Net-Zero Emissions for Sustainable Food Production and Land Management
Author Contributions
Funding
Conflicts of Interest
References
- Chen, M. Food security or climate action. Nat. Clim. Change 2025, 15, 354–355. [Google Scholar] [CrossRef]
- Liu, B.; Guo, C.; Xu, J.; Zhao, Q.; Chadwick, D.; Gao, X.; Zhou, F.; Lakshmanan, P.; Wang, X.; Guan, X.; et al. Co-benefits for net carbon emissions and rice yields through improved management of organic nitrogen and water. Nat. Food 2024, 5, 241–250. [Google Scholar] [CrossRef]
- Bi, R.; Wang, B.; Xu, X.; Dong, Y.; Jiao, Y.; Xiong, Z. Biochar is superior to organic substitution for vegetable production—A revised approach for net ecosystem economic benefit. Agronomy 2024, 14, 2693. [Google Scholar] [CrossRef]
- Trueman, R.J.; Taneva, L.; Gonzalez-Meler, M.A.; Oechel, W.C.; BassiriRad, H. Carbon losses in soils previously exposed to elevated atmospheric CO2 in a chaparral ecosystem: Potential implications for a sustained biospheric C sink. J. Geochem. Explor. 2009, 102, 142–148. [Google Scholar] [CrossRef]
- Schmer, M.R.; Jin, V.L.; Wienhold, B.J. Sub-surface soil carbon changes affects biofuel greenhouse gas emissions. Biomass Bioenergy 2015, 81, 31–34. [Google Scholar]
- Zhou, J.; Li, B.; Xia, L.; Fan, C.; Xiong, Z. Organic-substitute strategies reduced carbon and reactive nitrogen footprints and gained net ecosystem economic benefit for intensive vegetable production. J. Clean. Prod. 2019, 225, 984–994. [Google Scholar] [CrossRef]
- Hyun, Y.H.; Gil, W.K.; Sang, Y.K.; Mozammel Haque, M.; Muhammad, I.K.; Pil, J.K. Effect of cover cropping on the net global warming potential of rice paddy soil. Geoderma 2017, 292, 49–58. [Google Scholar] [CrossRef]
- Lopez-Blanco, E.; Vaisanen, M.; Salmon, E.; Jones, C.P.; Schmidt, N.M.; Marttila, H.; Lohila, A.; Juutinen, S.; Scheller, J.; Christensen, T.R. The net ecosystem carbon balance (NECB) at catchment scales in the Arctic. Front. Environ. Sci. 2025, 13, 1544586. [Google Scholar]
- Zhang, J.; Tian, H.; You, Y.; Liang, X.; Ouyang, Z.; Pan, N.; Pan, S. Balancing non-CO2 GHG emissions and soil carbon change in U.S. rice addies: A retrospective meta-analysis and agricultural modeling study. AGU Adv. 2024, 5, e2023AV001052. [Google Scholar] [CrossRef]
- Jiang, L.; Li, S.; Zheng, H.; Zhang, T.; Li, J.; Tian, B.; Ma, J. Responses of soil water supply during the wheat growing season to agricultural management practice in Northern China: A meta-analysis. Field Crops Res. 2025, 321, 109686. [Google Scholar] [CrossRef]
- Fan, H.; Zhang, Y.; Li, J.; Jiang, J.; Waheed, A.; Wang, S.; Rasheed, S.M.; Zhang, L.; Zhang, R. Effects of organic fertilizer supply on soil properties, tomato yield, and fruit quality: A global meta-analysis. Sustainability 2023, 15, 2556. [Google Scholar] [CrossRef]
- Lei, R.; Wang, Y.; Zhou, J.; Xiang, H. Tap maize yield productivity in China: A meta-analysis of agronomic measures and planting density optimization. Agronomy 2025, 15, 861. [Google Scholar] [CrossRef]
- Xu, J.; Xiong, Z. Biochar amendments mitigate trace gas emissions in organic waste composting: A meta-analysis. Nitrogen. Cycl. 2025, 1, e5. [Google Scholar]
- Zhang, Z.; Yu, Z.; Zhang, Y.; Shi, Y. Finding the fertilization optimization to balance grain yield and soil greenhouse gas emissions under water-saving irrigation. Soil Tillage Res. 2021, 214, 105167. [Google Scholar] [CrossRef]
- Chen, Z.; Han, S.; Dong, Z.; Li, H.; Zhang, A. Trade-off between soil carbon sequestration and net ecosystem economic benefits for paddy fields under long-term application of biochar. Glob. Change Biol. Bioenergy 2024, 16, e13116. [Google Scholar] [CrossRef]
- Zhang, M.; Wang, F.; Chen, F.; Malemela, M.P.; Zhang, H. Comparison of three tillage systems in the wheat-maize system on carbon sequestration in the North China Plain. J. Clean. Prod. 2013, 54, 101–107. [Google Scholar] [CrossRef]
- Yang, Y.; Ti, J.; Zou, J.; Wu, Y.; Rees, R.M.; Harrison, M.T.; Li, W.; Huang, W.; Hu, S.; Liu, K.; et al. Optimizing crop rotation increases soil carbon and reduces GHG emissions without sacrificing yields. Agric. Ecosyst. Environ. 2023, 342, 108220. [Google Scholar] [CrossRef]
- Khan, P.; Safiul Azam, F.M.; Lian, T.; Abdelbacki, A.M.M.; Albaqami, M.; Jan, R.; Kim, K.; Wang, W. Physiological and biochemical responses of maize to elevated CO2 concentrations: Implications for growth and metabolism. Agronomy 2024, 14, 1751. [Google Scholar] [CrossRef]
- Liu, C.; Li, F.; Zhou, L.; Feng, Q.; Li, X.; Pan, C.; Le, W.; Chen, J.; Li, X.; Jia, Y.; et al. Effects of water management with plastic film in a semi-arid agricultural system on available soil carbon fractions. Eur. J. Soil Biol. 2013, 57, 9–12. [Google Scholar] [CrossRef]
- Shaikh, F.K.; Karim, S.; Zeadally, S.; Nebhen, J. Recent trends in internet-of-things-enabled sensor technologies for smart agriculture. IEEE Internet Things J. 2022, 9, 23583–23598. [Google Scholar] [CrossRef]
- Dagnaisser, L.S.; Santos, M.G.B.D.; Rita, A.V.S.; Cardoso, J.C.; Carvalho, D.F.; Mendonca, H.V. Microalgae as bio-fertilizer: A new strategy for advancing modern agriculture, wastewater bioremediation, and atmospheric carbon mitigation. Water Air Soil Pollut. 2022, 233, 477. [Google Scholar] [CrossRef]
- Ikuta, Y. Microagriculture-biofixation of CO2 using nitrogen-fixing microalgae in rice fields. Greenh. Gas Control Technol. 2003, 2, 1471–1476. [Google Scholar]
- Patra, A.K. Estimation of methane and nitrous oxide emissions from Indian livestock. J. Environ. Monit. 2012, 14, 2673–2684. [Google Scholar] [CrossRef] [PubMed]
- Fatima, A.; Singh, V.K.; Babu, S.; Singh, R.K.; Upadhyay, P.K.; Rathore, S.S.; Kumar, B.; Hasanain, M.; Parween, H. Food production potential and environmental sustainability of different integrated farming system models in northwest India. Front. Sustain. Food Syst. 2023, 7, 959464. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Xiong, Z.; Shang, J. Net-Zero Emissions for Sustainable Food Production and Land Management. Agronomy 2025, 15, 2420. https://doi.org/10.3390/agronomy15102420
Xiong Z, Shang J. Net-Zero Emissions for Sustainable Food Production and Land Management. Agronomy. 2025; 15(10):2420. https://doi.org/10.3390/agronomy15102420
Chicago/Turabian StyleXiong, Zhengqin, and Jianying Shang. 2025. "Net-Zero Emissions for Sustainable Food Production and Land Management" Agronomy 15, no. 10: 2420. https://doi.org/10.3390/agronomy15102420
APA StyleXiong, Z., & Shang, J. (2025). Net-Zero Emissions for Sustainable Food Production and Land Management. Agronomy, 15(10), 2420. https://doi.org/10.3390/agronomy15102420