S-Rich Biochar Enhances Cd Immobilization by Boosting Fe Transformation Under Decreasing pe + pH Conditions
Abstract
1. Introduction
2. Materials and Methods
2.1. Biochar Preparation and Characteristics
2.2. Experimental Design
2.3. Sample Collection and Analytical Methods
2.4. Data Processing and Analysis Statistics
3. Results
3.1. Changes in Soil pH and Eh
3.2. Changes of SO42− and Fe2+ Contents in Soil Pore Water
3.3. Changes in Weak Crystalline and Crystalline Iron Oxide Content in Soil
3.4. Changes in Soil Available Sulfur and AVS Content
3.5. Changes in Available Cadmium and Cadmium Speciation in Soil
3.6. The Effect of Molybdate on SO42−, Fe2+ and Cd in Pore Water
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Guo, Y.Q.; Li, X.Q.; Liang, L.; Lin, Z.; Su, X.T.; Zhang, W.C. Immobilization of cadmium in contaminated soils using sulfidated nanoscale zero-valent iron: Effectiveness and remediation mechanism. J. Hazard. Mater. 2021, 420, 126605. [Google Scholar] [CrossRef]
- Wang, J.; Jiang, Y.J.; Sun, J.; She, J.Y.; Yin, M.L.; Fang, F.; Xiao, T.F.; Song, G.; Liu, J. Geochemical transfer of cadmium in river sediments near a lead-zinc smelter. Ecotoxicol. Environ. Saf. 2020, 196, 110529. [Google Scholar] [CrossRef]
- Xue, D.W.; Jiang, H.; Deng, X.X.; Zhang, X.Q.; Wang, H.; Xu, X.B.; Hu, J.; Zeng, D.L.; Guo, L.B.; Qian, Q. Comparative proteomic analysis provides new insights into cadmium accumulation in rice grain under cadmium stress. J. Hazard. Mater. 2014, 280, 269–278. [Google Scholar] [CrossRef]
- Wang, J.; Yu, L.; Chen, W.S. Low pe + pH inhibits Cd transfer from paddy soil to rice tissues driven by S addition. Chemosphere 2023, 335, 139126. [Google Scholar] [CrossRef] [PubMed]
- Li, K.; Cao, C.L.; Ma, Y.B.; Su, D.C.; Li, J.M. Identification of cadmium bioaccumulation in rice (Oryza sativa L.) by the soil-plant transfer model and species sensitivity distribution. Sci. Total Environ. 2019, 692, 1022–1028. [Google Scholar] [CrossRef] [PubMed]
- Chen, H.B.; Qin, P.; Yang, X.; Bhatnagar, A.; Shaheen, S.M.; Rinklebe, J.; Wu, F.C.; Xu, S.; Che, L.; Wang, H.L. Sorption of diethyl phthalate and cadmium by pig carcass and green waste-derived biochars under single and binary systems. Environ. Res. 2021, 193, 110594. [Google Scholar] [CrossRef] [PubMed]
- Griethuysen, C.V.; Luitwieler, M.; Joziasse, J.; Koelmans, A.A. Temporal variation of trace metal geochemistry in floodplain lake sediment subject to dynamic hydrological conditions. Environ. Pollut. 2005, 137, 281–294. [Google Scholar] [CrossRef]
- Zhang, C.H.; Ge, Y.; Yao, H.; Chen, X.; Hu, M.K. Iron oxidation-reduction and its impacts on cadmium bioavailability in paddy soils: A review. Front. Environ. Sci. Eng. 2012, 6, 509–517. [Google Scholar] [CrossRef]
- Honma, T.; Ohba, H.; Kaneko-Kadokura, A.; Makino, T.; Nakamura, K.; Katou, H. Optimal Soil Eh, pH, and Water Management for Simultaneously Minimizing Arsenic and Cadmium Concentrations in Rice Grains. Environ. Technol. 2016, 50, 4178–4185. [Google Scholar] [CrossRef]
- Arao, T.; Kawasaki, A.; Baba, K.; Mori, S.; Matsumoto, S. Effects of Water Management on Cadmium and Arsenic Accumulation and Dimethylarsinic Acid Concentrations in Japanese Rice. Environ. Technol. 2009, 43, 9361–9367. [Google Scholar] [CrossRef]
- Li, X.Y.; Peng, P.Q.; Long, J.; Dong, X.; Jiang, K.; Hou, H.B. Plant-induced insoluble Cd mobilization and Cd redistribution among different rice cultivars. J. Clean. Prod. 2020, 256, 102494. [Google Scholar] [CrossRef]
- Lwin, C.S.; Seo, B.H.; Kim, H.U.; Owens, G.; Kim, K.R. Application of soil amendments to contaminated soils for heavy metal immobilization and improved soil quality-a critical review. Soil Sci. Plant Nutr. 2018, 64, 156–167. [Google Scholar] [CrossRef]
- Santorufo, L.; Maglione, G.; Costanzo, G.; De Tommaso, G.; De Paola, F.; Roviello, G.; Chianese, E.; Ferone, C.; Polimeno, F.; Riccardi, M.; et al. Evaluating the capability of tannic acid-modified biochar in sequestering metal ions and in enhancing soil health. Int. J. Environ. Sci. Technol. 2025, 22, 12843–12854. [Google Scholar] [CrossRef]
- Jiao, Z.Q.; Ge, S.J.; Liu, Y.F.; Wang, Y.Z.; Wang, Y.; Wang, Y.Y. Phosphate-enhanced Cd stabilization in soil by sulfur-doped biochar: Reducing Cd phytoavailability and accumulation in Brassica chinensis L. and shaping the microbial community. Environ. Pollut. 2025, 364, 125375. [Google Scholar] [CrossRef]
- Li, K.G.; Xu, W.J.; Song, H.J.; Bi, F.X.; Li, Y.H.; Jiang, Z.; Tao, Y.; Qu, J.H.; Zhang, Y. Superior reduction and immobilization of Cr(VI) in soil utilizing sulfide nanoscale zero-valent iron supported by phosphoric acid-modified biochar: Efficiency and mechanism investigation. Sci. Total Environ. 2024, 907, 168133. [Google Scholar] [CrossRef]
- Zheng, X.Y.; Wu, Q.J.; Huang, C.; Wang, P.; Cheng, H.; Sun, C.Y.; Zhu, J.; Xu, H.Y.; Ouyang, K.; Guo, J.; et al. Synergistic effect and mechanism of Cd(II) and As(III) adsorption by biochar supported sulfide nanoscale zero-valent iron. Environ. Res. 2023, 231, 116080. [Google Scholar] [CrossRef] [PubMed]
- Zhang, H.; Huang, H.Y.; Fang, Y.R.; Cai, J.M.; Lv, X.Y.; Wu, W.L.; Gu, Q.; Qian, R.; Yu, K.R.; Tang, K.H.D.; et al. Synthesis of magnetic biochar co-doped with sulfur, iron, and manganese via a novel modification method for simultaneous Cd and Pb remediation. Sep. Purif. Technol. 2025, 363, 132025. [Google Scholar] [CrossRef]
- Zhang, K.M.; Cen, R.L.; Moavia, H.; Shen, Y.; Ebihara, A.; Wang, G.J.; Yang, T.X.; Sakrabani, R.; Singh, K.; Feng, Y.F.; et al. The role of biochar nanomaterials in the application for environmental remediation and pollution control. Chem. Eng. J. 2024, 492, 152310. [Google Scholar] [CrossRef]
- Sui, F.F.; Kang, Y.X.; Wu, H.; Li, H.; Wang, J.B.; Joseph, S.; Munroe, P.; Li, L.Q.; Pan, G.X. Effects of iron-modified biochar with S-rich and Si-rich feedstocks on Cd immobilization in the soil-rice system. Ecotoxicol. Environ. Saf. 2021, 225, 112764. [Google Scholar] [CrossRef]
- Yuan, R.; Si, T.R.; Lu, Q.Q.; Liu, C.; Bian, R.J.; Liu, X.Y.; Zhang, X.H.; Zheng, J.F.; Cheng, K.; Joseph, S.; et al. Rape Straw Biochar Application Enhances Cadmium Immobilization by Promoting Formation of Sulfide and Poorly Crystallized Fe Oxide in Paddy Soils. Agronomy 2023, 13, 2693. [Google Scholar] [CrossRef]
- Hu, H.L.; Li, Z.H.; Xi, B.D.; Xu, Q.G.; Tan, W.B. Responses of bacterial taxonomic attributes to mercury species in rhizosphere paddy soil under natural sulphur-rich biochar amendment. Ecotoxicol. Environ. Saf. 2022, 229, 113058. [Google Scholar] [CrossRef]
- Wang, J.B.; Yuan, R.; Zhang, Y.H.; Si, T.R.; Li, H.; Duan, H.T.; Li, L.Q.; Pan, G.X. Biochar decreases Cd mobility and rice (Oryza sativa L.) uptake by affecting soil iron and sulfur cycling. Sci. Total Environ. 2022, 836, 155547. [Google Scholar] [CrossRef]
- Chen, X.; He, H.Z.; Chen, G.K.; Li, H.S. Effects of biochar and crop straws on the bioavailability of cadmium in contaminated soil. Sci. Rep. 2020, 10, 9528. [Google Scholar] [CrossRef]
- Weber, F.A.; Voegelin, A.; Kretzschmar, R. Multi-metal contaminant dynamics in temporarily flooded soil under sulfate limitation. Geochim. Cosmochim. Acta 2009, 73, 5513–5527. [Google Scholar] [CrossRef]
- Furuya, M.; Hashimoto, Y.; Yamaguchi, N. Time-Course Changes in Speciation and Solubility of Cadmium in Reduced and Oxidized Paddy Soils. Soil Sci. Soc. Am. J. 2016, 80, 870–877. [Google Scholar] [CrossRef]
- Zhu, M.; Zhang, L.J.; Zheng, L.W.; Zhuo, Y.; Xu, J.M.; He, Y. Typical Soil Redox Processes in Pentachlorophenol Polluted Soil Following Biochar Addition. Front. Microbiol. 2018, 9, 579. [Google Scholar] [CrossRef]
- Saquing, J.M.; Yu, Y.H.; Chiu, P.C. Wood-Derived Black Carbon (Biochar) as a Microbial Electron Donor and Acceptor. Environ. Sci. Technol. Lett. 2016, 3, 62–66. [Google Scholar] [CrossRef]
- Xu, Z.B.; Xu, X.Y.; Zhang, Y.; Yu, Y.L.; Cao, X.D. Pyrolysis-temperature depended electron donating and mediating mechanisms of biochar for Cr(VI) reduction. J. Hazard. Mater. 2020, 388, 121794. [Google Scholar] [CrossRef]
- Zhong, D.L.; Jiang, Y.; Zhao, Z.Z.; Wang, L.L.; Chen, J.; Ren, S.P.; Liu, Z.H.; Zhang, Y.R.; Tsang, D.C.W.; Crittenden, J.C. pH Dependence of Arsenic Oxidation by Rice-Husk-Derived Biochar: Roles of Redox-Active Moieties. Environ. Sci. Technol. 2019, 53, 9034–9044. [Google Scholar] [CrossRef]
- Zhang, C.; Nie, S.; Liang, J.; Zeng, G.M.; Wu, H.P.; Hua, S.S.; Liu, J.Y.; Yuan, Y.J.; Xiao, H.B.; Deng, L.J.; et al. Effects of heavy metals and soil physicochemical properties on wetland soil microbial biomass and bacterial community structure. Sci. Total Environ. 2016, 557, 785–790. [Google Scholar] [CrossRef]
- Wood, J.L.; Zhang, C.; Mathews, E.R.; Tang, C.; Franks, A.E. Microbial community dynamics in the rhizosphere of a cadmium hyper-accumulator. Sci. Rep. 2016, 6, 36067. [Google Scholar] [CrossRef]
- Xu, M.L.; Dai, W.J.; Zhao, Z.L.; Zheng, J.T.; Huang, F.; Mei, C.; Huang, S.T.; Liu, C.F.; Wang, P.; Xiao, R.B. Effect of rice straw biochar on three different levels of Cd-contaminated soils: Cd availability, soil properties, and microbial communities. Chemosphere 2022, 301, 134551. [Google Scholar] [CrossRef] [PubMed]
- Li, Y.P.; Li, X.; Kang, X.R.; Zhang, J.; Sun, M.J.; Yu, J.P.; Wang, H.; Pan, H.; Yang, Q.A.; Lou, Y.H.; et al. Effects of a novel Cd passivation approach on soil Cd availability, plant uptake, and microbial activity in weakly alkaline soils. Ecotoxicol. Environ. Saf. 2023, 253, 114631. [Google Scholar] [CrossRef]
- Duan, Z.H.; Chen, C.; Ni, C.L.; Xiong, J.; Wang, Z.; Cai, J.X.; Tan, W.F. How different is the remediation effect of biochar for cadmium contaminated soil in various cropping systems? A global meta-analysis. J. Hazard. Mater. 2023, 448, 130939. [Google Scholar] [CrossRef]
- Yang, X.; Pan, H.; Shaheen, S.M.; Wang, H.L.; Rinklebe, J. Immobilization of cadmium and lead using phosphorus-rich animal-derived and iron-modified plant-derived biochars under dynamic redox conditions in a paddy soil. Environ. Int. 2021, 156, 106628. [Google Scholar] [CrossRef]
- Qin, L.Y.; Wang, L.F.; Zhao, S.W.; Sun, X.Y.; Yu, L.; Wang, M.; Chen, S.B. A new insight into Cd reduction by flooding in paddy soil: The different dominant roles of Fe and S on Cd immobilization under fluctuant pe plus pH conditions. Sci. Total Environ. 2022, 847, 157604. [Google Scholar] [CrossRef]
- Leng, Z.R.; Wu, Y.M.; Li, J.; Nie, Z.Y.; Jia, H.; Yan, C.L.; Hong, H.L.; Wang, X.H.; Du, D.L. Phenolic root exudates enhance Avicennia marina tolerance to cadmium under the mediation of functional bacteria in mangrove sediments. Mar. Pollut. Bull. 2022, 185, 114227. [Google Scholar] [CrossRef]
- Leng, Z.R.; Liu, J.; He, C.J.; Wang, Z.Q.; He, S.B.; Du, D.L.; Li, J. Deposition of sulfur by Spartina alterniflora promoted its ecological adaptability in cadmium-polluted coastal wetlands. Bioresour. Technol. 2025, 419, 132069. [Google Scholar] [CrossRef] [PubMed]
- Jiang, J.; Dai, Z.X.; Sun, R.; Zhao, Z.J.; Dong, Y.; Hong, Z.N.; Xu, R.K. Evaluation of ferrolysis in arsenate adsorption on the paddy soil derived from an Oxisol. Chemosphere 2017, 179, 232–241. [Google Scholar] [CrossRef] [PubMed]
- Li, S.; Chen, S.; Wang, M.; Lei, X.; Han, Y. Redistribution of iron oxides in aggregates induced by pe + pH variation alters Cd availability in paddy soils. Sci. Total Environ. 2020, 752, 142164. [Google Scholar] [CrossRef]
- Meng, S.; Liu, H.; Yang, C.H.; Wei, Y.; Hou, D.L. Sorption/desorption differences among three ferrihydrites prepared by different synthesis methods. Appl. Surf. Sci. 2012, 258, 4449–4454. [Google Scholar] [CrossRef]
- Burton, E.D.; Bush, R.T.; Johnston, S.G.; Sullivan, L.A.; Keene, A.F. Sulfur biogeochemical cycling and novel Fe-S mineralization pathways in a tidally re-flooded wetland. Geochim. Cosmochim. Acta 2011, 75, 3434–3451. [Google Scholar] [CrossRef]
- Wang, J.; Wang, P.M.; Gu, Y.; Kopittke, P.M.; Zhao, F.J.; Wang, P. Iron-Manganese (Oxyhydro)oxides, Rather than Oxidation of Sulfides, Determine Mobilization of Cd during Soil Drainage in Paddy Soil Systems. Environ. Sci. Technol. 2019, 53, 2500–2508. [Google Scholar] [CrossRef]
- Flynn, T.M.; O’Loughlin, E.J.; Mishra, B.; DiChristina, T.J.; Kemner, K.M. Sulfur-mediated electron shuttling during bacterial iron reduction. Science 2014, 344, 1039–1042. [Google Scholar] [CrossRef] [PubMed]
- Si, T.R.; Yuan, R.; Qi, Y.J.; Zhang, Y.H.; Wang, Y.; Bian, R.J.; Liu, X.Y.; Zhang, X.H.; Joseph, S.; Li, L.Q.; et al. Enhancing soil redox dynamics: Comparative effects of Fe-modified biochar (N-Fe and S-Fe) on Fe oxide transformation and Cd immobilization. Environ. Pollut. 2024, 347, 123636. [Google Scholar] [CrossRef] [PubMed]
- Joseph, S.; Cowie, A.L.; Van Zwieten, L.; Bolan, N.; Budai, A.; Buss, W.; Cayuela, M.L.; Graber, E.R.; Ippolito, J.A.; Kuzyakov, Y.; et al. How biochar works, and when it doesn’t: A review of mechanisms controlling soil and plant responses to biochar. Glob. Change Biol. Bioenergy 2021, 13, 1731–1764. [Google Scholar] [CrossRef]
- Hui, C.; Liu, B.; Du, L.N.; Xu, L.G.; Zhao, Y.H.; Shen, D.S.; Long, Y.Y. Transformation of sulfidized nanoscale zero-valent iron particles and its effects on microbial communities in soil ecosystems. Environ. Pollut. 2022, 306, 119363. [Google Scholar] [CrossRef]
- Wu, Z.; Firmin, K.A.; Cheng, M.L.; Wu, H.; Si, Y.B. Biochar enhanced Cd and Pb immobilization by sulfate-reducing bacterium isolated from acid mine drainage environment. J. Clean. Prod. 2022, 366, 132823. [Google Scholar] [CrossRef]
- Zhang, J.; Qian, Y.F.; Wang, S.S.; Yin, W.Q.; Wang, B.; Yang, R.D.; Wang, X.Z. Effect and mechanism of biochar as a support on immobilization of different heavy metals by iron oxides in a multi-contaminated soil. J. Environ. Chem. Eng. 2023, 11, 109895. [Google Scholar] [CrossRef]
- Pan, X.M.; Zhang, S.R.; Zhong, Q.M.; Gong, G.S.; Wang, G.Y.; Guo, X.; Xu, X.X. Effects of soil chemical properties and fractions of Pb, Cd, and Zn on bacterial and fungal communities. Sci. Total Environ. 2020, 715, 136904. [Google Scholar] [CrossRef]
- Kappler, A.; Wuestner, M.L.; Ruecker, A.; Harter, J.; Halama, M.; Behrens, S. Biochar as an Electron Shuttle between Bacteria and Fe(III) Minerals. Environ. Sci. Technol. Lett. 2014, 1, 339–344. [Google Scholar] [CrossRef]
- Caporale, A.G.; Violante, A. Chemical Processes Affecting the Mobility of Heavy Metals and Metalloids in Soil Environments. Curr. Pollut. Rep. 2016, 2, 15–27. [Google Scholar] [CrossRef]
Properties | TL Soil | SY Soil | LB | HB |
---|---|---|---|---|
pH | 4.9 | 5.1 | 9.1 | 8.9 |
OM (g kg−1) | 23.7 | 29.7 | 425.5 | 460.9 |
CEC (cmol kg−1) | - | - | 50.96 | 55.69 |
TFe (g kg−1) | 15.9 | 23.9 | 5.28 | 6.31 |
TS (g kg−1) | 0.52 | 0.71 | 4.21 | 7.01 |
TP (g kg−1) | 0.39 | 0.84 | 5.42 | 7.36 |
TN (g kg−1) | 1.23 | 1.49 | 5.63 | 6.40 |
AK (mg kg−1) | 78.50 | 58.30 | - | - |
TK (g kg−1) | - | - | 18.4 | 22.8 |
TCd (g kg−1) | 2.32 | 0.56 | 0.48 | 0.63 |
TMn (g kg−1) | 0.18 | 0.41 | - | - |
TCa (g kg−1) | - | - | 37.92 | 44.98 |
TMg (g kg−1) | - | - | 5.93 | 7.53 |
TNa (g kg−1) | - | - | 11.71 | 11.41 |
AS (mg kg−1) | 64.2 | 83.6 | - | - |
Treatments | TL Soil Group | SY Soil Group |
---|---|---|
1 | TL soil (TL) | SY soil (SY) |
2 | TL soil + 1% LB (TLB) | SY soil + 1% LB (SLB) |
3 | TL soil + 1% HB (THB) | SY soil + 1% HB (SHB) |
4 | TL soil + molybdate (TLM) | SY soil + molybdate (SYM) |
5 | TL soil + 1% LB + molybdate (TLBM) | SY soil + 1% LB + molybdate (SLBM) |
6 | TL + 1% HB + molybdate (THBM) | SY soil + 1% HB + molybdate (SHBM) |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Sui, F.; Qi, Y.; Ma, J.; Cui, L.; Quan, G.; Yan, J. S-Rich Biochar Enhances Cd Immobilization by Boosting Fe Transformation Under Decreasing pe + pH Conditions. Agronomy 2025, 15, 2423. https://doi.org/10.3390/agronomy15102423
Sui F, Qi Y, Ma J, Cui L, Quan G, Yan J. S-Rich Biochar Enhances Cd Immobilization by Boosting Fe Transformation Under Decreasing pe + pH Conditions. Agronomy. 2025; 15(10):2423. https://doi.org/10.3390/agronomy15102423
Chicago/Turabian StyleSui, Fengfeng, Yanjie Qi, Jianjun Ma, Liqiang Cui, Guixiang Quan, and Jinlong Yan. 2025. "S-Rich Biochar Enhances Cd Immobilization by Boosting Fe Transformation Under Decreasing pe + pH Conditions" Agronomy 15, no. 10: 2423. https://doi.org/10.3390/agronomy15102423
APA StyleSui, F., Qi, Y., Ma, J., Cui, L., Quan, G., & Yan, J. (2025). S-Rich Biochar Enhances Cd Immobilization by Boosting Fe Transformation Under Decreasing pe + pH Conditions. Agronomy, 15(10), 2423. https://doi.org/10.3390/agronomy15102423