71, 210–229. [Google Scholar] [CrossRef]
- Al Juhaimi, F.; Geçgel, Ü.; Gülcü, M.; Hamurcu, M.; Özcan, M.M. South African Journal for Enology and Viticulture. South Afr. J. Enol. Vitic. 2017, 38, 103–108. [Google Scholar]
- Ohnishi, M.; Hirose, S.; Kawaguchi, M.; Ito, S.; Fujino, Y. Chemical Composition of Lipids, Especially Triacylglycerol, in Grape Seeds. Agric. Biol. Chem. 1990, 54, 1035–1042. [Google Scholar] [CrossRef]
- Baydar, N.G.; Akkurt, M. Oil Content and Oil Quality Properties of Some Grape Seeds. Turk. J. Agric. For. 2001, 25, 163–168. [Google Scholar]
- Tao, L. Oxidation of Polyunsaturated Fatty Acids and Its Impact on Food Quality and Human Health. Adv. Food Technol. Nutr. Sci. Open J. 2015, 1, 135–142. [Google Scholar] [CrossRef]
- Oliveira, C.M.; Ferreira, A.C.S.; De Freitas, V.; Silva, A.M.S. Oxidation Mechanisms Occurring in Wines. Food Res. Int. 2011, 44, 1115–1126. [Google Scholar] [CrossRef]
- Swanson, D.; Block, R.; Mousa, S.A. Omega-3 Fatty Acids EPA and DHA: Health Benefits Throughout Life. Adv. Nutr. 2012, 3, 1–7. [Google Scholar] [CrossRef]
- Shahidi, F.; Ambigaipalan, P. Omega-3 Polyunsaturated Fatty Acids and Their Health Benefits. Annu. Rev. Food Sci. Technol. 2018, 9, 345–381. [Google Scholar] [CrossRef] [PubMed]
- Pérez-Navarro, J.; Da Ros, A.; Masuero, D.; Izquierdo-Cañas, P.M.; Hermosín-Gutiérrez, I.; Gómez-Alonso, S.; Mattivi, F.; Vrhovsek, U. LC-MS/MS Analysis of Free Fatty Acid Composition and Other Lipids in Skins and Seeds of Vitis vinifera Grape Cultivars. Food Res. Int. 2019, 125, 108556. [Google Scholar] [CrossRef] [PubMed]
Peak No. | Anthocyanin Compound | Grape (V. vinifera L.) Cultivars | ||||||||
---|---|---|---|---|---|---|---|---|---|---|
Alicante Bouschet | Burgund Mare | Busuioacă de Bohotin | Cabernet Franc | Cabernet Sauvignon | Cadarcă | Malbec | Sangiovese | Syrah | ||
1 | Delphinidin-3-O-glucoside | 15.20 ± 10.60 bc | 39.40 ± 9.80 a | 2.98 ± 0.55 c | 17.11 ± 8.12 b | 12.12 ± 3.70 bc | 36.32 ± 8.32 a | 18.32 ± 9.51 b | 20.82 ± 7.94 b | 2.41 ± 0.32 c |
2 | Cyanidin-3-O-glucoside | 3.25 ± 0.44 b | 2.51 ± 0.07 b | 4.60 ± 1.01 b | 1.89 ± 0.07 b | 2.69 ± 0.89 b | 1.81 ± 0.03 b | 2.54 ± 0.08 b | 18.91 ± 8.72 a | 1.18 ± 0.11 b |
3 | Petunidin-3-O-glucoside | 24.10 ± 11.20 a | 4.82 ± 0.72 c | 3.85 ± 0.89 c | 13.71 ± 7.11 abc | 11.31 ± 2.81 c | 3.61 ± 0.89 c | 12.11 ± 5.11 bc | 22.34 ± 9.83 ab | 6.52 ± 0.88 c |
4 | Peonidin-3-O-glucoside | 87.50 ± 13.20 a | 53.20 ± 14.12 b | 82.30 ± 10.50 a | 13.50 ± 8.00 c | 11.02 ± 1.96 c | 54.10 ± 13.20 b | 14.30 ± 8.82 c | 18.31 ± 8.94 c | 7.23 ± 0.75 c |
5 | Malvidin-3-O-glucoside | 165.03 ± 46.50 a | 125.21 ± 48.40 ab | 54.54 ± 9.02 bc | 99.45 ± 11.61 bc | 45.61 ± 10.61 c | 107.82 ± 40.91 b | 103.33 ± 14.51 bc | 45.54 ± 8.01 c | 32.81 ± 7.63 c |
6 | Peonidin-3-O-acetylglucoside | 4.40 ± 0.57 a | nd | 4.33 ± 0.65 a | nd | nd | nd | nd | nd | nd |
7 | Malvidin-3-O-acetylglucoside | 13.20 ± 1.76 a | 5.90 ± 0.65 b | 4.24 ± 0.88 c | nd | nd | 4.11 ± 0.87 c | nd | nd | nd |
8 | Peonidin-3-O-p-coumaroylglucoside | 7.70 ± 0.55 a | 2.44 ± 0.91 c | 1.95 ± 0.09 c | nd | nd | 2.31 ± 0.66 c | nd | nd | 6.44 ± 1.18 b |
9 | Malvidin-3-O-p-coumaroylglucoside | 15.40 ± 2.83 a | 5.31 ± 0.87 c | 1.79 ± 0.08 d | 9.72 ± 1.62 b | 10.10 ± 1.60 b | 5.90 ± 0.91 c | 10.31 ± 2.31 b | nd | 14.32 ± 3.14 a |
TOTAL | 335.75 ± 87.62 a | 238.74 ± 75.52 b | 160.47 ± 23.64 bcd | 155.34 ± 36.47 bcd | 92.81 ± 21.55 d | 215.91 ± 65.76 bc | 160.87 ± 40.29 bcd | 125.8 ± 43.30 cd | 70.79 ± 13.86 d |
Grape (V. vinifera L.) Cultivars | Total Polyphenols mg GAE/100 g FW | Total Flavonoids mg CE/100 g FW |
---|---|---|
Alicante Bouschet | 432.13 ± 42.91 a | 162.51 ± 39.63 a |
Burgund Mare | 314.52 ± 38.54 b | 128.38 ± 27 ab |
Busuioacă de Bohotin | 192.54 ± 19.84 d | 72.87 ± 18.73 cd |
Cabernet Franc | 160.33 ± 14.85 de | 60.11 ± 16.37 d |
Cabernet Sauvignon | 110.72 ± 13.28 f | 34.23 ± 11.45 d |
Cadarcă | 240.86 ± 32.31 c | 101.55 ± 22.32 bc |
Malbec | 180.63 ± 22.42 de | 65.32 ± 18.13 cd |
Sangiovese | 134.65 ± 13.54 ef | 41.27 ± 12.84 d |
Syrah | 107.51 ± 11.11 f | 40.33 ± 12.17 d |
Grape (V. vinifera L.) Cultivars | pH | Titratable Acidity (g L−1) |
---|---|---|
Alicante Bouschet | 3.46 ± 0.48 a | 5.73 ± 0.72 bc |
Burgund Mare | 3.11 ± 0.54 a | 4.32 ± 0.31 d |
Busuioacă de Bohotin | 3.38 ± 0.42 a | 5.91 ± 0.34 bc |
Cabernet Franc | 3.22 ± 0.28 a | 6.14 ± 0.25 b |
Cabernet Sauvignon | 3.12 ± 0.21 a | 5.11 ± 0.61 cd |
Cadarcă | 3.44 ± 0.44 a | 5.15 ± 0.42 cd |
Malbec | 3.38 ± 0.26 a | 5.83 ± 0.29 bc |
Sangiovese | 3.25 ± 0.38 a | 6.95 ± 0.84 a |
Syrah | 3.12 ± 0.42 a | 5.04 ± 0.31 cd |
Grape (V. vinifera L.) Cultivars | ||||||
Alicante Bouschet | Burgund Mare | Busuioacă de Bohotin | Cabernet Franc | Cabernet Sauvignon | ||
Fatty Acid | Rt (min) | % | % | % | % | % |
(14:0) | 18.148 | 1.37 ± 0.01 c | 1.68 ± 0.01 b | 0.64 ± 0.01 d | 0.02 ± 0.01 h | 0.02 ± 0.01 h |
(16:0) | 21.104 | 28.17 ± 0.02 d | 31.07 ± 0.01 b | 31.83 ± 0.01 a | 1.57 ± 0.01 i | 1.84 ± 0.01 h |
16:1n-9 | 21.474 | 0.55 ± 0.01 c | 1.47 ± 0.01 a | 0.26 ± 0.01 d | 0.02 ± 0.01 h | 0.01 ± 0.01 i |
(18:0) | 24.320 | 8.60 ± 0.01 c | 13.43 ± 0.01 b | 13.79 ± 0.01 a | 0.63 ± 0.01 h | 0.81 ± 0.01 g |
18:1n-9 | 24.840 | 11.44 ± 0.01 e | 24.14 ± 0.01 a | 12.06 ± 0.01 d | 2.07 ± 0.01 g | 2.06 ± 0.01 g |
18:1n-7 | 24.910 | 1.53 ± 0.01 b | 1.10 ± 0.01 d | 1.70 ± 0.01 a | 0.13 ± 0.01 g | 0.11 ± 0.01 h |
18:2n-6 | 25.916 | 40.50 ± 0.03 e | 19.73 ± 0.01 h | 36.59 ± 0.01 f | 95.44 ± 0.01 a | 95.03 ± 0.01 a |
18:3n-3 | 27.246 | 5.49 ± 0.01 a | 4.45 ± 0.01 b | 0.96 ± 0.01 f | 0.10 ± 0.01 h | 0.09 ± 0.01 i |
(20:0) | 28.647 | 1.30 ± 0.01 c | 1.60 ± 0.01 a | 0.84 ± 0.01 d | 0.03 ± 0.01 g | 0.01 ± 0.01 h |
(22:0) | 35.224 | 1.04 ± 0.01 c | 1.33 ± 0.01 a | 1.32 ± 0.01 b | 0.03 ± 0.01 f | 0.03 ± 0.01 f |
Grape (V. vinifera L.) Cultivars | ||||||
Cadarcă | Malbec | Sangiovese | Syrah | |||
Fatty Acid | Rt (min) | % | % | % | % | |
(14:0) | 18.148 | 1.81 ± 0.01 a | 0.20± 0.01 f | 0.05 ± 0.01 g | 0.22± 0.01 e | |
(16:0) | 21.104 | 30.55 ± 0.14 c | 11.02 ± 0.05 f | 2.27 ± 0.03 g | 11.69 ± 0.01 e | |
16:1n-9 | 21.474 | 1.35 ± 0.01 b | 0.13 ± 0.01 f | 0.03 ± 0.01 g | 0.14 ± 0.01 e | |
(18:0) | 24.320 | 13.80 ± 0.12 a | 3.77 ± 0.01 e | 1.00 ± 0.01 f | 3.96 ± 0.01 d | |
18:1n-9 | 24.840 | 24.09 ± 0.08 a | 14.43 ± 0.02 c | 5.23 ± 0.07 f | 15.25 ± 0.01 b | |
18:1n-7 | 24.910 | 1.17 ± 0.01 c | 0.65 ± 0.03 e | 0.13 ± 0.01 g | 0.60 ± 0.01 f | |
18:2n-6 | 25.916 | 20.50 ± 0.04 g | 67.80 ± 0.08 c | 91.13 ± 1.21 b | 66.00 ± 0.01 d | |
18:3n-3 | 27.246 | 3.89 ± 0.01 c | 1.48 ± 0.07 e | 0.13 ± 0.01 g | 1.57 ± 0.01 d | |
(20:0) | 28.647 | 1.50 ± 0.04 b | 0.31 ± 0.02 f | 0.01 ± 0.01 h | 0.36 ± 0.01 e | |
(22:0) | 35.224 | 1.32 ± 0.05 b | 0.19 ± 0.08 e | 0.03 ± 0.01 f | 0.21 ± 0.01 d |
Alicante Bouschet | Burgund Mare | Busuioacă de Bohotin | Cabernet Franc | Cabernet Sauvignon | Cadarcă | Malbec | Sangiovese | Syrah | |
---|---|---|---|---|---|---|---|---|---|
SFAs | 40.48 ± 0.02 d | 49.11 ± 0.01 a | 48.43 ± 0.01 c | 2.49 ± 0.01 i | 2.71 ± 0.01 h | 49.00 ± 0.03 b | 15.50 ± 0.06 f | 3.36 ± 0.03 g | 16.44 ± 0.01 e |
MUFAs | 13.52 ± 0.01 f | 26.71 ± 0.01 a | 14.02 ± 0.01 e | 2.47 ± 0.02 h | 2.17 ± 0.01 i | 26.61 ± 0.07 b | 15.21 ± 0.02 d | 5.38 ± 0.07 g | 15.99 ± 0.01 c |
PUFAs | 46.00 ± 0.03 e | 24.18 ± 0.01 g | 37.55 ± 0.01 f | 95.04 ± 0.02 a | 95.12 ± 0.01 a | 24.39 ± 0.04 g | 69.29 ± 0.08 c | 91.26 ± 1.21 b | 67.57 ± 0.01 d |
n-3 PUFAs | 5.50 ± 0.01 a | 4.45 ± 0.01 b | 0.96 ± 0.01 f | 0.09 ± 0.01 h | 0.09 ± 0.01 i | 3.89 ± 0.01 c | 1.48 ± 0.01 e | 0.13 ± 0.01 g | 1.57 ± 0.01 d |
n-6 PUFAs | 40.50 ± 0.03 e | 19.73 ± 0.01 h | 36.59 ± 0.01 f | 94.95 ± 0.02 a | 95.03 ± 0.01 a | 20.50 ± 0.04 g | 67.80 ± 0.09 c | 91.13 ± 1.21 b | 66.00 ± 0.01 d |
n-6/n-3 | 7.37 ± 0.01 e | 4.44 ± 0.01 e | 37.98 ± 0.03 d | 1002.55 ± 0.03 b | 1109.77 ± 0.47 a | 5.27 ± 0.08 e | 45.72 ± 0.28 d | 704.34 ± 0.34 c | 42.14 ± 0.02 d |
PUFAs/SFAs | 1.14 ± 0.01 f | 0.49 ± 0.01 h | 0.78 ± 0.01 g | 38.21 ± 0.11 a | 35.14 ± 0.04 b | 0.49 ± 0.01 h | 4.47 ± 0.02 d | 27.19 ± 0.14 c | 4.11 ± 0.01 e |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Faur, C.-A.; Ola, D.; Bunea, C.I.; Călugăr, A.; Bora, F.-D.; Dulf, F.; Bunea, A. Characterization of Anthocyanins and Lipid Components in Berries of Nine Red Grapevine Cultivars. Agronomy 2025, 15, 2443. https://doi.org/10.3390/agronomy15102443
Faur C-A, Ola D, Bunea CI, Călugăr A, Bora F-D, Dulf F, Bunea A. Characterization of Anthocyanins and Lipid Components in Berries of Nine Red Grapevine Cultivars. Agronomy. 2025; 15(10):2443. https://doi.org/10.3390/agronomy15102443
Chicago/Turabian StyleFaur, Cosmin-Alin, Dragoș Ola, Claudiu Ioan Bunea, Anamaria Călugăr, Florin-Dumitru Bora, Francisc Dulf, and Andrea Bunea. 2025. "Characterization of Anthocyanins and Lipid Components in Berries of Nine Red Grapevine Cultivars" Agronomy 15, no. 10: 2443. https://doi.org/10.3390/agronomy15102443
APA StyleFaur, C.-A., Ola, D., Bunea, C. I., Călugăr, A., Bora, F.-D., Dulf, F., & Bunea, A. (2025). Characterization of Anthocyanins and Lipid Components in Berries of Nine Red Grapevine Cultivars. Agronomy, 15(10), 2443. https://doi.org/10.3390/agronomy15102443