Agricultural Pollution: Toxicology and Remediation Strategies

A special issue of Agronomy (ISSN 2073-4395). This special issue belongs to the section "Soil and Plant Nutrition".

Deadline for manuscript submissions: 1 September 2025 | Viewed by 2103

Special Issue Editors


E-Mail Website
Guest Editor
Guangdong Laboratory for Lingnan Modern Agriculture, Guangdong Provincial Key Laboratory of Agricultural & Rural Pollution Abatement and Environmental Safety, College of Natural Resources and Environment, South China Agricultural University, Guangzhou 510642, China
Interests: microalgae biotechnology; ecotoxicology and bioremediation; agricultural pollutants

E-Mail Website
Guest Editor
Guangdong Laboratory for Lingnan Modern Agriculture, Guangdong Provincial Key Laboratory of Agricultural & Rural Pollution Abatement and Environmental Safety, College of Natural Resources and Environment, South China Agricultural University, Guangzhou 510642, China.
Interests: soil pollution; ecological restoration

Special Issue Information

Dear Colleagues,

The agricultural environment is facing a range of issues such as waste pollution, vegetation deterioration, soil and water pollution, and others, as a result of the rapid growth of economies and populations. Heavy metals, pesticides, and other dangerous contaminants, like perfluorinated compounds, nanomaterials, antibiotics, antibiotic resistance genes, and microplastics, have recently garnered a great deal of attention as these problems jeopardize human health and the sustainable growth of communities, in addition to upsetting the ecological balance of these areas. It is now essential to support the rehabilitation of the agricultural environment and implement practical improvements. Furthermore, the need for low-carbon environmental remediation solutions has grown dramatically in light of global warming. We have therefore launched a Special Issue of Agronomy on “Agricultural Pollution: Toxicology and Remediation Strategies” based on the aforementioned circumstances, with an emphasis on:

  • Toxicological study of agricultural environmental pollutants;
  • Research on green and low-carbon remediation technologies for agricultural environmental pollutants;
  • Research on reduction or substitution technologies for chemical fertilizers and pesticides;
  • Research on the resource utilization of agricultural environmental pollutants.

Dr. Hongzhi He
Prof. Dr. Guikui Chen
Guest Editors

Manuscript Submission Information

Manuscripts should be submitted online at www.mdpi.com by registering and logging in to this website. Once you are registered, click here to go to the submission form. Manuscripts can be submitted until the deadline. All submissions that pass pre-check are peer-reviewed. Accepted papers will be published continuously in the journal (as soon as accepted) and will be listed together on the special issue website. Research articles, review articles as well as short communications are invited. For planned papers, a title and short abstract (about 100 words) can be sent to the Editorial Office for announcement on this website.

Submitted manuscripts should not have been published previously, nor be under consideration for publication elsewhere (except conference proceedings papers). All manuscripts are thoroughly refereed through a single-blind peer-review process. A guide for authors and other relevant information for submission of manuscripts is available on the Instructions for Authors page. Agronomy is an international peer-reviewed open access monthly journal published by MDPI.

Please visit the Instructions for Authors page before submitting a manuscript. The Article Processing Charge (APC) for publication in this open access journal is 2600 CHF (Swiss Francs). Submitted papers should be well formatted and use good English. Authors may use MDPI's English editing service prior to publication or during author revisions.

Keywords

  • pollution
  • agriculture
  • toxicology
  • remediation

Benefits of Publishing in a Special Issue

  • Ease of navigation: Grouping papers by topic helps scholars navigate broad scope journals more efficiently.
  • Greater discoverability: Special Issues support the reach and impact of scientific research. Articles in Special Issues are more discoverable and cited more frequently.
  • Expansion of research network: Special Issues facilitate connections among authors, fostering scientific collaborations.
  • External promotion: Articles in Special Issues are often promoted through the journal's social media, increasing their visibility.
  • Reprint: MDPI Books provides the opportunity to republish successful Special Issues in book format, both online and in print.

Further information on MDPI's Special Issue policies can be found here.

Published Papers (3 papers)

Order results
Result details
Select all
Export citation of selected articles as:

Research

17 pages, 3113 KiB  
Article
Optimizing Nitrogen Management to Enhance Growth and Minimize Pollution Risk in Pennisetum hydridum Cultivation
by Farhan Nabi, Zicheng Yi, Rakhwe Kama, Sumbal Sajid and Huashou Li
Agronomy 2025, 15(6), 1452; https://doi.org/10.3390/agronomy15061452 - 14 Jun 2025
Viewed by 463
Abstract
Nitrogen fertilization plays a crucial role in optimizing plant growth, but excessive application can lead to nutrient leaching, environmental pollution, and soil degradation. This study investigates the impact of nitrogen application rates (0–400 kg·ha−1) on the growth, biomass allocation, and carbon [...] Read more.
Nitrogen fertilization plays a crucial role in optimizing plant growth, but excessive application can lead to nutrient leaching, environmental pollution, and soil degradation. This study investigates the impact of nitrogen application rates (0–400 kg·ha−1) on the growth, biomass allocation, and carbon sequestration capacity of Pennisetum hydridum (Imperial Bamboo, PHY), a fast-growing tropical grass increasingly used for forage and bioenergy production in subtropical regions. Despite its agronomic potential, nutrient management strategies for P. hydridum remain poorly understood. We hypothesized that moderate nitrogen application (100–200 kg·ha−1) would enhance growth and nutrient use efficiency, while maintaining environmental sustainability. Results show that moderate nitrogen levels (100–200 kg·ha−1) significantly enhanced biomass production, with the highest aboveground biomass observed at 180 days under T2 (100 kg·ha−1) and T3 (200 kg·ha−1), reaching 166.5 g/plant and 140.6 g/plant, respectively. In contrast, excessive nitrogen application (400 kg·ha−1) led to a decline in biomass (T4, 76.8 g/plant) and impaired carbon sequestration efficiency. In addition, it was found that nitrogen uptake increased with moderate fertilization, with T2 and T3 showing optimal nitrogen use efficiency. Soil analysis revealed that soil organic matter and total nitrogen content were positively correlated with root biomass, with significant linear relationships between soil nitrogen, carbon/nitrogen ratios, and PHY biomass. Specifically, the total nitrogen content in rhizomes and fibrous roots showed coefficients of determination (R2) of 0.65 and 0.67, indicating a strong correlation with soil nitrogen levels. Furthermore, nitrogen application increased soil nitrate (NO3-N) and ammonium (NH4+-N) concentrations, with T4 showing the highest levels at 90 days (41.35 mg/kg for NO3-N and 15.6 mg/kg for NH4+-N), signaling potential nutrient loss to the environment. These findings underscore the importance of sustainable nitrogen management for maximizing the growth potential of P. hydridum, while minimizing environmental risks in subtropical agricultural systems. Full article
(This article belongs to the Special Issue Agricultural Pollution: Toxicology and Remediation Strategies)
Show Figures

Figure 1

17 pages, 1489 KiB  
Article
Nanomaterials Reduce Cadmium Bioavailability in Paddy Soils Through Redox-Driven Immobilization and Microbial Dynamics
by Buyun Du, Jiasai Fei, Laiyong You, Jing Zhou and Jun Zhou
Agronomy 2025, 15(6), 1423; https://doi.org/10.3390/agronomy15061423 - 11 Jun 2025
Viewed by 806
Abstract
Cadmium (Cd) mobilization in paddy soils during redox fluctuations poses significant risks to rice safety. This study investigated the efficacy of nano-calcium carbonate (NCC), nano-hydroxyapatite (NHAP), and their composite (C+P) in immobilizing Cd under simulated flooding–drainage cycles. Soil treatments (0.5% and 1.0% w [...] Read more.
Cadmium (Cd) mobilization in paddy soils during redox fluctuations poses significant risks to rice safety. This study investigated the efficacy of nano-calcium carbonate (NCC), nano-hydroxyapatite (NHAP), and their composite (C+P) in immobilizing Cd under simulated flooding–drainage cycles. Soil treatments (0.5% and 1.0% w/w) were subjected to 40 day anaerobic and 20 day aerobic incubation. The results demonstrated that NCC and C+P elevated the soil pH by 1.35–1.39 and 0.72–1.01 units during the anaerobic and aerobic phases, respectively. These amendments suppressed Fe(II) and Mn(II) release by 41–75%, correlating with reduced Cd bioavailability. While nanomaterials minimally influenced Cd speciation during flooding, aerobic conditions triggered a marked shift: residual Cd fractions increased by 80.8–116.4% under NCC, driven by CdCO3 precipitation and phosphate complexation. Cd release rates decreased by 53.6–66.8% in NCC and C+P treatments during oxidation. Microbial analysis revealed diminished bacterial diversity but enriched Firmicutes (up to 58.9%), which positively correlated with pH and residual Cd. Redundancy analysis identified pH and Fe/Mn dynamics as key regulators of the microbial community structure. NCC emerged as the most effective amendment. This study highlights the potential of NCC-based strategies for mitigating Cd risks in acidic paddy soils, particularly during post-flooding drainage. Full article
(This article belongs to the Special Issue Agricultural Pollution: Toxicology and Remediation Strategies)
Show Figures

Figure 1

16 pages, 2358 KiB  
Article
Effectiveness of Biochar on Cd Migration and Bioaccumulation in a Multi-Species Alkaline Fluvo-Aquic Soil System
by Dongqin Li, Changhong Lai, Hongzhi He, Dian Wen, Yiran Cao, Zhichao Wu, Furong Li, Hanzhi Shi, Xu Wang and Guikui Chen
Agronomy 2025, 15(6), 1276; https://doi.org/10.3390/agronomy15061276 - 22 May 2025
Viewed by 426
Abstract
Cadmium (Cd) contamination in alkaline soils threatens wheat safety in northern China. This study evaluates biochar’s dual role in Cd remediation and ecological trade-offs using a multi-species soil system (wheat–earthworm–soil). Biochar (Pennisetum hydridum) was applied to Cd-contaminated alkaline fluvo-aquic soils under controlled conditions. [...] Read more.
Cadmium (Cd) contamination in alkaline soils threatens wheat safety in northern China. This study evaluates biochar’s dual role in Cd remediation and ecological trade-offs using a multi-species soil system (wheat–earthworm–soil). Biochar (Pennisetum hydridum) was applied to Cd-contaminated alkaline fluvo-aquic soils under controlled conditions. The results revealed that biochar increased soil pH (8.6–9.6) and reduced CaCl2-extractable Cd by 30–45% in the topsoil (0–20 cm), lowering shoot Cd accumulation in wheat by 42–47%. However, alkaline stress from biochar suppressed wheat biomass by 42%, while earthworm Cd concentrations rose 30–45%, correlating with reduced survival (75% vs. 85–87% in controls). Structural equation modeling identified pH-driven chemisorption as the primary Cd immobilization mechanism, yet biochar amplified ecotoxicity to soil fauna. These findings highlight the need for balanced strategies to optimize biochar’s benefits in alkaline agroecosystems. Full article
(This article belongs to the Special Issue Agricultural Pollution: Toxicology and Remediation Strategies)
Show Figures

Figure 1

Back to TopTop