Editor’s Choice Articles

Editor’s Choice articles are based on recommendations by the scientific editors of MDPI journals from around the world. Editors select a small number of articles recently published in the journal that they believe will be particularly interesting to readers, or important in the respective research area. The aim is to provide a snapshot of some of the most exciting work published in the various research areas of the journal.

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
17 pages, 2282 KB  
Systematic Review
Association of Bisphenol Exposure and Serum Hypothalamic–Pituitary–Thyroid Axis Hormone Levels in Adults and Pregnant Women: A Systematic Review and Meta-Analysis
by Mazhar Sultan, Xuan Ma, Qiurun Yu, Francis Manyori Bigambo, Yufeng Tang, Natasha Chitakwa, Farah Kafauit, Qinrou Chen, Quanquan Guan and Yankai Xia
Toxics 2025, 13(10), 836; https://doi.org/10.3390/toxics13100836 - 30 Sep 2025
Viewed by 1052
Abstract
Background: Bisphenols (BPs) are present in medical instruments, plastic containers, and personal care products (PCPs). Bisphenol A has been replaced by its alternatives, bisphenol S, F, AF, and B. Due to the awareness of their toxicity, mixed exposure to these alternatives at the [...] Read more.
Background: Bisphenols (BPs) are present in medical instruments, plastic containers, and personal care products (PCPs). Bisphenol A has been replaced by its alternatives, bisphenol S, F, AF, and B. Due to the awareness of their toxicity, mixed exposure to these alternatives at the regional level has been given less attention; there is a need to study this area of research. This meta-analysis examined the exposure of urinary bisphenol A and its metabolites to blood Hypothalamic–Pituitary–Thyroid axis hormones (HPT axis hormones) in pregnant women and adult males and females. We searched Embase, PubMed, Web of Science, Cochrane Library, and CINAHL until 8 January 2025, yielding 4588 articles using the PECO framework. Quality assessment was done using AHRQ: Agency for Healthcare Research and Quality for cross-sectional and NOS: Newcastle Ottawa Scale for cohort studies, with combined exposure evaluated using random and fixed-effect models. The I2 test assessed heterogeneity. We included eighteen studies for the final analysis. Fixed-effect model estimates revealed that BPA is negatively associated with thyroid-stimulating hormone (TSH) in female and male adults (β = −0.02; 95% CI = −0.04 to −0.01); (β = −0.08; 95% CI = −0.14 to −0.02). In Females, BPA was positively associated with free thyroxine, FT4 (β = 0.001, 95% CI, 0.001 to 0.001). In the male group, BPA was negatively associated with FT4 (β = −0.001, 95% CI, −0.001 to −0.001). As per pregnant women, there was no association found between exposure to bisphenols and total Thyroxine (TT4), FT4, and TSH in both trimesters (β = 0.010, 95% CI = −0.030 to 0.050); (β = 0.001, 95% CI = −0.010 to 0.010); (β = −0.001, 95% CI = −0.010 to 0.001), respectively, for early pregnancy. Bisphenols can significantly influence HPT axis hormones in adult males, females, and pregnant women. Gender-based studies were observed, concluding that adult females are more affected by bisphenol exposures than adult males. The subgroup analysis based on the regions did not reveal any associations. Full article
Show Figures

Graphical abstract

18 pages, 9086 KB  
Article
Effects of the Novel Triazole Fungicide Ipfentrifluconazole on Different Endpoints in Zebrafish Larvae
by Mingfei Xu, Yilin Huang, Mingrong Qian, Yuanxiang Jin and Hu Zhang
Toxics 2025, 13(10), 830; https://doi.org/10.3390/toxics13100830 - 29 Sep 2025
Viewed by 614
Abstract
The potential hazards of triazole fungicides to non-target organisms necessitate environmental risk assessment. This study, therefore, focused on characterizing the differential toxicity of the enantiomers of Ipfentrifluconazole (IFZ), a new triazole fungicide, in zebrafish larvae using a multi-endpoint approach. Acute toxicity tests determined [...] Read more.
The potential hazards of triazole fungicides to non-target organisms necessitate environmental risk assessment. This study, therefore, focused on characterizing the differential toxicity of the enantiomers of Ipfentrifluconazole (IFZ), a new triazole fungicide, in zebrafish larvae using a multi-endpoint approach. Acute toxicity tests determined the LC50 values of 1.709 mg/L for rac-IFZ, 1.531 mg/L for (+)-IFZ, and 1.809 mg/L for (−)-IFZ, indicating a higher toxicity of the (+)-enantiomer. To avoid overt mortality while revealing organ-level effects, we chose a concentration of approximately 20% of the LC50 of (+)-IFZ, which is 340 μg/L, as the exposure concentration. Exposure to IFZ induced developmental defects, including swim bladder malformation, cardiac blood pooling, and metabolic disturbances during the early developmental stage of zebrafish. Additionally, cardiac and hepatic development and function were disrupted in zebrafish larvae following IFZ exposure. Biochemical and transcriptomic analyses revealed distinct toxic mechanisms: (+)-IFZ primarily disrupted lipid metabolism through alterations in PPAR signaling pathway and fatty acid degradation, while (−)-IFZ significantly impaired cardiac function by affecting adrenergic signaling in cardiomyocytes and cardiac muscle contraction. Rac-IFZ mainly influenced drug metabolism, particularly cytochrome P450-related pathways. These findings demonstrated the toxic effects of IFZ, emphasizing the need for evaluating environmental and health risks of chiral pesticides. The study provides valuable insights into the molecular mechanisms underlying IFZ toxicity. Full article
(This article belongs to the Section Ecotoxicology)
Show Figures

Graphical abstract

19 pages, 1782 KB  
Article
Unexpected High Blood Lead Levels in a Remote Indigenous Community in the Northeastern Peruvian Amazon
by Pedro Mayor, Guillem Rius-Taberner, Gabriela M. Ulloa and Martí Orta-Martínez
Toxics 2025, 13(10), 826; https://doi.org/10.3390/toxics13100826 - 27 Sep 2025
Viewed by 875
Abstract
Recent studies suggest that Pb-based ammunition could be an important route of Pb exposure for Indigenous Peoples in tropical rainforests. We analyzed blood lead levels (BLL) and isotopic signatures in 111 humans, 97 wild animals, 81 fish, and potential environmental Pb sources in [...] Read more.
Recent studies suggest that Pb-based ammunition could be an important route of Pb exposure for Indigenous Peoples in tropical rainforests. We analyzed blood lead levels (BLL) and isotopic signatures in 111 humans, 97 wild animals, 81 fish, and potential environmental Pb sources in an Indigenous community in the remote and well-preserved Peruvian Amazon with no history of industrial activity. Median BLL was 11.74 μg dL−1, with BLL ≥ 5 µg dL−1 in 95.8% children <12-yo and 94.5% adults. Pb concentrations in wild animals were 7.00 ± 22.40 mg kg−1 DW in liver, 0.06 ± 0.09 mg kg−1 DW in fish muscle tissues, 17.1 ± 10.8 mg kg−1 in soils and 3.4–3.8 mg L−1 in the main river, although 0.43-0.53 mg L−1 were the Pb levels in decanted water used for drinking and cooking. The similarity of isotopic signatures (207/206Pb and 208/206Pb) shows that the main Pb sources for humans are river waters (97.6%) and Pb-based ammunition (78.7%). Fish and wildlife act as Pb transporters from water, and wildlife act as Pb transporter from ammunition. Evidence of high human BLL in a remote, non-industrialized Amazonian area demonstrates the urgency of designing regional policies that include health prevention measures, focused on drinking water filtration systems and the use of non-toxic, Pb-free ammunitions. Full article
Show Figures

Figure 1

27 pages, 2965 KB  
Article
Exogenous Spermidine Induces Cadmium Stress Tolerance in Cucumber Seedlings by Promoting Plant Growth and Defense System
by Guangchao Yu, Ming Wei, Zhipeng Wang, Lian Jia and Yue Qu
Toxics 2025, 13(10), 822; https://doi.org/10.3390/toxics13100822 - 26 Sep 2025
Viewed by 499
Abstract
This study aims to investigate the role of exogenous spermidine (Spd) in mitigating the adverse effects of cadmium (Cd) stress on the growth and development of cucumber (Cucumis sativus). The cucumber cultivar “Xintaimici” was used as the experimental material, and a [...] Read more.
This study aims to investigate the role of exogenous spermidine (Spd) in mitigating the adverse effects of cadmium (Cd) stress on the growth and development of cucumber (Cucumis sativus). The cucumber cultivar “Xintaimici” was used as the experimental material, and a hydroponic experiment was carried out. Based on a baseline Cd concentration of 10 mg·L−1, Spd was supplemented at concentrations of 0.05, 0.1, 0.2, 0.4, and 0.5 mM, resulting in seven treatment groups: control group (CK), S0 group (Cd-only treatment, 10 mg·L−1 Cd + 0 mM Spd), S1+ Cd group (10 mg·L−1 Cd + 0.05 mM Spd), S2+ Cd group (10 mg·L−1 Cd + 0.1 mM Spd), S3+ Cd group (10 mg·L−1 Cd + 0.2 mM Spd), S4+ Cd group (10 mg·L−1 Cd + 0.4 mM Spd), and S5+ Cd group (10 mg·L−1 Cd + 0.5 mM Spd). This study analyzed the regulatory effects of Spd on the growth and development, antioxidant capacity and cadmium accumulation characteristics of cucumber seeds and seedlings. It was found that cadmium stress significantly inhibited their growth process and led to a decline in multiple physiological indicators. Under a Cd concentration of 10 mg·L−1, the application of 0.2 mM Spd significantly improved these parameters. During the seedling stage, the application of 0.2 mM Spd under Cd stress significantly enhanced the activities of superoxide dismutase (SOD), peroxidase (POD), catalase (CAT), and ascorbate peroxidase (APX), as well as the content of soluble proteins, while significantly reducing malondialdehyde (MDA) levels. Cd content analysis revealed that 0.2 mM Spd promoted Cd accumulation in roots while suppressing its translocation to young leaves, thereby reducing Cd accumulation in aboveground tissues. Gene expression analysis demonstrated that this treatment significantly upregulated the expression levels of the phytochelatin synthase gene (CsPCS1) and the gene associated with reduced glutathione synthesis (CsGSHS). In conclusion, the exogenous application of 0.2 mM Spd effectively alleviates oxidative damage and osmotic stress induced by Cd stress in cucumber, promotes plant growth, and significantly enhances Cd tolerance. Full article
Show Figures

Graphical abstract

24 pages, 5860 KB  
Review
Mapping the Rise in Machine Learning in Environmental Chemical Research: A Bibliometric Analysis
by Bojana Stanic and Nebojsa Andric
Toxics 2025, 13(10), 817; https://doi.org/10.3390/toxics13100817 - 26 Sep 2025
Viewed by 819
Abstract
Machine learning (ML) is reshaping how environmental chemicals are monitored and how their hazards are evaluated for human health. Here, we mapped this landscape by analyzing 3150 peer-reviewed articles (1985–2025) from the Web of Science Core Collection. Co-citation, co-occurrence, and temporal trend analyses [...] Read more.
Machine learning (ML) is reshaping how environmental chemicals are monitored and how their hazards are evaluated for human health. Here, we mapped this landscape by analyzing 3150 peer-reviewed articles (1985–2025) from the Web of Science Core Collection. Co-citation, co-occurrence, and temporal trend analyses in VOSviewer and R reveal an exponential publication surge from 2015, dominated by environmental science journals, with China and the United States leading in output. Eight thematic clusters emerged, centered on ML model development, water quality prediction, quantitative structure–activity applications, and per-/polyfluoroalkyl substances, with XGBoost and random forests as the most cited algorithms. A distinct risk assessment cluster indicates migration of these tools toward dose–response and regulatory applications, yet keyword frequencies show a 4:1 bias toward environmental endpoints over human health endpoints. Emerging topics include climate change, microplastics, and digital soil mapping, while lignin, arsenic, and phthalates appear as fast-growing but understudied chemicals. Our findings expose gaps in chemical coverage and health integration. We recommend expanding the substance portfolio, systematically coupling ML outputs with human health data, adopting explainable artificial intelligence workflows, and fostering international collaboration to translate ML advances into actionable chemical risk assessments. Full article
(This article belongs to the Section Novel Methods in Toxicology Research)
Show Figures

Figure 1

15 pages, 1362 KB  
Article
Effects of Malic Acid on Cadmium Uptake and Translocation and Essential Element Accumulation in Rice
by Shuo Zhang, Yiteng Zhang, Guoyi Lv, Tianqi Liu, Zhongqi Liu, Yubo Jiang, Yubo Hao, Yang Yu, Wenjun Dong and Chunrong Qian
Toxics 2025, 13(10), 811; https://doi.org/10.3390/toxics13100811 - 24 Sep 2025
Cited by 2 | Viewed by 517
Abstract
Cadmium (Cd) contamination poses a serious threat to rice safety and productivity. This study investigated the potential of malic acid (MA), a key metabolic organic acid, to mitigate Cd toxicity and its genotype-dependent effects on cadmium uptake and essential element homeostasis in rice. [...] Read more.
Cadmium (Cd) contamination poses a serious threat to rice safety and productivity. This study investigated the potential of malic acid (MA), a key metabolic organic acid, to mitigate Cd toxicity and its genotype-dependent effects on cadmium uptake and essential element homeostasis in rice. Using hydroponic experiments with multiple genotypes, we found that MA application (0.5–1.5 mmol·L−1) significantly reduced Cd accumulation in both roots and shoots, with the most effective reduction (up to 68.0%) achieved at 1.5 mmol·L−1. Notably, genotype X24 was a low-Cd accumulator, while genotypes 20, 58, and 65 were high accumulators. Beyond Cd reduction, this study reveals the profound and genotype-specific modulation of nutrient homeostasis by MA, including consistent suppression of K and enhancement of Ca across genotypes, and highly divergent responses in Mg, Mn, Fe, and Zn accumulation. Furthermore, MA dramatically alleviated Cd-induced inhibition of root morphology, particularly in the high-Cd genotype 58, increasing root length and tip number by 42.8% and 57.8%, respectively. Our results provide novel insights into the genotype-dependent rebalancing of essential elements under MA amendment, highlighting the crucial role of genetic background in plant responses to organic acid treatments. These findings provide a mechanistic basis for developing MA-based foliar conditioners and genotype-specific strategies for managing Cd contamination in rice. Full article
Show Figures

Graphical abstract

41 pages, 2278 KB  
Review
Heavy Metals and Microplastics as Emerging Contaminants in Bangladesh’s River Systems: Evidence from Urban–Industrial Corridors
by Raju Kumar Das, Mongsathowai Marma, Al Mizan, Gang Chen and Md Shahin Alam
Toxics 2025, 13(9), 803; https://doi.org/10.3390/toxics13090803 - 22 Sep 2025
Cited by 2 | Viewed by 2884
Abstract
Urban industrialization is a major driver of water pollution, particularly through emerging contaminants that pose significant health risks for humans and ecosystems. This critical review focuses on Bangladesh’s Buriganga and Dhaleshwari rivers, which pass through highly industrialized and urban areas, analyzing contaminant types, [...] Read more.
Urban industrialization is a major driver of water pollution, particularly through emerging contaminants that pose significant health risks for humans and ecosystems. This critical review focuses on Bangladesh’s Buriganga and Dhaleshwari rivers, which pass through highly industrialized and urban areas, analyzing contaminant types, sources, pathways, and impacts. By synthesizing data from studies published between 2005 and 2024, the paper examines pollutants such as heavy metals (e.g., Cr, Cd, Pb, Ni, Zn, Hg, As, Mn, Cu, Fe) and microplastics in water, sediments, and biota. The Buriganga River shows extreme heavy metal contamination, with surface water Cr concentrations reaching up to 167,160 μg/L, Pb up to 3830 μg/L, and Fe up to 30,000 μg/L, and sediment Cr up to 4249 μg/g, Pb up to 3312 μg/g, and Fe up to 15,435 μg/g. In contrast, the Dhaleshwari River exhibits elevated but comparatively lower heavy metal concentrations in surface water (e.g., Cr up to 3350 μg/L; Cd up to 1890 μg/L; Pb up to 1320 μg/L; Ni up to 1732 μg/L; Fe up to 6040 μg/L) and sediments (Cr up to 282 μg/g; Fe up to 14,375 μg/g). Microplastic contamination in Buriganga is widespread across water, sediments, and biota and dominated by polymers such as polyethylene (PE), polypropylene (PP), and polyethylene terephthalate (PET). Industrial discharges, particularly from the textile, leather, and metal processing industries, are identified as primary sources for heavy metals and microplastics. Additional inputs from domestic waste, agricultural runoff, and municipal sewage intensify pollution, with Cr, Cd, and Pb notably frequently exceeding safety thresholds. Microplastics, originating from municipal waste and atmospheric deposition, persist in these rivers, posing ecological and public health risks. The persistence and bioaccumulation of heavy metals and microplastics threaten aquatic biodiversity by disrupting food chains and pose significant risks to local communities that depend on these rivers for agriculture, fishing, and daily water use. This review highlights the urgent need for comprehensive bioaccumulation studies, long-term monitoring, and enhanced detection techniques to better assess contamination levels. Strengthening environmental regulations, improving waste management, and adopting sustainable industrial practices are critical to mitigating emerging contaminant impacts and safeguarding these vital river ecosystems and public health. Full article
Show Figures

Graphical abstract

14 pages, 2587 KB  
Article
Mercury Exposure, Gene Expression, and Intelligence Quotient in Afro-Descendant Children from Two Colombian Regions
by Javier Galvis-Ballesteros, Margareth Duran-Izquierdo, Juan Valdelamar-Villegas, Lucellys Sierra-Marquez and Jesus Olivero-Verbel
Toxics 2025, 13(9), 786; https://doi.org/10.3390/toxics13090786 - 17 Sep 2025
Viewed by 2151
Abstract
The impact of mercury (Hg) on biological systems is well documented; however, the long-term effects of low-level exposure in children remain unclear, particularly with respect to oxidative stress and cognitive outcomes. This study evaluated Hg exposure and its associations with the gene expression [...] Read more.
The impact of mercury (Hg) on biological systems is well documented; however, the long-term effects of low-level exposure in children remain unclear, particularly with respect to oxidative stress and cognitive outcomes. This study evaluated Hg exposure and its associations with the gene expression and intelligence quotient (IQ) in two Afro-descendant child populations in Colombia. Hair total mercury (T-Hg) was quantified in 163 children under 7 years old, along with their sociodemographic data. Significant differences (p < 0.05) were found in fish consumption and mean hair T-Hg concentrations between children from Mahates (2.66 ± 0.30 meals/week; 0.32 ± 0.03 µg/g) and Zanjón (1.24 ± 0.09 meals/week; 0.24 ± 0.01 µg/g). The gene expression analysis revealed higher SOD1 expression in Mahates. The mean IQ scores were higher in Zanjón (74.7) than those in Mahates (71.7). Overall, Spearman’s correlation analysis showed no significant associations (p > 0.05) between T-Hg and the measured variables. The principal component analysis (PCA) revealed a clear separation between populations: Mahates, associated with a higher mercury burden and the upregulation of stress-response genes, and Zanjón, characterized by a better cognitive performance and lower mercury exposure. These findings suggest that despite the low overall exposure and non-significant bivariate correlations, the communities displayed distinct profiles, highlighting the value of integrated molecular–cognitive biomonitoring and motivate longitudinal studies addressing co-exposures and socioeconomic confounding. Full article
(This article belongs to the Section Human Toxicology and Epidemiology)
Show Figures

Graphical abstract

19 pages, 1265 KB  
Review
In Silico Forensic Toxicology: Is It Feasible?
by Ivan Šoša
Toxics 2025, 13(9), 790; https://doi.org/10.3390/toxics13090790 - 17 Sep 2025
Viewed by 1016
Abstract
In silico forensic toxicology refers to the emerging application of computational models based on Quantitative Structure–Activity Relationships (QSARs), molecular docking, and predictions regarding Absorption, Distribution, Metabolism, Excretion, and Toxicity (ADMET) as used to predict the toxicological behavior of various substances, particularly in medico-legal [...] Read more.
In silico forensic toxicology refers to the emerging application of computational models based on Quantitative Structure–Activity Relationships (QSARs), molecular docking, and predictions regarding Absorption, Distribution, Metabolism, Excretion, and Toxicity (ADMET) as used to predict the toxicological behavior of various substances, particularly in medico-legal contexts. These computational models replicate metabolic pathways, providing insights into the metabolism of substances in the human body, while the results of this approach effectively reflect the necessary compounds, reducing the need for direct laboratory work. This review aims to evaluate whether forensic settings and in silico methods present a cost-effective strategy for investigating unknown substances, aiding in toxicological interpretations, and steering laboratory process analyses. Additionally, financial considerations, such as break-even analysis and Bland–Altman plots, were conducted, indicating that forensic labs conducting over 625 analyses each year can achieve cost efficiency by integrating in silico strategies, thus making them a viable alternative to conventional methods in high-throughput settings. Recent studies have emphasized how machine learning enhances predictive accuracy, thereby boosting forensic toxicology’s capacity to effectively evaluate toxicity endpoints. In silico methods are essential for cases involving novel psychoactive substances (NPSs) or unclear toxicological findings. They are also useful as a supporting method in legal contexts, as they uphold expert testimonies and reinforce evidence claims. The future of forensic toxicology is likely to see the increased implementation of AI-powered techniques, streamlining toxicological investigations and enhancing overall accuracy in forensic evaluations. Full article
(This article belongs to the Collection Predictive Toxicology)
Show Figures

Graphical abstract

19 pages, 10863 KB  
Article
Effects of ZnFe2O4 Nanoparticles on Development and Rhythmic Behavior of Drosophila melanogaster
by Wenhao Yan, Yunfan Guo, Penghui Li, Ziyan Zhang, Jinjun Yang and Yongyan Sun
Toxics 2025, 13(9), 779; https://doi.org/10.3390/toxics13090779 - 14 Sep 2025
Viewed by 765
Abstract
Objectives: This study planned to determine the biological effects associated with ZnFe2O4-NPs exposure using Drosophila melanogaster as an in vivo model. Methods: ZnFe2O4-NPs were hydrothermally synthesized, and the development of offspring flies were [...] Read more.
Objectives: This study planned to determine the biological effects associated with ZnFe2O4-NPs exposure using Drosophila melanogaster as an in vivo model. Methods: ZnFe2O4-NPs were hydrothermally synthesized, and the development of offspring flies were evaluated via dietary exposure to different doses of ZnFe2O4-NPs (0, 200, 400, 600 μg/mL). Rhythmic behaviors of parent male flies were monitored. Results: Internalization of ZnFe2O4-NPs through the intestinal barrier occurred. Oral intake of ZnFe2O4-NPs decreased the eclosed adult numbers and perturbed the insect developmental process. In male flies, significant upregulation of HSPs and Turandot family genes was detected, accompanied by ROS reduction and suppressed antioxidant defense responses, and exposure of ZnFe2O4-NPs disrupted sleep patterns of males, including a reduction in sleep duration and aggravation of sleep fragmentation. Suppressed activity levels were also found after ZnFe2O4-NPs exposure. Significant increased expressions of circadian genes (Clk and Cyc) were detected, alongside elevation of neurotransmitter levels and related gene expressions. Conclusions: Overall, ZnFe2O4-NPs can perturb development process via inducing heat shock and detoxification response, and disrupted rhythmic behaviors may be attributed to elevation of neurotransmitter levels and upregulated gene expressions of circadian genes. Our findings may offer valuable insights for evaluating ecological risks of metal-based nanoparticles and suggest potential applications in developing novel pest management strategies by utilizing insect behavioral and physiological responses to nanomaterials. Full article
Show Figures

Graphical abstract

22 pages, 14894 KB  
Article
Exposure to Bisphenol S and Bisphenol F Alters Gene Networks Related to Protein Translation and Neuroinflammation in SH-SY5Y Human Neuroblastoma Cells
by Andrea P. Guzman, Christina L. Sanchez, Emma Ivantsova, Jacqueline Watkins, Sara E. Sutton, Christopher L. Souders II and Christopher J. Martyniuk
Toxics 2025, 13(9), 772; https://doi.org/10.3390/toxics13090772 - 12 Sep 2025
Viewed by 894
Abstract
Bisphenol A (BPA) replacement chemicals are used in products like food packaging, plastic piping, and sportswear. While they can be toxic, their neurotoxicity is less understood. The aim of this study was to treat differentiated human SH-SY5Y cells with Bisphenol S (BPS) and [...] Read more.
Bisphenol A (BPA) replacement chemicals are used in products like food packaging, plastic piping, and sportswear. While they can be toxic, their neurotoxicity is less understood. The aim of this study was to treat differentiated human SH-SY5Y cells with Bisphenol S (BPS) and Bisphenol F (BPF) to investigate mechanisms of toxicity. BPS reduced cell viability (>50 µM at 48 h) more than BPF (>200 µM at 48 h), with concentration- and time-dependent effects. Both induced caspase 3/7 activity at 250 µM after 48 h, though no changes were observed in levels of reactive oxygen species nor mitochondrial ATPase activity. RNA-seq analysis at 0.1 nM revealed distinct transcriptional networks: BPS altered IL15R, causing NF-kB/NFATC activation, and triggered NF-kB signaling through CD8, while BPF affected TLR9 and activated NF-kB targets through TNF. Pathway analysis showed that genes involved in neuroinflammation, protein folding, microglial function, and motor neuron regulation were disrupted, demonstrating that BPS and BPF, even at low, environmentally relevant concentrations, significantly alter gene expression in pathways linked to neuroinflammation, immune signaling, and neurodegenerative diseases. BPS primarily affected ribosomal and immune-related networks, while BPF disrupted oxidative phosphorylation and protein-folding pathways. These alterations suggest mechanisms for long-term neurological effects, highlighting the need for comprehensive evaluations of BPA alternatives. Full article
(This article belongs to the Section Neurotoxicity)
Show Figures

Graphical abstract

19 pages, 708 KB  
Review
Toxicological Effects of Tartrazine Exposure: A Review of In Vitro and Animal Studies with Human Health Implications
by Malina Visternicu, Alexandra Săvucă, Viorica Rarinca, Vasile Burlui, Gabriel Plavan, Cătălina Ionescu, Alin Ciobica, Ioana-Miruna Balmus, Cristina Albert and Mihai Hogas
Toxics 2025, 13(9), 771; https://doi.org/10.3390/toxics13090771 - 12 Sep 2025
Viewed by 1636
Abstract
Tartrazine (TZ, also known as FD&C Yellow No. 5 or E102) is a synthetic, water-soluble yellow food dye widely used in the food and pharmaceutical industries. Some studies have associated TZ with allergic reactions, especially among people with dye sensitivities or pre-existing allergies. [...] Read more.
Tartrazine (TZ, also known as FD&C Yellow No. 5 or E102) is a synthetic, water-soluble yellow food dye widely used in the food and pharmaceutical industries. Some studies have associated TZ with allergic reactions, especially among people with dye sensitivities or pre-existing allergies. Recent research also suggests a possible link between TZ consumption and the worsening of behavioral disorders, especially in children, including symptoms such as hyperactivity, irritability, restlessness, and sleep disturbances. Experimental studies in laboratory animals have highlighted potential risks associated with prolonged or high-dose exposure, including toxic effects on the nervous system and liver function. In addition, increasing evidence indicates that TZ can induce oxidative stress (OS) by increasing the production of reactive oxygen species (ROS), which can contribute to cellular damage and inflammation. Although the evidence remains inconclusive, there are recommendations to limit the intake of synthetic food dyes, especially in children’s diets. The purpose of this review is to examine the potential toxic effects on health of tartrazine by analyzing findings from experimental studies in cell cultures and laboratory animals, as well as correlations observed in humans. We focus on documented adverse reactions, including possible neurotoxic, hepatotoxic, oxidative, and behavioral effects. Through this, we aim to contribute to a more comprehensive understanding of the risks associated with exposure to this synthetic food dye. Full article
(This article belongs to the Section Agrochemicals and Food Toxicology)
Show Figures

Graphical abstract

14 pages, 1358 KB  
Article
Mono(2-ethylhexyl) Phthalate Disrupts Mitochondrial Function, Dynamics and Biogenesis in Human Trophoblast Cells at Human Exposure Range Concentrations
by Luis Daniel Martínez-Razo, Nadia Alejandra Rivero-Segura, Ericka Karol Pamela Almeida-Aguirre, Ismael Mancilla-Herrera, Ruth Rincón-Heredia, Alejandra Martínez-Ibarra and Marco Cerbón
Toxics 2025, 13(9), 770; https://doi.org/10.3390/toxics13090770 - 11 Sep 2025
Cited by 1 | Viewed by 846
Abstract
Mono(2-ethylhexyl) phthalate (MEHP), a bioactive metabolite of di(2-ethylhexyl) phthalate (DEHP), has been detected in the placenta and urine of pregnant women and is linked to adverse pregnancy outcomes. However, its effects on mitochondrial homeostasis in trophoblast cells remain incompletely understood. This study examined [...] Read more.
Mono(2-ethylhexyl) phthalate (MEHP), a bioactive metabolite of di(2-ethylhexyl) phthalate (DEHP), has been detected in the placenta and urine of pregnant women and is linked to adverse pregnancy outcomes. However, its effects on mitochondrial homeostasis in trophoblast cells remain incompletely understood. This study examined the impact of MEHP (0.5–200 µM) on mitochondrial function, dynamics, and biogenesis in human HTR-8/SVneo trophoblast cells. MEHP (≥5 µM) reduced MTT conversion without compromising membrane integrity, suggesting early metabolic or redox imbalance. A dose-dependent loss of mitochondrial membrane potential was observed, with increased reactive oxygen species (ROS) generation only at 200 µM. MEHP modulated the expression of mitochondrial dynamics genes, with a more pronounced mitofusin 1 (MFN1) induction at low doses and increased mitochondrial DNA content, suggesting a compensatory response to mild stress. Conversely, high doses more strongly induced fission and mitochondrial 1 (FIS1) expression, suggesting mitochondrial fragmentation. Both concentrations induced the expression of the mitochondrial biogenesis regulators peroxisome proliferator-activated receptor gamma coactivator 1 alpha (PGC-1α) and nuclear factor erythroid 2–related factor 2 (Nrf2), while sirtuin 1 (SIRT1) expression and activity declined progressively with dose. These results demonstrate that MEHP disrupts mitochondrial homeostasis in trophoblast cells at concentrations spanning the estimated human exposure range. The dose-dependent effects, from adaptive responses to overt dysfunction, may help explain the associations between MEHP exposure and placental pathology observed in epidemiological studies. Full article
(This article belongs to the Special Issue Toxicity of Phthalate Esters (PAEs))
Show Figures

Graphical abstract

15 pages, 10310 KB  
Article
ITF6475, a New Histone Deacetylase 6 Inhibitor, Prevents Painful Neuropathy Induced by Paclitaxel
by Guido Cavaletti, Annalisa Canta, Alessia Chiorazzi, Eleonora Pozzi, Valentina Carozzi, Cristina Meregalli, Paola Alberti, Paola Marmiroli, Arianna Scuteri, Luca Crippa, Silvia Fermi, Ibtihal Segmani, Barbara Vergani, Christian Steinkühler and Simonetta Andrea Licandro
Toxics 2025, 13(9), 767; https://doi.org/10.3390/toxics13090767 - 10 Sep 2025
Viewed by 768
Abstract
Chemotherapy-induced peripheral neuropathy remains a significant side effect of cancer treatment, often requiring dose reductions or even discontinuation of therapy. Paclitaxel (PTX), a widely used chemotherapeutic agent for solid tumors, is particularly neurotoxic, and no effective treatment exists for paclitaxel-induced peripheral neuropathy (PIPN). [...] Read more.
Chemotherapy-induced peripheral neuropathy remains a significant side effect of cancer treatment, often requiring dose reductions or even discontinuation of therapy. Paclitaxel (PTX), a widely used chemotherapeutic agent for solid tumors, is particularly neurotoxic, and no effective treatment exists for paclitaxel-induced peripheral neuropathy (PIPN). Histone deacetylases (HDACs) are enzymes that remove acetyl groups from histone and non-histone proteins, including transcription factors and cytoskeletal components. This study evaluates the HDAC6 inhibitor ITF6475 for its potential to prevent PIPN and compares its effects with ricolinostat, a well-established HDAC6 inhibitor previously studied in cisplatin-induced neuropathy models. Female C57BL/6 mice received PTX vehicle (VEH) or PTX (70 mg/kg intravenously, once per week for four weeks), and the remaining four groups received PTX with co-treatment of either ricolinostat (50 mg/kg orally, daily) or ITF6475 (1, 6, or 12.5 mg/kg orally, daily). Neurophysiological assessments at the end of treatment showed a significant reduction in caudal sensory nerve action potential amplitude across all PTX-treated groups compared to the VEH group. At the same time, PTX treatment led to the development of mechanical allodynia. However, co-treatment with the HDAC6 inhibitor prevented significant differences compared to the VEH group. PTX-induced reduction in intraepidermal nerve fiber density was significantly prevented in the PTX + ITF6475 (1 mg/kg) group, and PTX-induced increase in neurofilament light levels was reduced in all ITF6475 co-treated groups. These findings support the potential of ITF6475 in preventing small fiber damage in a severe, chronic PIPN model. Full article
(This article belongs to the Section Neurotoxicity)
Show Figures

Graphical abstract

38 pages, 1104 KB  
Review
Polycyclic Aromatic Hydrocarbons in Marine Environments Affect Fish Reproduction—A Critical Review
by Roberta Pozzan, Aliciane de Almeida Roque, Hissashi Iwamoto, Fernando de Campos Guerreiro, Ana Paula da Silva, Dámaso Angel Rubio-Vargas, Micheli de Marchi, Felipe de Oliveira, Walter José Martínez-Burgos, Maritana Mela Prodocimo and Ciro Alberto de Oliveira Ribeiro
Toxics 2025, 13(9), 747; https://doi.org/10.3390/toxics13090747 - 1 Sep 2025
Cited by 2 | Viewed by 1222
Abstract
The biodiversity of marine and coastal ecosystems is constantly threatened by pollutants from a diversity of human activities. The polycyclic aromatic hydrocarbons (PAHs) are a class of pollutants widely released and deposited in these environments, leading to several impacts on the community of [...] Read more.
The biodiversity of marine and coastal ecosystems is constantly threatened by pollutants from a diversity of human activities. The polycyclic aromatic hydrocarbons (PAHs) are a class of pollutants widely released and deposited in these environments, leading to several impacts on the community of organisms that integrate these ecosystems. As lipophilic compounds, PAHs become bioavailable to organisms and can enter the trophic chain, leading to physiological changes and affecting different levels of biological organization. Several studies demonstrate that PAHs act as endocrine disruptors in marine fish, interfering with endocrine signaling through hormonal disturbances and, consequently, causing inhibition or overexpression of genes, enzymes, and proteins that are essential for reproduction success. These changes, in turn, can lead to population decline and cause immeasurable ecosystem damage. This review synthesizes studies published mainly between 2015 and 2025, aiming to critically present research that identifies different endocrine-reproductive changes in marine fish species exposed to PAHs in contaminated sites, highlighting the involved cellular mechanisms. Finally, we provide a survey of patents developed to identify PAHs in aquatic environments and how these techniques can be used in marine biomonitoring to evaluate water quality and the risk of exposure to biota and human populations. Full article
(This article belongs to the Section Emerging Contaminants)
Show Figures

Graphical abstract

28 pages, 3820 KB  
Review
Toxicological, Chemical, Social, and Economic Challenges Associated with PFAS and Replacement Aqueous Film-Forming Foams (AFFF)
by William S. Baldwin, Michael S. Bloom, Katy W. Chung, Subham Dasgupta, Marie E. DeLorenzo, Kelly J. Hunt, Peter B. Key, John L. Pearce, Kylie D. Rock, Philip Tanabe, Morgan A. Jacobellis, Melanie M. Garcia and Lisa J. Bain
Toxics 2025, 13(9), 732; https://doi.org/10.3390/toxics13090732 - 30 Aug 2025
Viewed by 2066
Abstract
Poly- and perfluorinated alkyl substances (PFAS) are a group of chemicals that are widely used, prevalent in the environment, associated with several toxic effects, and often have long half-lives. Their persistence and relevant toxicity are the primary causes of environmental and human health [...] Read more.
Poly- and perfluorinated alkyl substances (PFAS) are a group of chemicals that are widely used, prevalent in the environment, associated with several toxic effects, and often have long half-lives. Their persistence and relevant toxicity are the primary causes of environmental and human health concerns, and they are referred to as “forever chemicals” because of their persistence. Environmental accumulation caused by slow natural biodegradation and subsequent long environmental half-lives leads to bioaccumulation and makes PFAS more likely to be chronically toxic with potential transgenerational effects. Ultimately, it is this persistence that causes the greatest concern because PFAS-contaminated sites need costly remediation techniques, or else the contaminated areas will not be available for proper economic development because of social and economic suppression. Non-PFAS, alternative Aqueous Film Forming Foams (AFFF) that are considered environmentally friendly, are being heavily considered or currently used for fire suppression instead of PFAS-based products. The bioaccumulation and toxicity of alternative AFFF are just starting to be studied. The purpose of this review is to discuss the basic environmental and human health effects of PFAS and alternative AFFF that propel regulatory changes, increase clean-up costs, reduce economic development, and drive the development of novel alternatives. Full article
(This article belongs to the Special Issue PFAS Toxicology and Metabolism—2nd Edition)
Show Figures

Graphical abstract

20 pages, 3858 KB  
Article
Utilizing Multiple Behavioral Endpoints to Identify Negative Control Chemicals in a Larval Zebrafish Behavior Assay
by Bridget R. Knapp, Deborah L. Hunter, Jeanene K. Olin, Stephanie Padilla and Kimberly A. Jarema
Toxics 2025, 13(9), 727; https://doi.org/10.3390/toxics13090727 - 29 Aug 2025
Viewed by 924
Abstract
Identifying reliable negative control compounds is essential for determining the sensitivity and specificity of screening assays. However, well-characterized negative controls for developmental neurotoxicity behavioral assays in larval zebrafish (Danio rerio) are lacking. This study evaluated nine chemicals with no reported evidence [...] Read more.
Identifying reliable negative control compounds is essential for determining the sensitivity and specificity of screening assays. However, well-characterized negative controls for developmental neurotoxicity behavioral assays in larval zebrafish (Danio rerio) are lacking. This study evaluated nine chemicals with no reported evidence of mammalian developmental neurotoxicity, and a positive control (fluoxetine) for developmental and neurodevelopmental (i.e., behavioral) toxicity in zebrafish. Embryos were exposed to each chemical (≤100 µM) during development, 0–5 days post-fertilization (dpf), then assessed as larvae (6 dpf) using a locomotor behavior light–dark transition test. Behavior was analyzed using two methods: (1) the traditional method, comparing the average total distance moved, and (2) a 13-endpoint approach analyzing 13 aspects of the locomotor profile. Results showed that ibuprofen, omeprazole, and fluoxetine induced developmental toxicity (teratogenesis), with fluoxetine also causing behavioral neurotoxicity. Behavioral effects of developmental exposure to selegiline hydrochloride depended on the analysis method. Exposure to the other six chemicals (D-mannitol, glycerol, L-ascorbic acid, metformin hydrochloride, saccharin, and sodium benzoate), as well as ibuprofen or omeprazole, did not produce behavioral effects using either analysis method. Identifying negative control chemicals is essential for evaluating behavioral alterations precipitated by unknown substances and will assist with screening new chemicals for neurodevelopmental toxicity. Full article
(This article belongs to the Section Neurotoxicity)
Show Figures

Graphical abstract

19 pages, 4527 KB  
Article
A Soil Washing Approach to Remediation of Lead-Contaminated Soil with Amino Acid Ionic Liquid [Met][NO3]
by Yun Deng, Sheng Wang, Lin Fu, Weijie Xue, Changbo Zhang, Jiawei Deng, Xin Luo, Yuyao Liu, Danyang Zhao and Gilles Mailhot
Toxics 2025, 13(9), 725; https://doi.org/10.3390/toxics13090725 - 28 Aug 2025
Cited by 1 | Viewed by 679
Abstract
Against the challenge of extreme lead (Pb) contamination (>15,000 ppm) in industrial polluted soils, where conventional agents fail to disrupt stable Pb–soil complexes—this study extends our prior cadmium (Cd) remediation research to validate amino acid ionic liquids (AAILs) for highly recalcitrant metals. Fifteen [...] Read more.
Against the challenge of extreme lead (Pb) contamination (>15,000 ppm) in industrial polluted soils, where conventional agents fail to disrupt stable Pb–soil complexes—this study extends our prior cadmium (Cd) remediation research to validate amino acid ionic liquids (AAILs) for highly recalcitrant metals. Fifteen AAILs were screened via batch washing, with [Met][NO3] (methionine-based) demonstrating the highest Pb removal efficiency. Single-factor optimization revealed that under the conditions of 0.8 mol/L, 6:1 liquid–soil ratio, 60 min, 85.4% Pb was removed from severely contaminated soil by [Met][NO3]. Kinetic analysis using four common models showed that the second-order kinetic equation provided the best fit, indicating that Pb removal was predominantly driven by chemical reactions such as complexation or ion exchange. After washing, the contents of various Pb species were significantly reduced, thereby mitigating environmental risks. Notably, no substantial changes in soil texture were observed. However, a marked increase in organic matter content was detected, accompanied by decreases in soil pH and mineral element concentrations. Analysis of soil mineral composition, functional groups, and chemical speciation revealed that [Met][NO3] primarily facilitated Pb removal through ion-exchange and coordination reactions. This study establishes [Met][NO3] as a green agent with dual efficacy: it achieves high-efficiency remediation of severely Pb-contaminated soil while ensuring environmental sustainability, thus highlighting its potential for practical application. Full article
(This article belongs to the Section Toxicity Reduction and Environmental Remediation)
Show Figures

Graphical abstract

22 pages, 912 KB  
Review
Integration of “Omics”-Based Approaches in Environmental Risk Assessment to Establish Cause and Effect Relationships: A Review
by Kirsty F. Smith, Xavier Pochon, Steven D. Melvin, Thomas T. Wheeler and Louis A. Tremblay
Toxics 2025, 13(9), 714; https://doi.org/10.3390/toxics13090714 - 24 Aug 2025
Cited by 2 | Viewed by 1746
Abstract
Marine and freshwater environments are under increasing pressure from anthropogenic stressors. The resulting impacts on exposed ecosystems are complex and challenging to characterise. The effects may be subtle and exhibited over long time periods. Effective and robust approaches are required to characterise the [...] Read more.
Marine and freshwater environments are under increasing pressure from anthropogenic stressors. The resulting impacts on exposed ecosystems are complex and challenging to characterise. The effects may be subtle and exhibited over long time periods. Effective and robust approaches are required to characterise the physiological and genetic processes that are impacted by pollutants to assess how populations and ecosystems may be adversely affected and at risk. The objective of the review is to provide an overview of “omics” methodologies used to assess the risk of stressors on exposed biota. This review covers the development of key omics approaches and how they have been used to contribute towards improved knowledge about the effects of environmental stressors, from molecular to whole-organism and community levels of biological organisation. We provide insights into how ecotoxicogenomics approaches can be used for various aspects of environmental risk assessment by characterising toxicological mechanisms of action. This information can be used to confirm cause-and-effect relationships required to better manage risks and protect the integrity and functionality of ecosystems. Full article
(This article belongs to the Special Issue Ecotoxicological Monitoring of Aquatic Systems)
Show Figures

Graphical abstract

17 pages, 3467 KB  
Article
Opposite Interactive Effects of Heat Wave and Cold Spell with Fine Particulate Matter on Pneumonia Mortality
by Yi Zheng, Ruijun Xu, Yuling Chen, Yingxin Li, Yuxin Bi, Xiaohong Jia, Sirong Wang, Lu Luo, Jing Wei, Rui Wang, Chunxiang Shi, Ziquan Lv, Suli Huang, Gongbo Chen, Hong Sun, Bochao Sun, Nongping Feng and Yuewei Liu
Toxics 2025, 13(8), 702; https://doi.org/10.3390/toxics13080702 - 21 Aug 2025
Viewed by 865
Abstract
Exposure to extreme temperature events (ETEs) and ambient fine particulate matter (PM2.5) has been linked to an increased risk of pneumonia mortality, but their interactive effects remain largely unknown. We investigated 50,196 pneumonia deaths from 2015 to 2022 in Jiangsu province, [...] Read more.
Exposure to extreme temperature events (ETEs) and ambient fine particulate matter (PM2.5) has been linked to an increased risk of pneumonia mortality, but their interactive effects remain largely unknown. We investigated 50,196 pneumonia deaths from 2015 to 2022 in Jiangsu province, China, with a time-stratified case-crossover design. An individual-level exposure to heat wave, cold spell, and PM2.5 was assessed at each subject’s residential address using validated grid datasets. Conditional logistic regression models integrated with a distributed lag nonlinear model were used to quantitatively estimate both independent and interactive effects. With different ETE definitions, the cumulative odds ratio (OR) of pneumonia mortality associated with heat wave and cold spell ranged from 1.22 (95% confidence interval [CI]: 1.14, 1.31) to 1.60 (1.40, 1.81), and from 1.08 (1.002, 1.17) to 1.18 (1.01, 1.38), respectively, while the OR for PM2.5 ranged from 1.013 (1.006, 1.021) to 1.016 (1.009, 1.024). We observed a synergistic effect (relative excess risk due to interaction [RERI] ranging from 0.40 [0.06, 0.76] to 1.16 [0.41, 2.09]) of co-exposure to heat wave and PM2.5, as well as an antagonistic effect (RERI ranging from −0.20 [−0.40, −0.03] to −1.02 [−1.78, −0.38]) of co-exposure to cold spell and PM2.5 on pneumonia mortality. It was estimated that up to 6.49% of pneumonia deaths were attributable to heat wave and PM2.5 exposures. We found that heat wave and cold spell interacted oppositely with PM2.5 to increase the odds of pneumonia mortality, highlighting the needs to reduce co-exposures to heat wave and PM2.5. Full article
Show Figures

Graphical abstract

15 pages, 2355 KB  
Article
Biodegradation of Carbon Tetrachloride in Groundwater: Microbial Community Shifts and Functional Genes Involvement in Enhanced Reductive Dechlorination
by Zhengwei Liu, Mingbo Sun, Wei Wang, Shaolei Zhao, Yan Xie, Xiaoyu Lin, Jingru Liu and Shucai Zhang
Toxics 2025, 13(8), 704; https://doi.org/10.3390/toxics13080704 - 21 Aug 2025
Viewed by 646
Abstract
Carbon tetrachloride (CT) is a toxic volatile chlorinated hydrocarbon, posing a serious hazard to ecosystem and human health. This study discussed the bioremediation possibility of groundwater contaminated by CT. Enhanced reductive dechlorination bioremediation (ERD) was used to promote the reductive dechlorination process of [...] Read more.
Carbon tetrachloride (CT) is a toxic volatile chlorinated hydrocarbon, posing a serious hazard to ecosystem and human health. This study discussed the bioremediation possibility of groundwater contaminated by CT. Enhanced reductive dechlorination bioremediation (ERD) was used to promote the reductive dechlorination process of CT by adding yeast extract as a supplementary electron donor. The microcosm samples of the Control and Experi group were setup in the experiment, and the CT degradation efficiency and microbial community structure changes over 150 days were monitored. The results showed that the Experi group achieved complete degradation of CT within 40 days, while the control group had no significant change. By analyzing the physical and chemical indexes such as VFAs, sulfate ions, oxidation–reduction potential, pH value and so on, the key changes in the degradation process of CT were revealed. Microbial community analysis showed that specific microorganisms such as Acinetobacter johnsonii, Aeromonas media and Enterobacter mori played a significant role in the degradation of CT. They may produce hydrogen through fermentation to provide electron donors for the reductive dechlorination of CT. In addition, the genes of reductive dehalogenase synthase related to CT degradation were also identified, which provided molecular evidence for understanding the biodegradation mechanism of CT. The results deliver a scientific basis for optimizing the bioremediation strategy of CT-contaminated groundwater. Full article
Show Figures

Graphical abstract

18 pages, 5474 KB  
Article
Toxicological Mechanisms of Uranium-Induced Apoptosis in HK-2 Cells: A Proteomics and Metabolomics Study
by Zihuan Wang, Yongxiang Huang, Yue Zhang, Xuejuan Wu, Yuanyuan Yang, Jiayu Song, Kunling Guo, Mingyuan Wang, Junjie Chen and Shirong Qiang
Toxics 2025, 13(8), 699; https://doi.org/10.3390/toxics13080699 - 20 Aug 2025
Viewed by 830
Abstract
The rapid development of the nuclear industry and mining has increased environmental radioactive contamination, posing potentially ecological risks and health threats to humans. Uranium compounds are known to exhibit selective nephrotoxicity, but their toxicological processes and mechanisms still remain poorly understood and controversial. [...] Read more.
The rapid development of the nuclear industry and mining has increased environmental radioactive contamination, posing potentially ecological risks and health threats to humans. Uranium compounds are known to exhibit selective nephrotoxicity, but their toxicological processes and mechanisms still remain poorly understood and controversial. In this study, the uranyl-induced toxicity in human renal tubular epithelial cells (HK-2) were explored using flow cytometry, DAPI staining, and comet assays. Our results demonstrate that uranium exposure primarily triggers apoptosis. Kyoto Encyclopedia of Genes and Genomes pathway enrichment and protein–protein interaction (PPI) analyses revealed significant associations with DNA damage. Moreover, aberrant expression of ABC transporters (e.g., ABCB7) and mitochondrial-related proteins confirms uranium-induced mitochondrial dysfunction. Gene Ontology functional annotation implicated extrinsic apoptotic signaling pathways in uranium-induced cell death. The downregulation of the UBL5 protein also pointed to endoplasmic reticulum stress-mediated apoptosis. In summary, uranium exposure can induce the apoptosis of HK-2 cells through intrinsic pathways by damaging DNA and mitochondria and disrupting protein synthesis, with secondary contributions from endoplasmic reticulum stress and extrinsic apoptotic signaling. Full article
(This article belongs to the Section Metals and Radioactive Substances)
Show Figures

Graphical abstract

18 pages, 5709 KB  
Article
Polystyrene Microplastic Interferes with Yolk Reserve Utilisation in Early Artemia salina Nauplii
by Chiara Maria Motta, Chiara Fogliano, Marco Trifuoggi, Maria Toscanesi, Anja Raggio, Simona Di Marino, Paola Venditti, Gianluca Fasciolo, Bice Avallone and Rosa Carotenuto
Toxics 2025, 13(8), 700; https://doi.org/10.3390/toxics13080700 - 20 Aug 2025
Viewed by 933
Abstract
Polystyrene microfragments are among the most common plastic pollutants globally. They significantly affect aquatic life, harming various organs and tissues. In this study, we examined the effects of 3 µm polystyrene beads (MPs, 20 µg/L) on development and yolk resorption in pre-feeding nauplii [...] Read more.
Polystyrene microfragments are among the most common plastic pollutants globally. They significantly affect aquatic life, harming various organs and tissues. In this study, we examined the effects of 3 µm polystyrene beads (MPs, 20 µg/L) on development and yolk resorption in pre-feeding nauplii of Artemia salina, a lecithotrophic crustacean used in toxicity testing. Results showed a reduced hatching rate, slower growth, and the onset of oxidative stress. Histological analysis revealed no significant morphological alteration; however, yolk platelets lost N-acetyl galactosamine (galNAc), and resorption was delayed. Lectin staining also showed a reduction in N-acetyl glucosamine (glcNAc) in the gut brush border, indicating impaired gut function. Gas chromatography detected the release of nanogram amounts of toxic volatile compounds (VOCs, ethylbenzene, xylene, benzaldehyde, and styrene) into the culture medium. In conclusion, the data demonstrate a delay in larval yolk resorption that can likely be attributed to the release of VOCs, which induce oxidative stress. Further research is urgently needed, given the potential biological and ecological implications of this finding. Full article
Show Figures

Graphical abstract

24 pages, 2083 KB  
Article
Distribution of Legacy and Emerging PFASs in a Terrestrial Ecosystem Located near a Fluorochemical Manufacturing Facility
by Jodie Buytaert, Marcel Eens, Lieven Bervoets and Thimo Groffen
Toxics 2025, 13(8), 689; https://doi.org/10.3390/toxics13080689 - 19 Aug 2025
Viewed by 950
Abstract
This study investigated the distribution of 29 legacy and emerging per- and polyfluoroalkyl substances (PFASs) in soil, nettles, invertebrates, and plasma and feathers of great tits (Parus major) of a terrestrial ecosystem near a fluorochemical plant. Additionally, the vertical distribution of [...] Read more.
This study investigated the distribution of 29 legacy and emerging per- and polyfluoroalkyl substances (PFASs) in soil, nettles, invertebrates, and plasma and feathers of great tits (Parus major) of a terrestrial ecosystem near a fluorochemical plant. Additionally, the vertical distribution of PFASs in soil was assessed, as well as taxon-specific differences among terrestrial invertebrate species. Finally, associations between soil and biota, and among biological matrices, were assessed. Most accumulation profiles were dominated by long-chained PFASs, mainly perfluorooctane sulfonic acid (PFOS), while short-chained PFASs were less detected. Long-chained perfluoroalkyl carboxylic acids (PFCAs) adsorbed in the upper soil layers, while short-chained PFAS and perfluoroalkyl sulfonic acids (PFSAs) tended to migrate deeper. The several taxon-specific differences were likely due to dietary differences. Significant associations, especially for long-chained PFCAs and PFOS, were found among most matrices. This indicates that (1) these PFASs found in these matrices are most likely originating from the same pollution source, (2) there is a possible transfer of these PFASs between matrices, (3) there is bioaccumulation from one to another matrix, and (4) some matrices might be used as proxies to estimate PFAS concentrations in other terrestrial matrices. Finally, feathers accumulated more PFASs than plasma, as they were most likely exposed through different routes of exposure and PFAS affinity. Therefore, they are not suitable for internal PFAS monitoring but can provide complementary information about the exposure and about the presence/absence of PFASs in certain habitats. Full article
Show Figures

Figure 1

16 pages, 2114 KB  
Article
Impaired Reproductive Performance of Waterbirds in Metal-Contaminated Tropical Rice Agroecosystems: Evidence from Little Egrets (Egretta garzetta)
by Hanxun Qiu, Xin Huang, Chuanbiao Xu and Jiliang Zhang
Toxics 2025, 13(8), 676; https://doi.org/10.3390/toxics13080676 - 13 Aug 2025
Viewed by 727
Abstract
Heavy metal pollution in rice fields is a major concern; however, little research has addressed its exposure and risk to waterbirds inhabiting rice fields. We investigated the accumulation of heavy metals (Cd, Pb, As, Cr, Cu, and Zn) in sediment, water, food, feces, [...] Read more.
Heavy metal pollution in rice fields is a major concern; however, little research has addressed its exposure and risk to waterbirds inhabiting rice fields. We investigated the accumulation of heavy metals (Cd, Pb, As, Cr, Cu, and Zn) in sediment, water, food, feces, feathers, and eggshell samples collected from different nesting sites (Chongwei Village and Wuji Village) of little egrets (Egretta garzetta) on Hainan Island, China, and compared the differences in their breeding parameters and eggshell quality. Higher levels of heavy metals were observed in all samples except feces from Wuji Village compared to those from Chongwei Village. As, Cd, and Pb exhibited little bioaccumulation in all feather and eggshell samples, whereas Cr concentrations in feather samples from both heronries and eggshell samples in Wuji Village exceeded the toxicity threshold in birds, indicating that the high maternal Cr was transferred to eggs in Wuji Village. Significantly lower hatching and breeding success rates were observed in Wuji Village than in Chongwei Village, which may be closely related to Cr contamination. This study revealed that waterbirds breeding in rice fields are under threat from heavy metal contamination and highlighted the suitability of bird feathers and eggshells as biomonitors of the environment. Full article
(This article belongs to the Section Ecotoxicology)
Show Figures

Graphical abstract

12 pages, 1414 KB  
Article
The TyG Index Mediates Air-Pollution-Associated Chronic Kidney Disease Incidence in HIV/AIDS Patients: A 20-Year Cohort Study
by Xiaoxia Liu, Xiuli Zhao, Lu Ye, Chengfeng Hu, Zhihao Xie, Jianan Ma, Xia Wang and Wei Liang
Toxics 2025, 13(8), 669; https://doi.org/10.3390/toxics13080669 - 8 Aug 2025
Cited by 2 | Viewed by 726
Abstract
Ambient air pollutants (APs) are associated with increased chronic kidney disease (CKD) risk in general populations, but their renal impact on HIV/AIDS patients remains understudied. This dynamic cohort included 7981 HIV/AIDS patients without baseline kidney disease from Wuhan and Zhenjiang, followed every 6 [...] Read more.
Ambient air pollutants (APs) are associated with increased chronic kidney disease (CKD) risk in general populations, but their renal impact on HIV/AIDS patients remains understudied. This dynamic cohort included 7981 HIV/AIDS patients without baseline kidney disease from Wuhan and Zhenjiang, followed every 6 months with fasting blood tests to assess the triglyceride-glucose (TyG) index and estimated glomerular filtration rate (eGFR). Monthly average exposures to six APs were estimated from geocoded residential addresses. Modified Poisson regression models were used to assess associations between cumulative AP exposure and CKD incidence, with mediation analysis conducted to explore the potential role of the TyG index. Weighted quantile sum regression was applied to evaluate the joint effects of six APs. During the follow-up period, 168 new cases of CKD were identified. Each interquartile range increase in PM2.5, PM10, and SO2 corresponded to a 16.5%, 18.9%, and 9.7% higher CKD risk, respectively, with the TyG index mediating 10.21%, 9.16%, and 5.14% of these associations. PM2.5 demonstrated the highest attribution weight (44.4%) for CKD risk elevation in mixed-exposure models. Chronic ambient AP exposure, particularly PM2.5, synergistically elevates CKD risk in HIV/AIDS patients with glucolipid dysregulation potentially being involved, necessitating targeted air quality policies to mitigate AP impacts on this vulnerable population. Full article
Show Figures

Figure 1

26 pages, 970 KB  
Review
A Review on the Degradation of Antibiotic Resistance Genes During Composting of Livestock Manure
by Enwang Zhao, Yongchao Li, Jin Zhang and Bing Geng
Toxics 2025, 13(8), 667; https://doi.org/10.3390/toxics13080667 - 8 Aug 2025
Cited by 1 | Viewed by 1910
Abstract
As emerging pollutants, antibiotic resistance genes (ARGs) have been recognized as originating from diverse sources. Among these, the use of livestock feed and veterinary drugs was identified as the primary source of ARGs in livestock manure. ARGs were found to be widely distributed [...] Read more.
As emerging pollutants, antibiotic resistance genes (ARGs) have been recognized as originating from diverse sources. Among these, the use of livestock feed and veterinary drugs was identified as the primary source of ARGs in livestock manure. ARGs were found to be widely distributed in global environments, particularly in agriculture-related soils, water bodies, and the atmosphere, posing potential threats to ecological environments and human health. This paper reviewed the degradation mechanisms of ARGs during aerobic composting of livestock manure and the safety evaluation of compost products. Aerobic composting was demonstrated to be an effective method for degrading ARGs, primarily through mechanisms such as high-temperature elimination of ARG-carrying microorganisms, reduction in host bacterial abundance, and inhibition of horizontal gene transfer. Factors including the physicochemical properties of the composting substrate, the use of additives, and the presence of antibiotic and heavy metal residues were shown to influence the degradation efficiency of ARGs, with compost temperature being the core factor. The safety of organic fertilizers encompassed multiple aspects, including heavy metal content, seed germination index, and risk assessments based on ARG residues. The analysis indicated that deficiencies existed in areas such as the persistence of thermotolerant bacteria carrying ARGs, the dissemination of extracellular antibiotic resistance genes (eARGs), and virus-mediated gene transfer. Future research should focus on (1) the removal of thermotolerant bacteria harboring ARGs; (2) the decomposition of eARGs or the blocking of their transmission pathways; (3) the optimization of ultra-high temperature composting parameters; and (4) the analysis of interactions between viruses and resistant hosts. This study reviews the mechanisms, influencing factors, and safety assessment of aerobic composting for degrading ARGs in livestock manure. It not only deepens the understanding of this important environmental biotechnology process but also provides a crucial knowledge base and practical guidance for effectively controlling ARG pollution, ensuring agricultural environmental safety, and protecting public health. Additionally, it clearly outlines the key paths for future technological optimization, thus holding significant implications for the environment, agriculture, and public health. Full article
(This article belongs to the Special Issue Antibiotics and Resistance Genes in Environment)
Show Figures

Graphical abstract

18 pages, 1863 KB  
Article
A Daily Accumulation Model for Predicting PFOS Residues in Beef Cattle Muscle After Oral Exposure
by Ian Edhlund, Lynn Post and Sara Sklenka
Toxics 2025, 13(8), 649; https://doi.org/10.3390/toxics13080649 - 31 Jul 2025
Cited by 1 | Viewed by 1421
Abstract
Per- and polyfluoroalkyl substances (PFAS) have been found worldwide in water, soil, plants, and animals, including humans. A primary route of exposure for humans and animals to PFAS is through the diet and drinking water. Perfluorooctane sulfonate (PFOS), a long-chain PFAS with a [...] Read more.
Per- and polyfluoroalkyl substances (PFAS) have been found worldwide in water, soil, plants, and animals, including humans. A primary route of exposure for humans and animals to PFAS is through the diet and drinking water. Perfluorooctane sulfonate (PFOS), a long-chain PFAS with a relatively long half-life, has been associated with adverse health effects in humans and laboratory animals. There are few toxicokinetic studies on PFOS in domestic livestock raised for human food consumption, which are critical for assessing human food safety. This work aimed to develop a simple daily accumulation model (DAM) for predicting PFOS residues in edible beef cattle muscle. A one-compartment toxicokinetic model in a spreadsheet format was developed using simple calculations to account for daily PFAS into and out of the animal. The DAM was used to simulate two case studies to predict resultant PFOS residues in edible beef cattle tissues. The results demonstrated that the model can reasonably predict PFOS concentrations in beef cattle muscle in a real-world scenario. The DAM was then used to simulate dietary PFOS exposure in beef cattle throughout a typical lifespan in order to derive a generic bioaccumulation factor. The DAM is expected to work well for other PFAS in beef cattle, PFAS in other livestock species raised for meat, and other chemical contaminants with relatively long half-lives. Full article
Show Figures

Graphical abstract

20 pages, 6694 KB  
Article
Spatiotemporal Assessment of Benzene Exposure Characteristics in a Petrochemical Industrial Area Using Mobile-Extraction Differential Optical Absorption Spectroscopy (Me-DOAS)
by Dong keun Lee, Jung-min Park, Jong-hee Jang, Joon-sig Jung, Min-kyeong Kim, Jaeseok Heo and Duckshin Park
Toxics 2025, 13(8), 655; https://doi.org/10.3390/toxics13080655 - 31 Jul 2025
Viewed by 858
Abstract
Petrochemical complexes are spatially expansive and host diverse emission sources, making accurate monitoring of volatile organic compounds (VOCs) challenging using conventional two-dimensional methods. This study introduces Mobile-extraction Differential Optical Absorption Spectroscopy (Me-DOAS), a real-time, three-dimensional remote sensing technique for assessing benzene emissions in [...] Read more.
Petrochemical complexes are spatially expansive and host diverse emission sources, making accurate monitoring of volatile organic compounds (VOCs) challenging using conventional two-dimensional methods. This study introduces Mobile-extraction Differential Optical Absorption Spectroscopy (Me-DOAS), a real-time, three-dimensional remote sensing technique for assessing benzene emissions in the Ulsan petrochemical complex, South Korea. A vehicle-mounted Me-DOAS system conducted monthly measurements throughout 2024, capturing data during four daily intervals to evaluate diurnal variation. Routes included perimeter loops and grid-based transects within core industrial zones. The highest benzene concentrations were observed in February (mean: 64.28 ± 194.69 µg/m3; geometric mean: 5.13 µg/m3), with exceedances of the national annual standard (5 µg/m3) in several months. Notably, nighttime and early morning sessions showed elevated levels, suggesting contributions from nocturnal operations and meteorological conditions such as atmospheric inversion. A total of 179 exceedances (≥30 µg/m3) were identified, predominantly in zones with benzene-handling activities. Correlation analysis revealed a significant relationship between high concentrations and specific emission sources. These results demonstrate the utility of Me-DOAS in capturing spatiotemporal emission dynamics and support its application in exposure risk assessment and industrial emission control. The findings provide a robust framework for targeted management strategies and call for integration with source apportionment and dispersion modeling tools. Full article
(This article belongs to the Section Air Pollution and Health)
Show Figures

Graphical abstract

26 pages, 5192 KB  
Review
Application of Multi-Omics Techniques in Aquatic Ecotoxicology: A Review
by Boyang Li, Yizhang Zhang, Jinzhe Du, Chen Liu, Guorui Zhou, Mingrui Li and Zhenguang Yan
Toxics 2025, 13(8), 653; https://doi.org/10.3390/toxics13080653 - 31 Jul 2025
Cited by 2 | Viewed by 1689
Abstract
Traditional ecotoxicology primarily investigates pollutant toxicity through physiological, biochemical, and single-molecular indicators. However, the limited data obtained through this approach constrain its application in the mechanistic analysis of pollutant toxicity. Omics technologies have emerged as a major research focus in recent years, enabling [...] Read more.
Traditional ecotoxicology primarily investigates pollutant toxicity through physiological, biochemical, and single-molecular indicators. However, the limited data obtained through this approach constrain its application in the mechanistic analysis of pollutant toxicity. Omics technologies have emerged as a major research focus in recent years, enabling the comprehensive and accurate analysis of biomolecular-level changes. The integration of multi-omics technologies can holistically reveal the molecular toxicity mechanisms of pollutants, representing a primary emphasis in current toxicological research. This paper introduces the fundamental concepts of genomics, transcriptomics, proteomics, and metabolomics, while reviewing recent advancements in integrated omics approaches within aquatic toxicology. Furthermore, it provides a reference framework for the implementation of multi-omics strategies in ecotoxicological investigations. While multi-omics integration enables the unprecedented reconstruction of pollutant-induced molecular cascades and earlier biomarker discovery (notably through microbiome–metabolome linkages), its full potential requires experimental designs, machine learning-enhanced data integration, and validation against traditional toxicological endpoints within environmentally relevant models. Full article
(This article belongs to the Section Ecotoxicology)
Show Figures

Figure 1

11 pages, 711 KB  
Article
Cadmium Accumulation and Regulation in the Freshwater Mussel Anodonta woodiana
by Xiubao Chen, Chao Song, Jiazhen Jiang, Tao Jiang, Junren Xue, Ibrahim Bah, Mengying Gu, Meiyi Wang and Shunlong Meng
Toxics 2025, 13(8), 646; https://doi.org/10.3390/toxics13080646 - 30 Jul 2025
Cited by 1 | Viewed by 654
Abstract
Cadmium (Cd) pollution poses a serious threat to freshwater ecosystems. The freshwater mussel Anodonta woodiana is increasingly used as a bioindicator for monitoring Cd pollution in aquatic environments. However, the primary routes of Cd accumulation in A. woodiana remain unclear, and the molecular [...] Read more.
Cadmium (Cd) pollution poses a serious threat to freshwater ecosystems. The freshwater mussel Anodonta woodiana is increasingly used as a bioindicator for monitoring Cd pollution in aquatic environments. However, the primary routes of Cd accumulation in A. woodiana remain unclear, and the molecular regulatory mechanisms underlying Cd accumulation are poorly understood. To address these gaps, this study employed a novel stable isotope dual-tracer technique to trace Cd from water (waterborne 112Cd) and the green alga Chlorella vulgaris (dietary 113Cd) during the simultaneous exposure experiment. Comparative transcriptomic analysis was then conducted to characterize molecular responses in A. woodiana following Cd exposure. The results showed that although newly accumulated 112Cd and 113Cd increased with exposure concentration and duration, the relative importance of 112Cd (91.6 ± 2.8%) was significantly higher than that of 113Cd (8.4 ± 2.8%) (p < 0.05). Cd exposure induced differentially expressed genes primarily enriched in the metabolic processes, cellular processes, and/or the ubiquitin-mediated proteolysis pathway. Within the ubiquitin-mediated proteolysis pathway, TRIP12 (E3 ubiquitin-protein ligase TRIP12) and Cul5 (cullin-5) were significantly upregulated. The findings will provide critical insights for interpreting Cd biomonitoring data in freshwater environments using mussels as bioindicators. Full article
(This article belongs to the Special Issue The Impact of Heavy Metals on Aquatic Ecosystems)
Show Figures

Figure 1

23 pages, 1627 KB  
Article
A Comprehensive Ecotoxicological Evaluation of a Treated Olive Mill Wastewater and Obtained Sludge
by José N. Pinto, Andreia Pereira, Ana Rita R. Silva, Diogo N. Cardoso, Amid Mostafaie, Fábio Campos, Iryna Rehan, Olga Moreira, Ivã Guidini Lopes, Daniel Murta, Alexandra Afonso, Margarida Oliveira, Karina S. Silvério, Maria Teresa Santos, Fátima Carvalho, Adelaide Almeida and Susana Loureiro
Toxics 2025, 13(8), 648; https://doi.org/10.3390/toxics13080648 - 30 Jul 2025
Viewed by 1138
Abstract
Olive mill wastewaters (OMWWs) are an environmental problem in the Mediterranean region, and it is crucial to explore strategies for their treatment and repurposing. The chemical precipitation technique (CPT) has been presented as a cost-effective wastewater treatment solution that might be applied to [...] Read more.
Olive mill wastewaters (OMWWs) are an environmental problem in the Mediterranean region, and it is crucial to explore strategies for their treatment and repurposing. The chemical precipitation technique (CPT) has been presented as a cost-effective wastewater treatment solution that might be applied to OMWW. The CPT-resulting precipitant subproducts (sludge) may be reprocessed (e.g., agricultural fertilizer and/or soil amendment), while the treated wastewater may be repurposed or reused (e.g., irrigation, aquaponic, or industrial processes). This study aimed to evaluate the efficacy of CPT in treating wastewater from the olive oil industry from an ecotoxicological perspective. Additionally, to assess the safe use of the obtained sludge in CPT treatment, its effects on soil biota were assessed. For this, a set of ecotoxicological assays using freshwater (Raphidocelis subcapitata, Daphnia magna and Danio rerio), terrestrial invertebrates (Folsomia candida and Enchytraeus crypticus), and plants (Brassica oleracea and Lolium perenne) were used as model organisms. Results demonstrated that CPT reduced OMWW toxicity to freshwater organisms, offering a favorable outlook on CPT’s potential as a wastewater treatment method. Increasing application rates of sludge in soil reduced the shoot biomass and the hydric content of both plants compared to the control. Survival of F. candida and E. crypticus was not affected by sludge in soil at any tested application rate, yet sludge application negatively affected the reproduction of both species, even at relevant sludge application rates (2%) of sludge in soils. Overall, the applicability of this sludge obtained by the CPT treatment in soils should be carefully evaluated due to the observed adverse effects on soil biota. Although the results of CPT were promising in reducing the toxicity of OMWW for these aquatic species, some adjustments/improvements should be performed to improve this technique and use all the obtained resources (treated water and sludge) in a fully circular perspective. Full article
(This article belongs to the Special Issue Biomass Conversion and Organic Waste Utilization in Wastewater)
Show Figures

Graphical abstract

15 pages, 1072 KB  
Article
Comparison of Artificial Neural Network and Multiple Linear Regression to Predict Cadmium Concentration in Rice: A Field Study in Guangxi, China
by Junyang Zhao, Fuhai Zheng, Baoshan Yu, Guanchun Qin, Shunpiao Meng, Yuhang Qiu and Bing He
Toxics 2025, 13(8), 645; https://doi.org/10.3390/toxics13080645 - 30 Jul 2025
Viewed by 584
Abstract
The translocation of cadmium (Cd) in the soil-rice system is complicated; therefore, most of the soil-plant models of Cd have not been extensively studied. Hence, we studied the back-propagation artificial neural network model (BP-ANN) and multiple regression model (MLR) to predict the cadmium [...] Read more.
The translocation of cadmium (Cd) in the soil-rice system is complicated; therefore, most of the soil-plant models of Cd have not been extensively studied. Hence, we studied the back-propagation artificial neural network model (BP-ANN) and multiple regression model (MLR) to predict the cadmium (Cd) content in rice grain and soil through testing soil parameters. In this study, 486 pairs of rice grains and corresponding soil samples of 456 vectors were used for training + validation, and 30 vectors were collected from the southwestern karst area of Guangxi Province as a test data set. In this study, the Cd content in rice was successfully predicted by using the factors soil available cadmium (ACd), total soil cadmium (TCd), soil organic matter (SOM), and pH, which have a more significant impact on rice, as the main prediction variables. Root mean square error (RMSE), Relative Percent Difference (RPD), and correlation coefficient (R2) were used to assess the models. The R2, RPD, and RMSE values for RCd medium obtained by the MLR model with pH, TCd, and ACd as entered variables were 0.551, 2.398, and 0.049, respectively. The R2 and RMSE values for RCd medium obtained by the BP-ANN model with pH, TCd, and ACd as entered variables were 0.6846, 2.778, and 0.104, respectively. Therefore, it was concluded that BP-ANN was useful in predicting RCd and had better performance than MLR. Full article
(This article belongs to the Special Issue Heavy Metals and Pesticide Residue Remediation in Farmland)
Show Figures

Graphical abstract

33 pages, 16026 KB  
Article
Spatiotemporal Analysis of BTEX and PM Using Me-DOAS and GIS in Busan’s Industrial Complexes
by Min-Kyeong Kim, Jaeseok Heo, Joonsig Jung, Dong Keun Lee, Jonghee Jang and Duckshin Park
Toxics 2025, 13(8), 638; https://doi.org/10.3390/toxics13080638 - 29 Jul 2025
Viewed by 972
Abstract
Rapid industrialization and urbanization have progressed in Korea, yet public attention to hazardous pollutants emitted from industrial complexes remains limited. With the increasing coexistence of industrial and residential areas, there is a growing need for real-time monitoring and management plans that account for [...] Read more.
Rapid industrialization and urbanization have progressed in Korea, yet public attention to hazardous pollutants emitted from industrial complexes remains limited. With the increasing coexistence of industrial and residential areas, there is a growing need for real-time monitoring and management plans that account for the rapid dispersion of hazardous air pollutants (HAPs). In this study, we conducted spatiotemporal data collection and analysis for the first time in Korea using real-time measurements obtained through mobile extractive differential optical absorption spectroscopy (Me-DOAS) mounted on a solar occultation flux (SOF) vehicle. The measurements were conducted in the Saha Sinpyeong–Janglim Industrial Complex in Busan, which comprises the Sasang Industrial Complex and the Sinpyeong–Janglim Industrial Complex. BTEX compounds were selected as target volatile organic compounds (VOCs), and real-time measurements of both BTEX and fine particulate matter (PM) were conducted simultaneously. Correlation analysis revealed a strong relationship between PM10 and PM2.5 (r = 0.848–0.894), indicating shared sources. In Sasang, BTEX levels were associated with traffic and localized facilities, while in Saha Sinpyeong–Janglim, the concentrations were more influenced by industrial zoning and wind patterns. Notably, inter-compound correlations such as benzene–m-xylene and p-xylene–toluene suggested possible co-emission sources. This study proposes a GIS-based, three-dimensional air quality management approach that integrates variables such as traffic volume, wind direction, and speed through real-time measurements. The findings are expected to inform effective pollution control strategies and future environmental management plans for industrial complexes. Full article
Show Figures

Graphical abstract

27 pages, 2012 KB  
Article
Dual Effects of Maternal Diet and Perinatal Organophosphate Flame Retardant Treatment on Offspring Development, Behavior and Metabolism
by Ali Yasrebi, Catherine M. Rojas, Shabree Anthony, Samantha Feltri, Jamilah Evelyn, Kimberly Wiersielis, Samantha Adams, Veronia Basaly, Grace L. Guo, Lauren M. Aleksunes and Troy A. Roepke
Toxics 2025, 13(8), 639; https://doi.org/10.3390/toxics13080639 - 29 Jul 2025
Viewed by 888
Abstract
The maternal–fetal environment is influenced by multiple factors, including nutrition and environmental contaminants, which can impact long-term development. Perinatal exposure to organophosphate flame retardants (OPFRs) disrupts energy homeostasis and causes maladaptive behaviors in mice. Maternal obesity affects development by impairing blood–brain barrier (BBB) [...] Read more.
The maternal–fetal environment is influenced by multiple factors, including nutrition and environmental contaminants, which can impact long-term development. Perinatal exposure to organophosphate flame retardants (OPFRs) disrupts energy homeostasis and causes maladaptive behaviors in mice. Maternal obesity affects development by impairing blood–brain barrier (BBB) formation, influencing brain regions involved in energy regulation and behavior. This study examined the combined effects of maternal obesity and perinatal OPFR treatment on offspring development. Female mice were fed either a low-fat (LFD) or a high-fat diet (HFD) for 8 weeks, mated, and treated with either sesame oil or an OPFR mixture (tris(1,3-dichloro-2-propyl)phosphate, tricresyl phosphate, and triphenyl phosphate, 1 mg/kg each) from gestational day 7 to postnatal day 14. Results showed that both maternal diet and OPFR treatment disrupted blood–brain barrier integrity, energy balance, and reproductive gene expression in the hypothalamus of neonates. The expression of hepatic genes related to lipid and xenobiotic metabolism was also altered. In adulthood, LFD OPFR-treated female offspring exhibited increased avoidance behavior, while HFD OPFR-treated females demonstrated memory impairments. Metabolic assessments revealed decreased energy expenditure and nighttime activity in LFD OPFR-treated females. These findings suggest that maternal diet and OPFR treatment alter hypothalamic and liver gene expression in neonates, potentially leading to long-term metabolic and behavioral changes. Full article
Show Figures

Graphical abstract

12 pages, 716 KB  
Review
Exposure–Response Relationship of Toxic Metal(loid)s in Mammals: Their Bioinorganic Chemistry in Blood Is an Intrinsic Component of the Selectivity Filters That Mediate Organ Availability
by Manon Fanny Degorge and Jürgen Gailer
Toxics 2025, 13(8), 636; https://doi.org/10.3390/toxics13080636 - 29 Jul 2025
Cited by 1 | Viewed by 972
Abstract
The gastrointestinal tract mediates the absorption of nutrients from the diet, which is increasingly contaminated with toxic metal(loid) species (TMs) and thus threatens food safety. Evidence in support of the influx of TMs into the bloodstream of the general and vulnerable populations (babies, [...] Read more.
The gastrointestinal tract mediates the absorption of nutrients from the diet, which is increasingly contaminated with toxic metal(loid) species (TMs) and thus threatens food safety. Evidence in support of the influx of TMs into the bloodstream of the general and vulnerable populations (babies, children, pregnant women, and industrial workers) has been obtained by accurately quantifying their blood concentrations. The interpretation of these TM blood concentrations, however, is problematic, as we cannot distinguish between those that are tolerable from those that may cause the onset of environmental diseases. Since TMs that have invaded the bloodstream may perturb biochemical processes therein that will eventually cause organ damage it is crucial to better understand their bioinorganic chemistry as these processes collectively determine their organ availability. Thus, bioinorganic processes of TMs in the bloodstream represent selectivity filters which protect organs from their influx and ultimately determine the corresponding exposure-response relationships. The need to better understand selectivity filters prompted us to mechanistically disentangle them into the major bioinorganic chemistry processes. It is argued that the detoxification of TMs in the bloodstream and the biomolecular mechanisms, which mediate their uptake into target organs, represent critical knowledge gaps to revise regulatory frameworks to reduce the disease burden. Full article
Show Figures

Figure 1

11 pages, 1942 KB  
Article
Toxicity Assessment of Metyltetraprole, a Novel Fungicide Inhibitor, to Embryo/Larval Zebrafish (Danio rerio)
by Taylor Casine, Amany Sultan, Emma Ivantsova, Cole D. English, Lev Avidan and Christopher J. Martyniuk
Toxics 2025, 13(8), 634; https://doi.org/10.3390/toxics13080634 - 28 Jul 2025
Viewed by 739
Abstract
Strobilurins are a prominent class of fungicides capable of entering aquatic environments via runoff and leaching from the soil. Findings from previous studies suggest that strobilurins are highly toxic in aquatic environments, and evidence of acute developmental toxicity and altered behavioral responses have [...] Read more.
Strobilurins are a prominent class of fungicides capable of entering aquatic environments via runoff and leaching from the soil. Findings from previous studies suggest that strobilurins are highly toxic in aquatic environments, and evidence of acute developmental toxicity and altered behavioral responses have been emphasized. The objective here was to determine the effects of a new strobilurin, metyltetraprole (MTP), on zebrafish using developmental endpoints, gene expression, and behavioral locomotor assays. We hypothesized that MTP would cause developmental toxicity and induce hyperactivity in zebrafish (Danio rerio). To test this, developing zebrafish embryos/larvae were exposed to environmentally relevant levels of MTP (0.1, 1, 10, and 100 µg/L) until 7 days post-fertilization. Survival percentages did not differ among the treatment groups. No change in reactive oxygen species production was detected, but two genes involved in the mitochondrial electron transport chain (mt-nd3 and uqcrc2) were altered in abundance following MTP exposure. Moreover, the highest concentration (100 µg/L) of MTP caused notable hyperactivity in the zebrafish in the visual motor response test. Overall, results from this study increase our knowledge regarding sub-lethal effects of MTP, helping inform risk assessment for aquatic environments. Full article
(This article belongs to the Section Ecotoxicology)
Show Figures

Graphical abstract

22 pages, 6926 KB  
Article
Exploring Heavy Metals Exposure in Urban Green Zones of Thessaloniki (Northern Greece): Risks to Soil and People’s Health
by Ioannis Papadopoulos, Evangelia E. Golia, Ourania-Despoina Kantzou, Sotiria G. Papadimou and Anna Bourliva
Toxics 2025, 13(8), 632; https://doi.org/10.3390/toxics13080632 - 27 Jul 2025
Cited by 2 | Viewed by 3087
Abstract
This study investigates the heavy metal contamination in urban and peri-urban soils of Thessaloniki, Greece, over a two-year period (2023–2024). A total of 208 composite soil samples were systematically collected from 52 sites representing diverse land uses, including high-traffic roadsides, industrial zones, residential [...] Read more.
This study investigates the heavy metal contamination in urban and peri-urban soils of Thessaloniki, Greece, over a two-year period (2023–2024). A total of 208 composite soil samples were systematically collected from 52 sites representing diverse land uses, including high-traffic roadsides, industrial zones, residential neighborhoods, parks, and mixed-use areas, with sampling conducted both after the wet (winter) and dry (summer) seasons. Soil physicochemical properties (pH, electrical conductivity, texture, organic matter, and calcium carbonate content) were analyzed alongside the concentrations of heavy metals such as Cd, Co, Cr, Cu, Mn, Ni, Pb, and Zn. A pollution assessment employed the Geoaccumulation Index (Igeo), Contamination Factor (Cf), Pollution Load Index (PLI), and Potential Ecological Risk Index (RI), revealing variable contamination levels across the city, with certain hotspots exhibiting a considerable to very high ecological risk. Multivariate statistical analyses (PCA and HCA) identified distinct anthropogenic and geogenic sources of heavy metals. Health risk assessments, based on USEPA models, evaluated non-carcinogenic and carcinogenic risks for both adults and children via ingestion and dermal contact pathways. The results indicate that while most sites present low to moderate health risks, specific locations, particularly near major transport and industrial areas, pose elevated risks, especially for children. The findings underscore the need for targeted monitoring and remediation strategies to mitigate the ecological and human health risks associated with urban soil pollution in Thessaloniki. Full article
(This article belongs to the Special Issue Distribution and Behavior of Trace Metals in the Environment)
Show Figures

Figure 1

13 pages, 1428 KB  
Article
Heavy Metals in Infant Clothing: Assessing Dermal Exposure Risks and Pathways for Sustainable Textile Policies
by Mei Xiong, Daolei Cui, Yiping Cheng, Ziya Ma, Chengxin Liu, Chang’an Yan, Lizhen Li and Ping Xiang
Toxics 2025, 13(8), 622; https://doi.org/10.3390/toxics13080622 - 25 Jul 2025
Viewed by 1292
Abstract
Infant clothing represents a critical yet overlooked exposure pathway for heavy metals, with significant implications for child health and sustainable consumption. This study investigates cadmium (Cd) and chromium (Cr) contamination in 33 textile samples, integrating in vitro bioaccessibility assays, cytotoxicity analysis, and risk [...] Read more.
Infant clothing represents a critical yet overlooked exposure pathway for heavy metals, with significant implications for child health and sustainable consumption. This study investigates cadmium (Cd) and chromium (Cr) contamination in 33 textile samples, integrating in vitro bioaccessibility assays, cytotoxicity analysis, and risk assessment models to evaluate dermal exposure risks. Results reveal that 80% of samples exceeded OEKO-TEX Class I limits for As (mean 1.01 mg/kg), Cd (max 0.25 mg/kg), and Cr (max 4.32 mg/kg), with infant clothing showing unacceptable hazard indices (HI = 1.13) due to Cd (HQ = 1.12). Artificial sweat extraction demonstrated high bioaccessibility for Cr (37.8%) and Ni (28.5%), while keratinocyte exposure triggered oxidative stress (131% ROS increase) and dose-dependent cytotoxicity (22–59% viability reduction). Dark-colored synthetic fabrics exhibited elevated metal loads, linking industrial dye practices to health hazards. These findings underscore systemic gaps in textile safety regulations, particularly for low- and middle-income countries reliant on cost-effective apparel. We propose three policy levers: (1) tightening infant textile standards for Cd/Cr, (2) incentivizing non-toxic dye technologies, and (3) harmonizing global labeling requirements. By bridging toxicological evidence with circular economy principles, this work advances strategies to mitigate heavy metal exposure while supporting Sustainable Development Goals (SDGs) 3 (health), 12 (responsible consumption), and 12.4 (chemical safety). Full article
Show Figures

Figure 1

19 pages, 2238 KB  
Article
Comparison of Bioaugmentation and Semipermeable Cover as Strategies for Micro-Pollutant Removal in Sewage Sludge Composting
by Gabriela Angeles-de Paz, Miguel Ángel Díaz-Moreno, Ángeles Trujillo-Reyes, Cristina Postigo, Elisabet Aranda, Concepción Calvo and Tatiana Robledo-Mahón
Toxics 2025, 13(8), 620; https://doi.org/10.3390/toxics13080620 - 25 Jul 2025
Viewed by 524
Abstract
Untreated sewage sludge (SS) and misused stabilization technologies have contributed to great contamination and the accumulation of various pollutants in agricultural soils. Regarding micro-pollutants’ degradation, scalable and effective technologies are still scarce. Although many attempts at composting adaptations have been discussed, only a [...] Read more.
Untreated sewage sludge (SS) and misused stabilization technologies have contributed to great contamination and the accumulation of various pollutants in agricultural soils. Regarding micro-pollutants’ degradation, scalable and effective technologies are still scarce. Although many attempts at composting adaptations have been discussed, only a few have been tested individually under outdoor conditions. To investigate different composting methods (bioaugmentation and semipermeable cover) for the removal of micro-pollutants frequently found in SS, we performed a set of on-site experiments. Windrows of SS and olive pruning were used as the compostable material and were subjected to (i) bioaugmentation with the fungus Penicillium oxalicum, (ii) covered composting, (iii) covered and bioaugmented composting, and (iv) a conventional composting pile, which was included as a control. The entire experiment lasted 99 days. Bioaugmentation without cover increased the phosphorus content, favored a reduction in heavy metal content, and was the only treatment that reduced carbamazepine at the end of the process. Moreover, the inoculation of P. oxalicum under semipermeable cover increased the richness, diversity, and dominance of specific microbial taxa and total bacterial abundance. The four mature composts obtained met the standards required to be classified in the B fertilizer category, showing that we reduced most of the micro-pollutants, and passed the germination test. Full article
(This article belongs to the Special Issue Bioremediation of Pollutants in Sewage Sludge)
Show Figures

Graphical abstract

16 pages, 9832 KB  
Article
Gestational GenX Exposure Induces Maternal Hepatotoxicity by Disrupting the Lipid and Bile Acid Metabolism Distinguished from PFOA-Induced Pyroptosis
by Jin-Jin Zhang, Yu-Kui Chen, Ya-Qi Chen, Qin-Yao Zhang, Yu Liu, Qi Wang and Xiao-Li Xie
Toxics 2025, 13(8), 617; https://doi.org/10.3390/toxics13080617 - 24 Jul 2025
Cited by 2 | Viewed by 855
Abstract
Perfluorooctanoic acid (PFOA) and its replacement, GenX, are per- and polyfluoroalkyl substances (PFASs) widely used in industrial and consumer applications. Pregnant women are a vulnerable population to environmental pollutants. The maternal effects of GenX and PFOA exposure during pregnancy have not been fully [...] Read more.
Perfluorooctanoic acid (PFOA) and its replacement, GenX, are per- and polyfluoroalkyl substances (PFASs) widely used in industrial and consumer applications. Pregnant women are a vulnerable population to environmental pollutants. The maternal effects of GenX and PFOA exposure during pregnancy have not been fully elucidated. In this study, pregnant mice received daily oral doses of GenX (2 mg/kg/day), PFOA (1 mg/kg/day), or Milli-Q water (control) throughout gestation. Histopathological analyses revealed significant liver abnormalities in both exposure groups, including hepatocyte swelling, cellular disarray, eosinophilic degeneration, karyopyknosis, lipid vacuolation, and increased inflammatory responses. Through transcriptomics analyses, it was found that multiple metabolic and inflammatory pathways were enriched in both exposure groups. In the GenX group, overexpression of CYP4A, c-Myc, and Oatp2 proteins and decreased expression of EGFR and β-catenin in the liver suggested disruption of lipid and bile acid metabolism. In the PFOA group, significantly upregulated protein levels of NLRP3, GSDMD, caspase-1, IL-18, and IL-1β indicated hepatic pyroptosis. Despite these distinct pathways, both compounds triggered inflammatory cytokine release in the liver, consistent with the results of the transcriptomics analysis, suggesting shared mechanisms of inflammatory liver injury. Taken together, our findings provided novel insights into the hepatotoxicity mechanisms of GenX and PFOA exposure during pregnancy, underscoring the potential health risks associated with PFAS exposure. Full article
Show Figures

Graphical abstract

25 pages, 400 KB  
Review
Microplastic Uptake in Vegetables: Sources, Mechanisms, Transport and Food Safety
by Zorana Srećkov, Zorica Mrkonjić, Mirjana Bojović, Olivera Nikolić, Danka Radić and Vesna Vasić
Toxics 2025, 13(8), 609; https://doi.org/10.3390/toxics13080609 - 22 Jul 2025
Cited by 1 | Viewed by 3137
Abstract
Although microplastic pollution has been recognized as one of the major environmental challenges of the 21st century, its toxicological impact on crops, especially vegetables, has attracted limited scientific attention until recently. Vegetables represent a key component of the human diet, making any potential [...] Read more.
Although microplastic pollution has been recognized as one of the major environmental challenges of the 21st century, its toxicological impact on crops, especially vegetables, has attracted limited scientific attention until recently. Vegetables represent a key component of the human diet, making any potential contamination of great importance for food safety. In recent years, an increasing number of studies have been conducted to investigate the interactions between microplastics and vegetable crops. This review aims to synthesize the current knowledge on the sources of microplastics in agroecosystems, the mechanisms of uptake and translocation in plants, and the physiological and biochemical responses induced by micro- and nanoplastics. This work aims to improve the scientific basis for assessing the risk of microplastic contamination by identifying gaps in current understanding and suggesting future research directions. Full article
(This article belongs to the Section Emerging Contaminants)
24 pages, 5241 KB  
Review
Global Environmental Geochemistry and Molecular Speciation of Heavy Metals in Soils and Groundwater from Abandoned Smelting Sites: Analysis of the Contamination Dynamics and Remediation Alternatives in Karst Settings
by Hang Xu, Qiao Han, Muhammad Adnan, Mengfei Li, Mingshi Wang, Mingya Wang, Fengcheng Jiang and Xixi Feng
Toxics 2025, 13(7), 608; https://doi.org/10.3390/toxics13070608 - 21 Jul 2025
Cited by 2 | Viewed by 1566
Abstract
Abandoned smelting sites in karst terrain pose a serious environmental problem due to the complex relationship between specific hydrogeological elements and heavy metal contamination. This review combines work from across the globe to consider how karst-specific features (i.e., rapid underground drainage, high permeability, [...] Read more.
Abandoned smelting sites in karst terrain pose a serious environmental problem due to the complex relationship between specific hydrogeological elements and heavy metal contamination. This review combines work from across the globe to consider how karst-specific features (i.e., rapid underground drainage, high permeability, and carbonate mineralogy) influence the mobility, speciation, and bioavailability of “metallic” pollutants, such as Pb, Cd, Zn, and As. In some areas, such as Guizhou (China), the Cd content in the surface soil is as high as 23.36 mg/kg, indicating a regional risk. Molecular-scale analysis, such as synchrotron-based XAS, can elucidate the speciation forms that underlie toxicity and remediation potential. Additionally, we emphasize discrepancies between karst in Asia, Europe, and North America and synthesize cross-regional contamination events. The risk evaluation is complicated, particularly when dynamic flow systems and spatial heterogeneity are permanent, and deep models like DI-NCPI are required as a matter of course. The remediation is still dependent on the site; however, some technologies, such as phytoremediation, biosorption, and bioremediation, are promising if suitable geochemical and microbial conditions are present. This review presents a framework for integrating molecular data and hydrogeological concepts to inform the management of risk and sustainable remediation of legacy metal pollution in karst. Full article
(This article belongs to the Section Toxicity Reduction and Environmental Remediation)
Show Figures

Graphical abstract

16 pages, 747 KB  
Article
Thermoset Polyester Resin Microplastics: Effects on Enzymatic Biomarkers and Toxicological Endpoint Responses of Eisenia fetida Earthworms
by David Amaya-Vías, Gemma Albendín, Vanessa Aranda-Quirós, Rocío Rodríguez-Barroso, Dolores Coello and Juana María Arellano
Toxics 2025, 13(7), 602; https://doi.org/10.3390/toxics13070602 - 17 Jul 2025
Viewed by 1073
Abstract
Thermosets are plastic composite materials widely used in many industrial sectors of modern society with an increasing presence in the environment. The adverse effects of this material on environmental compartments and biota of thermosets are still unknown. In this work, we studied the [...] Read more.
Thermosets are plastic composite materials widely used in many industrial sectors of modern society with an increasing presence in the environment. The adverse effects of this material on environmental compartments and biota of thermosets are still unknown. In this work, we studied the potential effects of two thermoset polyester resin-derived microplastics (R930A-SP and R930A-DVE1) on the survival, behavior, morphological changes and subcellular damage of earthworms Eisenia fetida. The proposed experimental conditions simulated environmentally relevant concentrations, taking as a reference other related microplastics present in the environment. Thus, E. fetida specimens were exposed to five concentrations (100, 500, 1000, 1500 and 2000 mg resin per kg soil) of these two resins for 14 days. At concentrations and exposure times studied, no significant effects on growth, measured as weight loss, or on the enzyme biomarkers (cholinesterase, carboxylesterase and glutathione S-transferase) were observed. Similarly, no behavioral changes were detected in earthworms, and the survival rate was 100%. Likewise, no differences were observed between the different formulations of the polyester resins studied. However, this study could serve as a starting point for further studies with higher concentrations and/or exposure times, as well as in combination with other pollutants. Full article
(This article belongs to the Special Issue Ecotoxicological Effects of Microplastics on the Soil Environment)
Show Figures

Graphical abstract

27 pages, 3771 KB  
Article
Health Risks from Microplastics in Intravenous Infusions: Evidence from Italy, Spain, and Ecuador
by Claudio Casella, Umberto Cornelli, Giuseppe Zanoni, Pablo Moncayo and Luis Ramos-Guerrero
Toxics 2025, 13(7), 597; https://doi.org/10.3390/toxics13070597 - 16 Jul 2025
Cited by 4 | Viewed by 2071
Abstract
The rising incidence of microplastics (MPs) is a possible health risk to humans. The present study aims to analyze the presence of MPs in intravenous (IV) infusions and compare MP concentrations from multiple brands. The IV solutions of 29 medical devices (IV-MDs) from [...] Read more.
The rising incidence of microplastics (MPs) is a possible health risk to humans. The present study aims to analyze the presence of MPs in intravenous (IV) infusions and compare MP concentrations from multiple brands. The IV solutions of 29 medical devices (IV-MDs) from seven brands commercialized in Ecuador, Spain, and Italy have been selected under specific consideration to carry out the study. The detection of MPs has been quite obvious in almost all of the samples from brands in the mentioned countries. MP concentrations ranged from 9 to 20 MPs/L in glass containers to 166–299 MPs/L in plastic bags, with the majority of fragments (63%) on fibres (37%) and more than 60% of particles less than 100 µm. Nine different types of MPs were identified in this study. High clinical risk was indicated by markings with >200 MPs/L. Nevertheless, the medium polymeric danger index (PHI) was 1.7. According to these outcomes, IV infusion is a direct exposure to MPs that may have harmful medical repercussions. It is imperative that MPs’ limitations be included in pharmacopoeic monographs and in vivo toxicological and epidemiological studies. The present study aims to analyze the presence of MPs in IV-MDs and compare MP concentrations from multiple IV-MD brands. Full article
Show Figures

Graphical abstract

25 pages, 949 KB  
Article
New QSAR Models to Predict Human Transthyretin Disruption by Per- and Polyfluoroalkyl Substances (PFAS): Development and Application
by Marco Evangelista, Nicola Chirico and Ester Papa
Toxics 2025, 13(7), 590; https://doi.org/10.3390/toxics13070590 - 14 Jul 2025
Cited by 1 | Viewed by 1587
Abstract
Per- and polyfluoroalkyl substances (PFAS) are of concern because of their potential thyroid hormone system disruption by binding to human transthyretin (hTTR). However, the amount of experimental data is scarce. In this work, new classification and regression QSARs were developed to predict the [...] Read more.
Per- and polyfluoroalkyl substances (PFAS) are of concern because of their potential thyroid hormone system disruption by binding to human transthyretin (hTTR). However, the amount of experimental data is scarce. In this work, new classification and regression QSARs were developed to predict the hTTR disruption based on experimental data measured for 134 PFAS. Bootstrapping, randomization procedures, and external validation were used to check for overfitting, to avoid random correlations, and to evaluate the predictivity of the QSARs, respectively. The best QSARs were characterized by good performances (e.g., training and test accuracies in classification of 0.89 and 0.85, respectively; R2, Q2loo, and Q2F3 in regression of 0.81, 0.77, and 0.82, respectively) and significantly broader domains compared to the few existing similar models. The application of QSARs application to the OECD List of PFAS allowed for the identification of structural categories of major concern, such as per- and polyfluoroalkyl ether-based, perfluoroalkyl carbonyl, and perfluoroalkane sulfonyl compounds. Forty-nine PFAS showed a stronger binding affinity to hTTR than the natural ligand T4. Uncertainty quantification for each model and prediction further enhanced the reliability assessment of predictions. The implementation of the new QSARs in non-commercial software facilitates their application to support future research efforts and regulatory actions. Full article
(This article belongs to the Special Issue Computational Toxicology: Exposure and Assessment)
Show Figures

Graphical abstract

27 pages, 5816 KB  
Article
Developmental Exposures to Three Mammalian Teratogens Produce Dysmorphic Phenotypes in Adult Caenorhabditis elegans
by Piper Reid Hunt, Martine Ferguson, Nicholas Olejnik, Jeffrey Yourick and Robert L. Sprando
Toxics 2025, 13(7), 589; https://doi.org/10.3390/toxics13070589 - 14 Jul 2025
Cited by 1 | Viewed by 1069
Abstract
Efficient new methods are needed to support initiatives to reduce, refine, and/or replace toxicity testing in vertebrates. 5-fluorouracil (5FU), hydroxyurea (HU), and ribavirin (RV) are mammalian teratogens. Skeletal, endocrine organ, and cardiac effects are often associated with teratogenesis, and a simple nematode like [...] Read more.
Efficient new methods are needed to support initiatives to reduce, refine, and/or replace toxicity testing in vertebrates. 5-fluorouracil (5FU), hydroxyurea (HU), and ribavirin (RV) are mammalian teratogens. Skeletal, endocrine organ, and cardiac effects are often associated with teratogenesis, and a simple nematode like C. elegans lacks these systems. However, many genetic pathways required for mammalian morphogenesis have at least some conserved elements in this small, invertebrate model. The C. elegans lifecycle is 3 days. The effects of 5FU, HU, and RV on the C. elegans morphology were evaluated on day 4 post-initiation of the feeding after hatching for continuous and 24 h (early-only) developmental exposures. Continuous exposures to 5FU and HU induced increases in the incidences of abnormal gonadal structures that were significantly reduced in early-only exposure groups. The incidence of prolapse increased with continuous 5FU and HU exposures and was further increased in early-only exposure groups. Intestinal prolapse through the vulval muscle in C. elegans may be related to reported 5FU and HU effects on skeletal muscle and the gastrointestinal tract in mammals. Continuous RV exposures induced a phenotype lacking a uterus and gonad arms, as well as vulval anomalies that were largely, but not completely, reversed with early-only exposures, which is consistent with reported reversible reproductive tract anomalies after an RV exposure in mammals. These findings suggest that C. elegans can be used to detect the hazard risk from chemicals that adversely affect conserved pathways involved in organismal morphogenesis, but to determine the fit-for-purpose use of this model in chemical safety evaluations, further studies using larger and more diverse chemical test panels are needed. Full article
(This article belongs to the Section Novel Methods in Toxicology Research)
Show Figures

Graphical abstract

24 pages, 2639 KB  
Review
Cement Industry Pollution and Its Impact on the Environment and Population Health: A Review
by Alina Bărbulescu and Kamal Hosen
Toxics 2025, 13(7), 587; https://doi.org/10.3390/toxics13070587 - 14 Jul 2025
Cited by 6 | Viewed by 6941
Abstract
The cement industry, a foundation of global infrastructure development, significantly contributes to environmental pollution. Key sources of pollution include dust emissions; greenhouse gases, particularly carbon dioxide; and the release of toxic substances such as heavy metals and particulate matter. These pollutants contribute to [...] Read more.
The cement industry, a foundation of global infrastructure development, significantly contributes to environmental pollution. Key sources of pollution include dust emissions; greenhouse gases, particularly carbon dioxide; and the release of toxic substances such as heavy metals and particulate matter. These pollutants contribute to air, water, and soil degradation and are linked to severe health conditions in nearby populations, including respiratory disorders, cardiovascular diseases, and increased mortality rates. Noise pollution is also a significant issue, inducing auditory diseases that affect most workers in cement plants, and disturbing the population living in the neighborhoods and fauna behavior. This review explores the pollution paths and the multifaceted impacts of cement production on the environment. It also highlights the social challenges faced by communities, underscoring the urgent need for stricter environmental policies and the adoption of greener technologies to mitigate the adverse effects of cement production on both the environment and human health. Full article
Show Figures

Graphical abstract

13 pages, 1084 KB  
Article
Airborne SARS-CoV-2 Detection by ddPCR in Adequately Ventilated Hospital Corridors
by Joan Truyols-Vives, Marta González-López, Antoni Colom-Fernández, Alexander Einschütz-López, Ernest Sala-Llinàs, Antonio Doménech-Sánchez, Herme García-Baldoví and Josep Mercader-Barceló
Toxics 2025, 13(7), 583; https://doi.org/10.3390/toxics13070583 - 12 Jul 2025
Viewed by 977
Abstract
Indoors, the infection risk of diseases transmitted through the airborne route is estimated from indoor carbon dioxide (CO2) levels. However, the approaches to assess this risk do not account for the airborne concentration of pathogens, among other limitations. In this study, [...] Read more.
Indoors, the infection risk of diseases transmitted through the airborne route is estimated from indoor carbon dioxide (CO2) levels. However, the approaches to assess this risk do not account for the airborne concentration of pathogens, among other limitations. In this study, we analyzed the relationship between airborne SARS-CoV-2 levels and environmental parameters. Bioaerosols were sampled (n = 40) in hospital corridors of two wards differing in the COVID-19 severity of the admitted patients. SARS-CoV-2 levels were quantified using droplet digital PCR. SARS-CoV-2 was detected in 60% of the total air samples. The ward where the mildly ill patients were admitted had a higher occupancy, transit of people in the corridor, and CO2 levels, but there were no significant differences in SARS-CoV-2 detection between wards. The mean CO2 concentration in the positive samples was 569 ± 35.6 ppm. Considering all samples, the CO2 levels in the corridor were positively correlated with patient door openings but inversely correlated with SARS-CoV-2 levels. In conclusion, airborne SARS-CoV-2 can be detected indoors with optimal ventilation, and its levels do not scale with CO2 concentration in hospital corridors. Therefore, CO2 assessment should not be interpreted as a surrogate of airborne viral presence in all indoor spaces. Full article
Show Figures

Figure 1

19 pages, 2183 KB  
Systematic Review
Mercury Scenario in Fish from the Amazon Basin: Exploring the Interplay of Social Groups and Environmental Diversity
by Thaís de Castro Paiva, Inácio Abreu Pestana, Lorena Nascimento Leite Miranda, Gabriel Oliveira de Carvalho, Wanderley Rodrigues Bastos and Daniele Kasper
Toxics 2025, 13(7), 580; https://doi.org/10.3390/toxics13070580 - 10 Jul 2025
Cited by 2 | Viewed by 1363
Abstract
The Amazon faces significant challenges related to mercury contamination, including naturally elevated concentrations and gold mining activities. Due to mercury’s toxicity and the importance of fish as a protein source for local populations, assessing mercury levels in regional fish is crucial. However, there [...] Read more.
The Amazon faces significant challenges related to mercury contamination, including naturally elevated concentrations and gold mining activities. Due to mercury’s toxicity and the importance of fish as a protein source for local populations, assessing mercury levels in regional fish is crucial. However, there are gaps in knowledge regarding mercury concentrations in many areas of the Amazon basin. This study aims to synthesize the existing literature on mercury concentrations in fish and the exposure of urban and traditional social groups through fish consumption. A systematic review (1990–2022) was conducted for six fish genera (Cichla spp., Hoplias spp. and Plagioscion spp., Leporinus spp., Semaprochilodus spp., and Schizodon spp.) in the Web of Science (Clarivate Analytics) and Scopus (Elsevier) databases. The database consisted of a total of 46 studies and 455 reports. The distribution of studies in the region was not homogeneous. The most studied regions were the Madeira River sub-basin, while the Paru–Jari basin had no studies. Risk deterministic and probabilistic assessments based on Joint FAO/WHO Expert Committee on Food Additives (JECFA, 2007) guidelines showed high risk exposure, especially for traditional communities. Carnivorous fish from lakes and hydroelectric reservoirs, as well as fish from black-water ecosystems, exhibited higher mercury concentrations. In the Amazon region, even if mercury levels in fish muscle do not exceed regulatory limits, the high fish consumption can still elevate health risks for local populations. Monitoring mercury levels across a broader range of fish species, including both carnivorous and non-carnivorous species, especially in communities heavily reliant on fish for their diet, will enable a more accurate risk assessment and provide an opportunity to recommend fish species with lower mercury exposure risk for human consumption. The present study emphasizes the need to protect regions that already exhibit higher levels of mercury—such as lakes, hydroelectric reservoirs, and black-water ecosystems—to ensure food safety and safeguard public health. Full article
(This article belongs to the Special Issue Mercury Cycling and Health Effects—2nd Edition)
Show Figures

Figure 1

Back to TopTop