Polycyclic Aromatic Hydrocarbons in Marine Environments Affect Fish Reproduction—A Critical Review
Abstract
1. Introduction
2. PAHs in Aquatic Environments
3. Uptake and Transient Accumulation of PAHs in Marine Organisms
4. Impacts of PAHs on Marine Fish: Bioindicator Responses and Biological Effects
5. Impacts of PAHs on Marine Fish Reproduction
5.1. Metabolism of PAHs, Induction of Cytochrome P450 Enzymes, and Reproduction
5.2. Disruption of the Hypothalamic-Pituitary-Gonad-Lobe (HPGL) Axis
5.3. Changes in Reproductive Hormones
5.4. Estrogenic and Anti-Estrogenic Effects
Production and Expression of Vitellogenin and Vitellin
5.5. Androgenic and Anti-Androgenic Effects
5.6. Thyroid Hormone Disruption and Its Effects on Reproduction
5.7. Histological Changes in Gonads
5.8. Impacts on Sex Ratio and Intersex Incidence
5.9. Gonadosomatic Index (GSI)
6. Cell Signaling Mechanisms Involved in PAHs’ Impacts on Fish Reproduction
7. Limitations and Challenges of Current Methodologies for Biomonitoring of Marine Ecosystems Threatened by PAHs
8. Patents and Research Trends on the Detection of PAHs and Its Impacts in Aquatic Ecosystems
- Technologies that may assist conventional methods (i.e., GC, HPLC, spectrometry) for better sensibility, accuracy, or low cost;
- Protocol or apparatus with some advantage over the conventional ones;
- Innovative new apparatus;
- Methodology to analyze, prevent, and monitor environmental risks by PAHs and even other contaminant accidents;
- Bioindicators are serving to detect and monitor PAH contamination.
8.1. Technologies That May Assist Analytical Methods
8.2. Protocol or Apparatus with Some Advantage over the Conventional Ones
8.3. Innovative New Apparatus for Analysis
8.4. Methodology to Analyze, Prevent, and Monitor Environmental Risks of Contamination
8.5. Bioindicators Serving to Detect and Monitor PAH Contamination
8.6. Other Considerations
9. Conclusions
Author Contributions
Funding
Conflicts of Interest
References
- Manzetti, S. Polycyclic Aromatic Hydrocarbons in the Environment: Environmental Fate and Transformation. Polycycl. Aromat. Compd. 2013, 33, 311–330. [Google Scholar] [CrossRef]
- Teixeira, J.; Delerue-Matos, C.; Morais, S.; Oliveira, M. Environmental Contamination with Polycyclic Aromatic Hydrocarbons and Contribution from Biomonitoring Studies to the Surveillance of Global Health. Environ. Sci. Pollut. Res. 2024, 31, 54339–54362. [Google Scholar] [CrossRef]
- Abdel-Shafy, H.I.; Mansour, M.S.M. A Review on Polycyclic Aromatic Hydrocarbons: Source, Environmental Impact, Effect on Human Health and Remediation. Egypt. J. Pet. 2016, 25, 107–123. [Google Scholar] [CrossRef]
- Queb-Suarez, J.E.; Ruiz-Marin, A.; Canedo-Lopez, Y.; Aguilar-Ucan, C.A.; Montalvo-Romero, C.; Flores-Trujillo, J.G.; Perez-Morga, N. Source Identification, Toxicity, and Persistence of PAHs in Sediment Core from a Natural Protected Area in Mexico. Energies 2022, 15, 7116. [Google Scholar] [CrossRef]
- Berríos-Rolón, P.J.; Cotto, M.C.; Márquez, F. Polycyclic Aromatic Hydrocarbons (PAHs) in Freshwater Systems: A Comprehensive Review of Sources, Distribution, and Ecotoxicological Impacts. Toxics 2025, 13, 321. [Google Scholar] [CrossRef]
- Gan, N.; Martin, L.; Xu, W. Impact of Polycyclic Aromatic Hydrocarbon Accumulation on Oyster Health. Front. Physiol. 2021, 12, 734463. [Google Scholar] [CrossRef]
- Qin, N.; He, W.; Liu, W.; Kong, X.; Xu, F.; Giesy, J.P. Tissue Distribution, Bioaccumulation, and Carcinogenic Risk of Polycyclic Aromatic Hydrocarbons in Aquatic Organisms from Lake Chaohu, China. Sci. Total Environ. 2020, 749, 141577. [Google Scholar] [CrossRef]
- Matos, B.; Bramatti, I.; Santos, C.D.; Branco, V.; Martins, M. Multi-Biomarker Analysis of Sub-Chronic PAH Mixture Effects in Fish at Environmentally Relevant Levels. Aquat. Toxicol. 2025, 283, 107350. [Google Scholar] [CrossRef]
- Yazdani, M. Comparative Toxicity of Selected PAHs in Rainbow Trout Hepatocytes: Genotoxicity, Oxidative Stress and Cytotoxicity. Drug Chem. Toxicol. 2020, 43, 71–78. [Google Scholar] [CrossRef]
- Vignet, C.; Larcher, T.; Davail, B.; Joassard, L.; Menach, K.L.; Guionnet, T.; Lyphout, L.; Ledevin, M.; Goubeau, M.; Budzinski, H.; et al. Fish Reproduction Is Disrupted upon Lifelong Exposure to Environmental PAHs Fractions Revealing Different Modes of Action. Toxics 2016, 4, 26. [Google Scholar] [CrossRef]
- Vasconcelos, V.; Azevedo, J.; Silva, M.; Ramos, V. Effects of Marine Toxins on the Reproduction and Early Stages Development of Aquatic Organisms. Mar. Drugs 2010, 8, 59–79. [Google Scholar] [CrossRef]
- Martins, M.; Santos, J.M.; Diniz, M.S.; Ferreira, A.M.; Costa, M.H.; Costa, P.M. Effects of Carcinogenic versus Non-Carcinogenic AHR-Active PAHs and Their Mixtures: Lessons from Ecological Relevance. Environ. Res. 2015, 138, 101–111. [Google Scholar] [CrossRef] [PubMed]
- Kocak, T.K.; Kocak, G.O.; Stuart, A.L. Polycyclic Aromatic Hydrocarbons in Aquatic Media of Turkey: A Systematic Review of Cancer and Ecological Risk. Mar. Pollut. Bull. 2023, 188, 114671. [Google Scholar] [CrossRef]
- Vijayanand, M.; Ramakrishnan, A.; Subramanian, R.; Issac, P.K.; Nasr, M.; Khoo, K.S.; Rajagopal, R.; Greff, B.; Wan Azelee, N.I.; Jeon, B.H.; et al. Polyaromatic Hydrocarbons (PAHs) in the Water Environment: A Review on Toxicity, Microbial Biodegradation, Systematic Biological Advancements, and Environmental Fate. Environ. Res. 2023, 227, 115716. [Google Scholar] [CrossRef]
- United States Environmental Protection Agency—UEPA. Polycyclic Aromatic Hydrocarbons; Elsevier: Washington, WA, USA, 2008.
- Kuppusamy, S.; Thavamani, P.; Venkateswarlu, K.; Lee, Y.B.; Naidu, R.; Megharaj, M. Remediation Approaches for Polycyclic Aromatic Hydrocarbons (PAHs) Contaminated Soils: Technological Constraints, Emerging Trends and Future Directions. Chemosphere 2017, 168, 944–968. [Google Scholar] [CrossRef]
- Na, M.; Zhao, Y.; Rina, S.; Wang, R.; Liu, X.; Tong, Z.; Zhang, J. Residues, Potential Source and Ecological Risk Assessment of Polycyclic Aromatic Hydrocarbons (PAHs) in Surface Water of the East Liao River, Jilin Province, China. Sci. Total Environ. 2023, 886, 163977. [Google Scholar] [CrossRef]
- Malhat, F.; Loutfy, N.; El Menyawi, M.A.I.; Ahmed, M.T. Review of Contamination by Polycyclic Aromatic Hydrocarbons (PAHs) in Egyptian Aquatic Environment. Polycycl. Aromat. Compd. 2021, 41, 1447–1458. [Google Scholar] [CrossRef]
- Derafshi, M.; Matin, N.H.; Hassani, A. A Short Review on Polycyclic Aromatic Hydrocarbon Contamination. Acta. Hortic. Regiotect. 2022, 25, 174–180. [Google Scholar] [CrossRef]
- Montano, L.; Baldini, G.M.; Piscopo, M.; Liguori, G.; Lombardi, R.; Ricciardi, M.; Esposito, G.; Pinto, G.; Fontanarosa, C.; Spinelli, M.; et al. Polycyclic Aromatic Hydrocarbons (PAHs) in the Environment: Occupational Exposure, Health Risks and Fertility Implications. Toxics 2025, 13, 151. [Google Scholar] [CrossRef]
- Othman, H.B.; Pick, F.R.; Hlaili, A.S.; Leboulanger, C. Effects of Polycyclic Aromatic Hydrocarbons on Marine and Freshwater Microalgae—A Review. J. Hazard. Mater. 2023, 441, 129869. [Google Scholar] [CrossRef]
- Wang, C.; Lou, Y.; Wang, T.; Li, R.; Peng, M.; Gao, D.; Lei, W. Embryonic Exposure to Water Accommodated Fraction of Crude Oil Inhibits Reproductive Capability in Adult Female Marine Medaka (Oryzias melastigma). Chemosphere 2024, 362, 142616. [Google Scholar] [CrossRef]
- Castillo-Ilabaca, C.; Gutiérrez, M.H.; Aranda, M.; Henríquez-Aedo, K.; Pereira, A.; Salamanca, M.; Galand, P.E.; Jessen, G.L.; Pantoja-Gutiérrez, S. PAH Contamination in Coastal Surface Sediments and Associated Bacterial Communities. Sci. Rep. 2024, 14, 29053. [Google Scholar] [CrossRef]
- Anyahara, J.N. Effects of Polycyclic Aromatic Hydrocarbons (PAHs) on the Environment: A Systematic Review. Int. J. Adv. Acad. Res. 2021, 7, 2488–9849. [Google Scholar] [CrossRef]
- Mai, L.; Bao, L.J.; Shi, L.; Liu, L.Y.; Zeng, E.Y. Polycyclic Aromatic Hydrocarbons Affiliated with Microplastics in Surface Waters of Bohai and Huanghai Seas, China. Environ. Pollut. 2018, 241, 834–840. [Google Scholar] [CrossRef]
- Bouzekry, A.; Mghili, B.; Bottari, T.; Bouadil, O.; Mancuso, M.; Benomar, M.; Aksissou, M. Polycyclic Aromatic Hydrocarbons in Sediments and Bivalves along the Moroccan Mediterranean Coast: Spatial Distribution, Sources, and Risk Assessment. Environ. Pollut. 2024, 363, 125073. [Google Scholar] [CrossRef] [PubMed]
- Hassan, H.M.; Castillo, A.B.; Yigiterhan, O.; Elobaid, E.A.; Al-Obaidly, A.; Al-Ansari, E.; Obbard, J.P. Baseline Concentrations and Distributions of Polycyclic Aromatic Hydrocarbons in Surface Sediments from the Qatar Marine Environment. Mar. Pollut. Bull. 2018, 126, 58–62. [Google Scholar] [CrossRef] [PubMed]
- de Oliveira, A.F.B.; Gomes, B.R.S.; França, R.S.; Moreira, T.C.S.; Moraes, A.S.; Bataglion, G.A.; Santos, J.M. A Multi-Geochemical Characterization to Evaluate Anthropogenic Contamination in Marine Sediments from Port of Suape, Northeast of Brazil. J. Braz. Chem. Soc. 2023, 35, e-20230154. [Google Scholar] [CrossRef]
- Honda, M.; Suzuki, N. Toxicities of Polycyclic Aromatic Hydrocarbons for Aquatic Animals. Int. J. Environ. Res. Public Health 2020, 17, 1363. [Google Scholar] [CrossRef]
- Yu, Z.; Lin, Q.; Gu, Y.; Du, F.; Wang, X.; Shi, F.; Ke, C.; Xiang, M.; Yu, Y. Bioaccumulation of Polycyclic Aromatic Hydrocarbons (PAHs)in Wild Marine Fish from the Coastal Waters of the Northern South China Sea: Risk Assessment for Human Health. Ecotoxicol. Environ. Saf. 2019, 180, 742–748. [Google Scholar] [CrossRef]
- Zhao, Z.; Zhang, L.; Cai, Y.; Chen, Y. Distribution of Polycyclic Aromatic Hydrocarbon (PAH) Residues in Several Tissues of Edible Fishes from the Largest Freshwater Lake in China, Poyang Lake, and Associated Human Health Risk Assessment. Ecotoxicol. Environ. Saf. 2014, 104, 323–331. [Google Scholar] [CrossRef] [PubMed]
- Bandowe, B.A.M.; Bigalke, M.; Boamah, L.; Nyarko, E.; Saalia, F.K.; Wilcke, W. Polycyclic Aromatic Compounds (PAHs and Oxygenated PAHs) and Trace Metals in Fish Species from Ghana (West Africa): Bioaccumulation and Health Risk Assessment. Environ. Int. 2014, 65, 135–146. [Google Scholar] [CrossRef]
- D’Costa, A.; Shyama, S.K.; Praveen Kumar, M.K. Bioaccumulation of Trace Metals and Total Petroleum and Genotoxicity Responses in an Edible Fish Population as Indicators of Marine Pollution. Ecotoxicol. Environ. Saf. 2017, 142, 22–28. [Google Scholar] [CrossRef]
- Baali, A.; Kammann, U.; Hanel, R.; El Qoraychy, I.; Yahyaoui, A. Bile Metabolites of Polycyclic Aromatic Hydrocarbons (PAHs) in Three Species of Fish from Morocco. Environ. Sci. Eur. 2016, 28, 25. [Google Scholar] [CrossRef]
- Collier, T.K.; Anulacion, B.F.; Arkoosh, M.R.; Dietrich, J.P.; Incardona, J.P.; Johnson, L.L.; Ylitalo, G.M.; Myers, M.S. Effects on Fish of Polycyclic Aromatic HydrocarbonS (PAHS) and Naphthenic Acid Exposures. In Organic Chemical Toxicology of Fishes; Elsevier Inc.: Amsterdam, The Netherlands, 2013; Volume 33, pp. 195–255. [Google Scholar]
- Vethaak, A.D.; Baggelaar, P.K.; van Lieverloo, J.H.M.; Ariese, F. Decadal Trends in Polycyclic Aromatic Hydrocarbon (PAH) Contamination Assessed by 1-Hydroxypyrene in Fish Bile Fluid in The Netherlands: Declining in Marine Waters but Still a Concern in Estuaries. Front. Mar. Sci. 2016, 3, 215. [Google Scholar] [CrossRef]
- Kono, K.; Ito, M.; Hano, T.; Ohkubo, N. Estimation of the Uptake of Polycyclic Aromatic Hydrocarbons Desorbed from Polyethylene Microplastics in the Digestive Tract of the Red Seabream (Pagrus major) and Mummichog (Fundulus heteroclitus). Mar. Pollut. Bull. 2024, 209, 117216. [Google Scholar] [CrossRef] [PubMed]
- Al-Khion, D. Distribution and Source of Polycyclic Aromatic Hydrocarbons (PAHs) in the Aquatic Species of Iraqi Marine Waters. Int. J. Sci. Res. 2018, 7, 1911–1917. [Google Scholar] [CrossRef]
- Kreitsberg, R.; Zemit, I.; Freiberg, R.; Tambets, M.; Tuvikene, A. Responses of Metabolic Pathways to Polycyclic Aromatic Compounds in Flounder Following Oil Spill in the Baltic Sea near the Estonian Coast. Aquat. Toxicol. 2010, 99, 473–478. [Google Scholar] [CrossRef] [PubMed]
- Khursigara, A.J.; Ackerly, K.L.; Esbaugh, A.J. Pyrene Drives Reduced Brain Size during Early Life Exposure in an Estuarine Fish, the Red Drum (Sciaenops ocellatus). Comp. Biochem. Physiol. Part C Toxicol. Pharmacol. 2022, 259, 109397. [Google Scholar] [CrossRef] [PubMed]
- Filatova, T.S.; Abramochkin, D.V. Physiological Effects of Polycyclic Aromatic Hydrocarbons in Fish Organisms. Mosc. Univ. Biol. Sci. Bull. 2023, 78, 115–127. [Google Scholar] [CrossRef]
- Li, Y.; Zou, X.; Zou, S.; Li, P.; Yang, Y.; Wang, J. Pollution Status and Trophic Transfer of Polycyclic Aromatic Hydrocarbons in Coral Reef Ecosystems of the South China Sea. ICES J. Mar. Sci. 2021, 78, 2053–2064. [Google Scholar] [CrossRef]
- Jin, S.; Cao, S.; Li, R.; Gao, H.; Na, G. Trophic Transfer of Polycyclic Aromatic Hydrocarbons through the Food Web of the Fildes Peninsula, Antarctica. Environ. Sci. Pollut. Res. 2023, 30, 55057–55066. [Google Scholar] [CrossRef]
- Rojo-Nieto, E.; Perales, J.A. Estimating Baseline Toxicity of PAHs from Marine Chronically Polluted Sediments and Bioaccumulation in Target Organs of Fish Hypothetically Exposed to Them: A New Tool in Risk Assessment. Environ. Sci. Process. Impacts 2015, 17, 1331–1339. [Google Scholar] [CrossRef]
- Li, H.; Ran, Y. Distribution and Bioconcentration of Polycyclic Aromatic Hydrocarbons in Surface Water and Fishes. Sci. World J. 2012, 2012, 632910. [Google Scholar] [CrossRef]
- Wang, Z.; Meng, Q.; Sun, K.; Wen, Z. Spatiotemporal Distribution, Bioaccumulation, and Ecological and Human Health Risks of Polycyclic Aromatic Hydrocarbons in Surface Water: A Comprehensive Review. Sustainability 2024, 16, 10346. [Google Scholar] [CrossRef]
- Wang, H.; Shu, Y.; Kuang, Z.; Han, Z.; Wu, J.; Huang, X.; Song, X.; Yang, J.; Fan, Z. Bioaccumulation and Potential Human Health Risks of PAHs in Marine Food Webs: A Trophic Transfer Perspective. J. Hazard. Mater. 2025, 485, 136946. [Google Scholar] [CrossRef]
- Qadeer, A.; Liu, M.; Yang, J.; Liu, X.; Khalil, S.K.; Huang, Y.; Habibullah-Al-Mamun, M.; Gao, D.; Yang, Y. Trophodynamics and Parabolic Behaviors of Polycyclic Aromatic Hydrocarbons in an Urbanized Lake Food Web, Shanghai. Ecotoxicol. Environ. Saf. 2019, 178, 17–24. [Google Scholar] [CrossRef]
- Dietrich, G.J.; Florek-łuszczki, M.; Wojciechowska, M.; Wójcik, T.; Bąk-Badowska, J.; Wójtowicz, B.; Zięba, E.; Gworek, B.; Chmielewski, J. Fish as Bio-Indicators of environmental pollutants and associated health risks to the consumer. J. Elem. 2022, 27, 879–896. [Google Scholar] [CrossRef]
- Dalzochio, T.; Rodrigues, G.Z.P.; Petry, I.E.; Gehlen, G.; da Silva, L.B. The Use of Biomarkers to Assess the Health of Aquatic Ecosystems in Brazil: A Review. Int. Aquat. Res. 2016, 8, 283–298. [Google Scholar] [CrossRef]
- Recabarren-Villalón, T.; Ronda, A.C.; Girones, L.; Marcovecchio, J.; Amodeo, M.; Arias, A.H. Can Environmental Factors Increase Oxidative Responses in Fish Exposed to Polycyclic Aromatic Hydrocarbons (PAHs)? Chemosphere 2024, 355, 141793. [Google Scholar] [CrossRef]
- Bencheikh, Z.; Refes, W.; Mela Prodocimo, M.; de Oliveira Ribeiro, C.A. Ultrastructural Biomarkers in Target Organs of Fish from Algeria Coastline to Access Water Quality. Water Air Soil Pollut. 2024, 235, 387. [Google Scholar] [CrossRef]
- Salgado, L.D.; Marques, A.E.M.L.; Kramer, R.D.; Garrido de Oliveira, F.; Moretto, S.L.; Alves de Lima, B.; Prodocimo, M.M.; Cestari, M.M.; de Azevedo, J.C.R.; Silva de Assis, H.C. Sediment Contamination and Toxic Effects on Violet Goby Fish (Gobioides broussonnetii—Gobiidae) from a Marine Protected Area in South Atlantic. Environ. Res. 2021, 195, 110308. [Google Scholar] [CrossRef]
- Bencheikh, Z.; Refes, W.; Brito, P.M.; Prodocimo, M.M.; Gusso-Choueri, P.K.; Choueri, R.B.; de Oliveira Ribeiro, C.A. Chemical Pollution Impairs the Health of Fish Species and Fishery Activities along the Algeria Coastline, Mediterranean Sea. Environ. Monit. Assess. 2022, 194, 497. [Google Scholar] [CrossRef]
- Beg, M.U.; Butt, S.A.; Al-Dufaileej, S.; Karam, Q.; Al-Sharrah, T.K.; Saeed, T. Biomarkers in Fish as a Measure of the State of Marine Environment of Kuwait. Environ. Monit. Assess. 2018, 190, 325. [Google Scholar] [CrossRef]
- Hu, Y.; Zhou, C.; Xu, K.; Ke, A.; Zheng, Y.; Lu, R.; Xu, J. Pollution Level and Health Risk Assessment of the Total Petroleum Hydrocarbon in Marine Environment and Aquatic Products: A Case of China. Environ. Sci. Pollut. Res. 2022, 29, 86887–86897. [Google Scholar] [CrossRef]
- Nakken, C.L.; Meier, S.; Mjøs, S.A.; Bijlsma, L.; Rowland, S.J.; Donald, C.E. Discovery of Polycyclic Aromatic Acid Metabolites in Fish Exposed to the Petroleum Compounds 1-Methylphenanthrene and 1,4-Dimethylphenanthrene. Sci. Total Environ. 2024, 918, 170496. [Google Scholar] [CrossRef]
- Wills, L.P.; Jung, D.; Koehrn, K.; Zhu, S.; Willett, K.L.; Hinton, D.E.; di Giulio, R.T. Comparative Chronic Liver Toxicity of Benzo[a]Pyrene in Two Populations of the Atlantic Killifish (Fundulus Heteroclitus) with Different Exposure Histories. Environ. Health Perspect. 2010, 118, 1376–1381. [Google Scholar] [CrossRef]
- Palanikumar, L.; Kumaraguru, A.K.; Ramakritinan, C.M.; Anand, M. Biochemical Response of Anthracene and Benzo [a] Pyrene in Milkfish Chanos chanos. Ecotoxicol. Environ. Saf. 2012, 75, 187–197. [Google Scholar] [CrossRef]
- Oliveira, M.; Ribeiro, A.; Hylland, K.; Guilhermino, L. Single and Combined Effects of Microplastics and Pyrene on Juveniles (0+ Group) of the Common Goby Pomatoschistus microps (Teleostei, Gobiidae). Ecol. Indic. 2013, 34, 641–647. [Google Scholar] [CrossRef]
- Ali, A.O.; Hohn, C.; Allen, P.J.; Ford, L.; Dail, M.B.; Pruett, S.; Petrie-Hanson, L. The Effects of Oil Exposure on Peripheral Blood Leukocytes and Splenic Melano-Macrophage Centers of Gulf of Mexico Fishes. Mar. Pollut. Bull. 2014, 79, 87–93. [Google Scholar] [CrossRef]
- Bo, J.; Gopalakrishnan, S.; Chen, F.Y.; Wang, K.J. Benzo[a]Pyrene Modulates the Biotransformation, DNA Damage and Cortisol Level of Red Sea Bream Challenged with Lipopolysaccharide. Mar. Pollut. Bull. 2014, 85, 463–470. [Google Scholar] [CrossRef]
- Sørensen, L.; Sørhus, E.; Nordtug, T.; Incardona, J.P.; Linbo, T.L.; Giovanetti, L.; Karlsen, Ø.; Meier, S. Oil Droplet Fouling and Differential Toxicokinetics of Polycyclic Aromatic Hydrocarbons in Embryos of Atlantic Haddock and Cod. PLoS ONE 2017, 12, e0180048. [Google Scholar] [CrossRef] [PubMed]
- Cai, L.; Li, J.; Yu, L.; Wei, Y.; Miao, Z.; Chen, M.; Huang, R. Characterization of Transcriptional Responses Mediated by Benzo[a]Pyrene Stress in a New Marine Fish Model of Goby, Mugilogobius Chulae. Genes Genom. 2019, 41, 113–123. [Google Scholar] [CrossRef]
- Ma, Y.; Sun, Y.; Li, Y.; Zheng, H.; Mi, W. Polycyclic Aromatic Hydrocarbons in Benthos of the Northern Bering Sea Shelf and Chukchi Sea Shelf. J. Environ. Sci. 2020, 97, 194–199. [Google Scholar] [CrossRef]
- Zanaty, M.I.; Sawada, N.; Kitani, Y.; Nassar, H.F.; Mahmoud, H.M.; Hayakawa, K.; Sekiguchi, T.; Ogiso, S.; Tabuchi, Y.; Urata, M.; et al. Influence of Benz[a]Anthracene on Bone Metabolism and on Liver Metabolism in Nibbler Fish, Girella punctata. Int. J. Environ. Res. Public Health 2020, 17, 1391. [Google Scholar] [CrossRef]
- Hano, T.; Ito, M.; Ito, K.; Uchida, M. Alterations of Stool Metabolome, Phenome, and Microbiome of the Marine Fish, Red Sea Bream, Pagrus Major, Following Exposure to Phenanthrene: A Non-Invasive Approach for Exposure Assessment. Sci. Total Environ. 2021, 752, 141796. [Google Scholar] [CrossRef]
- Arkoosh, M.R.; Collier, T.K. Ecological Risk Assessment Paradigm for Salmon: Analyzing Immune Function to Evaluate Risk. Hum. Ecol. Risk Assess. 2002, 8, 265–276. [Google Scholar] [CrossRef]
- Cherr, G.N.; Fairbairn, E.; Whitehead, A. Impacts of Petroleum-Derived Pollutants on Fish Development. Annu. Rev. Anim. Biosci. 2017, 5, 185–203. [Google Scholar] [CrossRef]
- Cousin, X.; Cachot, J. PAHs and Fish—Exposure Monitoring and Adverse Effects—From Molecular to Individual Level. Environ. Sci. Pollut. Res. 2014, 21, 13685–13688. [Google Scholar] [CrossRef]
- Zheng, Y.; Li, Y.; Yue, Z.; Samreen; Li, Z.; Li, X.; Wang, J. Teratogenic Effects of Environmentally Relevant Concentrations of Phenanthrene on the Early Development of Marine Medaka (Oryzia melastigma). Chemosphere 2020, 254, 126900. [Google Scholar] [CrossRef] [PubMed]
- Price, E.R.; Mager, E.M. The Effects of Exposure to Crude Oil or PAHs on Fish Swim Bladder Development and Function. Comp. Biochem. Physiol. Part C Toxicol. Pharmacol. 2020, 238, 108853. [Google Scholar] [CrossRef] [PubMed]
- Hodson, P.V. The Toxicity to Fish Embryos of PAH in Crude and Refined Oils. Arch. Environ. Contam. Toxicol. 2017, 73, 12–18. [Google Scholar] [CrossRef] [PubMed]
- Brander, S.; Hecht, S.; Kuivila, K. The Challenge: “Bridging the Gap” with Fish: Advances in Assessing Exposure and Effects across Biological Scales. Environ. Toxicol. Chem. 2015, 34, 459. [Google Scholar] [CrossRef]
- Magnuson, J.T.; Bautista, N.M.; Lucero, J.A.; Lund, A.K.; Xu, E.G.; Schlenk, D.; Burggren, W.W.; Roberts, A.P. Exposure to Crude Oil Induces Retinal Apoptosis and Impairs Visual Function in Fish. Environ. Sci. Technol. 2020, 54, 2843–2850. [Google Scholar] [CrossRef]
- Hauser-Davis, R.A.; Lopes, R.M.; Ziolli, R.L. Inihibition of Mullet (M. Liza) Brain Acetylcholinesterase Activity by in Vitro Polycyclic Aromatic Hydrocarbon Exposure. Mar. Pollut. Bull. 2019, 140, 30–34. [Google Scholar] [CrossRef]
- Sathikumaran, R.; Madhuvandhi, J.; Priya, K.K.; Sridevi, A.; Krishnamurthy, R.; Thilagam, H. Evaluation of Benzo[a]Pyrene-Induced Toxicity in the Estuarine Thornfish Therapon jarbua. Toxicol. Rep. 2022, 9, 720–727. [Google Scholar] [CrossRef]
- Olasehinde, T.A.; Olaniran, A.O. Neurotoxicity of Polycyclic Aromatic Hydrocarbons: A Systematic Mapping and Review of Neuropathological Mechanisms. Toxics 2022, 10, 417. [Google Scholar] [CrossRef]
- Carlson, E.A.; Li, Y.; Zelikoff, J.T. Exposure of Japanese Medaka (Oryzias latipes) to Benzo[a]Pyrene Suppresses Immune Function and Host Resistance against Bacterial Challenge. Aquat. Toxicol. 2002, 56, 289–301. [Google Scholar] [CrossRef]
- Reynaud, S.; Deschaux, P. The Effects of Polycyclic Aromatic Hydrocarbons on the Immune System of Fish: A Review. Aquat. Toxicol. 2006, 77, 229–238. [Google Scholar] [CrossRef]
- Hogan, N.S.; Lee, K.S.; Köllner, B.; van den Heuvel, M.R. The Effects of the Alkyl Polycyclic Aromatic Hydrocarbon Retene on Rainbow Trout (Oncorhynchus mykiss) Immune Response. Aquat. Toxicol. 2010, 100, 246–254. [Google Scholar] [CrossRef] [PubMed]
- Vignet, C.; Devier, M.H.; Le Menach, K.; Lyphout, L.; Potier, J.; Cachot, J.; Budzinski, H.; Bégout, M.L.; Cousin, X. Long-Term Disruption of Growth, Reproduction, and Behavior after Embryonic Exposure of Zebrafish to PAH-Spiked Sediment. Environ. Sci. Pollut. Res. 2014, 21, 13877–13887. [Google Scholar] [CrossRef] [PubMed]
- Ramasre, J.R.; Kashyap, N.; Chandravanshi, S.; Mishra, S.; Baidya, S.; Lal, J.; Dhruve, D. Endocrine Disrupting Chemicals and Their Harmful Effects in Fish: A Comprehensive Review. Int. J. Adv. Biochem. Res. 2024, 8, 5–11. [Google Scholar] [CrossRef]
- Kar, S.; Sangem, P.; Anusha, N.; Senthilkumaran, B. Endocrine Disruptors in Teleosts: Evaluating Environmental Risks and Biomarkers. Aquac. Fish. 2021, 6, 1–26. [Google Scholar] [CrossRef]
- Zhang, Y.; Dong, S.; Wang, H.; Tao, S.; Kiyama, R. Biological Impact of Environmental Polycyclic Aromatic Hydrocarbons (EPAHs) as Endocrine Disruptors. Environ. Pollut. 2016, 213, 809–824. [Google Scholar] [CrossRef] [PubMed]
- de Campos, M.F.; Lo Nostro, F.L.; Da Cuña, R.H.; Moreira, R.G. Endocrine Disruption of Phenanthrene in the Protogynous Dusky Grouper Epinephelus marginatus (Serranidae: Perciformes). Gen. Comp. Endocrinol. 2018, 257, 255–263. [Google Scholar] [CrossRef]
- Sun, L.; Zuo, Z.; Chen, M.; Chen, Y.; Wang, C. Reproductive and Transgenerational Toxicities of Phenanthrene on Female Marine Medaka (Oryzias melastigma). Aquat. Toxicol. 2015, 162, 109–116. [Google Scholar] [CrossRef]
- Abdelmeguid, N.E.; Ghanem, S.F.; Assem, S.S.; Abou Shabana, N.M.; Ismail, R.F.; Sultan, A.S. Ameliorative Effects of Chitosan in Water Remediation, Endocrine Disruption and Reproductive Impairment of Solea Solea after Exposure to Benzo (a) Pyrene. Int. Aquat. Res. 2024, 16, 71–90. [Google Scholar] [CrossRef]
- Khan, E.A.; Bertotto, L.B.; Dale, K.; Lille-Langøy, R.; Yadetie, F.; Karlsen, O.A.; Goksøyr, A.; Schlenk, D.; Arukwe, A. Modulation of Neuro-Dopamine Homeostasis in Juvenile Female Atlantic Cod (Gadus morhua) Exposed to Polycyclic Aromatic Hydrocarbons and Perfluoroalkyl Substances. Environ. Sci. Technol. 2019, 53, 7036–7044. [Google Scholar] [CrossRef]
- Brown-Peterson, N.J.; Krasnec, M.; Takeshita, R.; Ryan, C.N.; Griffitt, K.J.; Lay, C.; Mayer, G.D.; Bayha, K.M.; Hawkins, W.E.; Lipton, I.; et al. A Multiple Endpoint Analysis of the Effects of Chronic Exposure to Sediment Contaminated with Deepwater Horizon Oil on Juvenile Southern Flounder and Their Associated Microbiomes. Aquat. Toxicol. 2015, 165, 197–209. [Google Scholar] [CrossRef]
- Li, Y.; Yang, G.; Wang, J.; Lu, L.; Li, X.; Zheng, Y.; Zhang, Z.; Ru, S. Microplastics Increase the Accumulation of Phenanthrene in the Ovaries of Marine Medaka (Oryzias melastigma) and Its Transgenerational Toxicity. J. Hazard. Mater. 2022, 424, 127754. [Google Scholar] [CrossRef] [PubMed]
- Sheibani, Z.; Salamat, N.; Movahedinia, A.A.; Hashemitabar, M.; Bayati, V. Using Ovarian and Brain Cell Culture from the Mullet, Liza Klunzingeri, to Assess the Inhibitory Effects of Benzo[a]Pyrene on Aromatase Activity. J. Appl. Toxicol. 2020, 40, 991–1003. [Google Scholar] [CrossRef]
- Yadetie, F.; Zhang, X.; Hanna, E.M.; Aranguren-Abadía, L.; Eide, M.; Blaser, N.; Brun, M.; Jonassen, I.; Goksøyr, A.; Karlsen, O.A. RNA-Seq Analysis of Transcriptome Responses in Atlantic Cod (Gadus morhua) Precision-Cut Liver Slices Exposed to Benzo[a]Pyrene and 17A-Ethynylestradiol. Aquat. Toxicol. 2018, 201, 174–186. [Google Scholar] [CrossRef]
- Sun, D.; Chen, Q.; Zhu, B.; Lan, Y.; Duan, S. Long-Term Exposure to Benzo[a]Pyrene Affects Sexual Differentiation and Embryos Toxicity in Three Generations of Marine Medaka (Oryzias melastigma). Int. J. Environ. Res. Public Health 2020, 17, 970. [Google Scholar] [CrossRef]
- Cañizares-Martínez, M.A.; Quintanilla-Mena, M.A.; Árcega-Cabrera, F.; Ceja-Moreno, V.; Del Río-García, M.; Reyes-Solian, S.G.; Rivas-Reyes, I.; Rivera-Bustamante, R.F.; Puch-Hau, C.A. Transcriptional Response of Vitellogenin Gene in Flatfish to Environmental Pollutants from Two Regions of the Gulf of Mexico. Bull. Environ. Contam. Toxicol. 2024, 112, 11. [Google Scholar] [CrossRef]
- Woo, S.J. Effects of Benzo[a]Pyrene Exposure on Black Rockfish (Sebastes schlegelii): EROD Activity, CYP1A Protein, and Immunohistochemical and Histopathological Alterations. Environ. Sci. Pollut. Res. 2022, 29, 4033–4043. [Google Scholar] [CrossRef] [PubMed]
- Yadetie, F.; Brun, N.R.; Vieweg, I.; Nahrgang, J.; Karlsen, O.A.; Goksøyr, A. Transcriptome Responses in Polar Cod (Boreogadus saida) Liver Slice Culture Exposed to Benzo[a]Pyrene and Ethynylestradiol: Insights into Anti-Estrogenic Effects. Toxicol. Vitr. 2021, 75, 105193. [Google Scholar] [CrossRef]
- Marsili, L.; Coppola, D.; Giannetti, M.; Casini, S.; Fossi, M.C.; van Wyk, J.H.; Sperone, E.; Tripepi, S.; Micarelli, P.; Rizzuto, S. Skin Biopsies as a Sensitive Non-Lethal Technique for the Ecotoxicological Studies of Great White Shark (Carcharodon carcharias) Sampled in South Africa. Expert Opin. Environ. Biol. 2016, 4, 2. [Google Scholar] [CrossRef]
- Imbery, J.J.; Buday, C.; Miliano, R.C.; Shang, D.; Round, J.M.; Kwok, H.; Van Aggelen, G.; Helbing, C.C. Evaluation of Gene Bioindicators in the Liver and Caudal Fin of Juvenile Pacific Coho Salmon in Response to Low Sulfur Marine Diesel Seawater-Accommodated Fraction Exposure. Environ. Sci. Technol. 2019, 53, 1627–1638. [Google Scholar] [CrossRef]
- Strople, L.C.; Vieweg, I.; Yadetie, F.; Odei, D.K.; Thorsen, A.; Karlsen, O.A.; Goksøyr, A.; Sørensen, L.; Sarno, A.; Hansen, B.H.; et al. Spawning Time in Adult Polar Cod (Boreogadus saida) Altered by Crude Oil Exposure, Independent of Food Availability. J. Toxicol. Environ. Health Part A Curr. Issues 2025, 88, 43–66. [Google Scholar] [CrossRef]
- Bender, M.L.; Frantzen, M.; Vieweg, I.; Falk-Petersen, I.B.; Johnsen, H.K.; Rudolfsen, G.; Tollefsen, K.E.; Dubourg, P.; Nahrgang, J. Effects of Chronic Dietary Petroleum Exposure on Reproductive Development in Polar Cod (Boreogadus saida). Aquat. Toxicol. 2016, 180, 196–208. [Google Scholar] [CrossRef]
- Meier, S.; Karlsen, Ø.; Le Goff, J.; Sørensen, L.; Sørhus, E.; Pampanin, D.M.; Donald, C.E.; Fjelldal, P.G.; Dunaevskaya, E.; Romano, M.; et al. DNA Damage and Health Effects in Juvenile Haddock (Melanogrammus aeglefinus) Exposed to PAHs Associated with Oil-Polluted Sediment or Produced Water. PLoS ONE 2020, 15, e0240307. [Google Scholar] [CrossRef] [PubMed]
- Bramatti, I.; Matos, B.; Figueiredo, N.; Pousão-Ferreira, P.; Branco, V.; Martins, M. Interaction of Polycyclic Aromatic Hydrocarbon Compounds in Fish Primary Hepatocytes: From Molecular Mechanisms to Genotoxic Effects. Sci. Total Environ. 2023, 855, 158783. [Google Scholar] [CrossRef]
- Strobel, A.; Burkhardt-Holm, P.; Schmid, P.; Segner, H. Benzo(a)Pyrene Metabolism and EROD and GST Biotransformation Activity in the Liver of Red- and White-Blooded Antarctic Fish. Environ. Sci. Technol. 2015, 49, 8022–8032. [Google Scholar] [CrossRef] [PubMed]
- Bozcaarmutlu, A.; Sapmaz, C.; Kaleli, G.; Turna, S.; Yenisoy-Karakaş, S. Combined Use of PAH Levels and EROD Activities in the Determination of PAH Pollution in Flathead Mullet (Mugil Cephalus) Caught from the West Black Sea Coast of Turkey. Environ. Sci. Pollut. Res. 2015, 22, 2515–2525. [Google Scholar] [CrossRef]
- Smeltz, M.; Rowland-Faux, L.; Ghiran, C.; Patterson, W.F.; Garner, S.B.; Beers, A.; Mièvre, Q.; Kane, A.S.; James, M.O. A Multi-Year Study of Hepatic Biomarkers in Coastal Fishes from the Gulf of Mexico after the Deepwater Horizon Oil Spill. Mar. Environ. Res. 2017, 129, 57–67. [Google Scholar] [CrossRef] [PubMed]
- Noleto, K.S.; Mendes, D.C.S.; Carvalho, I.F.S.; Ribeiro, D.L.S.; Santos, D.M.S.; Ferreira, A.P.M.; Marques, A.L.B.; Carvalho-Neta, R.N.F.; Tchaicka, L.; Torres-Júnior, J.R.S. Aquatic Pollutants Are Associated with Reproductive Alterations and Genotoxicity in Estuarine Fish (Sciades herzbergii-Bloch, 1794) from the Amazon Equatorial Coast. Braz. J. Biol. 2022, 82, e267996. [Google Scholar] [CrossRef]
- Carr, D.L.; Smith, E.E.; Thiyagarajah, A.; Cromie, M.; Crumly, C.; Davis, A.; Dong, M.; Garcia, C.; Heintzman, L.; Hopper, T.; et al. Assessment of Gonadal and Thyroid Histology in Gulf Killifish (Fundulus grandis) from Barataria Bay Louisiana One Year after the Deepwater Horizon Oil Spill. Ecotoxicol. Environ. Saf. 2018, 154, 245–254. [Google Scholar] [CrossRef] [PubMed]
- Xue, Y.; Wang, F.; Su, X.; Li, M.; Yan, H.; Zheng, S.; Ma, Y.; Dong, J.; Liu, Y.; Lin, Q.; et al. Reproductive Toxicity and Molecular Mechanisms of Benzo[a]Pyrene Exposure on Ovary, Testis, and Brood Pouch of Sex-Role-Reversed Seahorses (Hippocampus erectus). Environ. Pollut. 2025, 367, 125569. [Google Scholar] [CrossRef]
- Mousavi, A.; Salamat, N.; Safahieh, A. Phenanthrene Disrupting Effects on the Thyroid System of Arabian Seabream, Acanthopagrus Arabicus: In Situ and In Vivo Study. Comp. Biochem. Physiol. Part C Toxicol. Pharmacol. 2022, 252, 109226. [Google Scholar] [CrossRef]
- Movahedinia, A.; Salamat, N.; Kheradmand, P. Effects of the Environmental Endocrine Disrupting Compound Benzo[a]Pyrene on Thyroidal Status of Abu Mullet (Liza abu) during Short-Term Exposure. Toxicol. Rep. 2018, 5, 377–382. [Google Scholar] [CrossRef] [PubMed]
- Yarahmadi, Z.; Ali Movahedinia, A.; Rastgar, S.; Alijani Ardeshir, R. Effects of Naphthalene on Plasma Cortisol and Thyroid Levels in Immature and Mature Female Klunzingeri Mulet, Liza Klunzingeri. Iran. J. Toxicol. 2016, 10, 45–49. [Google Scholar] [CrossRef]
- de Pinho, J.V.; Rodrigues, P.d.A.; Guimarães, I.D.L.; Monteiro, F.C.; Ferrari, R.G.; Hauser-Davis, R.A.; Conte-Junior, C.A. The Role of the Ecotoxicology Applied to Seafood as a Tool for Human Health Risk Assessments Concerning Polycyclic Aromatic Hydrocarbons. Int. J. Environ. Res. Public Health 2022, 19, 1211. [Google Scholar] [CrossRef]
- Dearnley, J.M.; Killeen, C.; Davis, R.L.; Palace, V.P.; Tomy, G.T. Monitoring Polycyclic Aromatic Compounds Exposure in Fish Using Biliary Metabolites. Crit. Rev. Environ. Sci. Technol. 2022, 52, 475–519. [Google Scholar] [CrossRef]
- Plunk, E.C.; Richards, S.M. Endocrine-Disrupting Air Pollutants and Their Effects on the Hypothalamus-Pituitary-Gonadal Axis. Int. J. Mol. Sci. 2020, 21, 9191. [Google Scholar] [CrossRef]
- Bak, S.M.; Nakata, H.; Koh, D.H.; Yoo, J.; Iwata, H.; Kim, E.Y. In Vitro and in Silico AHR Assays for Assessing the Risk of Heavy Oil-Derived Polycyclic Aromatic Hydrocarbons in Fish. Ecotoxicol. Environ. Saf. 2019, 181, 214–223. [Google Scholar] [CrossRef]
- Woo, S.J.; Chung, J.K. Cytochrome P450 1 Enzymes in Black Rockfish, Sebastes Schlegelii: Molecular Characterization and Expression Patterns after Exposure to Benzo[a]Pyrene. Aquat. Toxicol. 2020, 226, 105566. [Google Scholar] [CrossRef] [PubMed]
- Vieweg, I.; Bilbao, E.; Meador, J.P.; Cancio, I.; Bender, M.L.; Cajaraville, M.P.; Nahrgang, J. Effects of Dietary Crude Oil Exposure on Molecular and Physiological Parameters Related to Lipid Homeostasis in Polar Cod (Boreogadus saida). Comp. Biochem. Physiol. Part C Toxicol. Pharmacol. 2018, 206, 54–64. [Google Scholar] [CrossRef]
- Sturve, J.; Hultman, M.T.; Wassmur, B.; Almroth, B.C. Determining Oxidative Stress and EROD Activity in Dab (Limanda limanda) in the North and Baltic Seas. Mar. Environ. Res. 2017, 124, 46–53. [Google Scholar] [CrossRef]
- Santana, M.S.; Sandrini-Neto, L.; Filipak Neto, F.; Oliveira Ribeiro, C.A.; Di Domenico, M.; Prodocimo, M.M. Biomarker Responses in Fish Exposed to Polycyclic Aromatic Hydrocarbons (PAHs): Systematic Review and Meta-Analysis. Environ. Pollut. 2018, 242, 449–461. [Google Scholar] [CrossRef]
- Duarte, R.M.; Sadauskas-Henrique, H.; de Almeida-Val, V.M.F.; Val, A.L.; Nice, H.E.; Gagnon, M.M. Biomarker Responses and PAH Ratios in Fish Inhabiting an Estuarine Urban Waterway. Environ. Toxicol. 2017, 32, 2305–2315. [Google Scholar] [CrossRef]
- Grosell, M.; Pasparakis, C. Physiological Responses of Fish to Oil Spills. Annu. Rev. Mar. Sci. 2021, 13, 137–160. [Google Scholar] [CrossRef]
- Berenguer, J.N.; Moraes, J.d.C.; Oliveira, M.M.; Raimundo, J.M.; Molisani, M.M. Effects of Diesel Oil and Environmental Quality on the Enzymatic Activities of a Tropical Estuarine Catfish and Implications for Contamination Assessment. Ecotoxicol. Environ. Contam. 2017, 12, 103–111. [Google Scholar] [CrossRef]
- Borcier, E.; Charrier, G.; Couteau, J.; Maillet, G.; Le Grand, F.; Bideau, A.; Waeles, M.; Le Floch, S.; Amara, R.; Pichereau, V.; et al. An Integrated Biomarker Approach Using Flounder to Improve Chemical Risk Assessments in the Heavily Polluted Seine Estuary. J. Xenobiot. 2020, 10, 14–35. [Google Scholar] [CrossRef] [PubMed]
- Dimatteo, M.; Di Napoli, E.; Paciello, O.; d’Aquino, I.; Iaccarino, D.; D’amore, M.; Guida, M.; Cozzolino, L.; Serpe, F.P.; Fusco, G.; et al. Pathological Changes and CYP1A1 Expression as Biomarkers of Pollution in Sarpa Salpa and Diplodus Sargus. Animals 2024, 14, 3160. [Google Scholar] [CrossRef]
- Caballero-Gallardo, K.; Olivero-Verbel, J.; Freeman, J.L. Toxicogenomics to Evaluate Endocrine Disrupting Effects of Environ-Mental Chemicals Using the Zebrafish Model. Curr. Genom. 2016, 17, 515–527. [Google Scholar] [CrossRef]
- Ghanem, S.F. Effect of Endocrine Disrupting Chemicals Exposure on Reproduction and Endocrine Functions Using the Zebrafish Model. Egypt. J. Aquat. Biol. Fish. 2021, 25, 951–981. [Google Scholar] [CrossRef]
- Hachfi, L.; Couvray, S.; Simide, R.; Tarnowska, K.; Pierre, S.; Gaillard, S.; Richard, S.; Coupé, S.; Grillasca, J.; D’Alvise, N.P. Impact of Endocrine Disrupting Chemicals [EDCs] on Hypothalamic-Pituitary-Gonad-Liver [HPGL] Axis in Fish. World J. Fish Mar. Sci. 2012, 4, 14–30. [Google Scholar]
- Adeogun, A.O.; Ibor, O.R.; Adeduntan, S.D.; Arukwe, A. Intersex and Alterations in Reproductive Development of a Cichlid, Tilapia Guineensis, from a Municipal Domestic Water Supply Lake (Eleyele) in Southwestern Nigeria. Sci. Total Environ. 2016, 541, 372–382. [Google Scholar] [CrossRef]
- Dupuis, A.; Ucan-Marin, F. A Literature Review on the Aquatic Toxicology of Petroleum Oil: An Overview of Oil Properties and Effects to Aquatic Biota; Canadian Science Advisory Secretariat: Ottawa, ON, Canada, 2015. [Google Scholar]
- Mokhtar, D.M. Diversity and Dynamics of Fish Ovaries: Insights into Reproductive Strategies, Hormonal Regulation, and Ovarian Development. Histol. Histopathol. 2025, 40, 283–295. [Google Scholar] [CrossRef] [PubMed]
- Xu, K.; Gao, D.; Lin, J.; Dai, Q.; Zhou, Q.; Chen, Y.; Wang, C. Benzo(a)Pyrene Exposure in Early Life Suppresses Spermatogenesis in Adult Male Zebrafish and Association with the Methylation of Germ Cell-Specific Genes. Aquat. Toxicol. 2023, 258, 106504. [Google Scholar] [CrossRef]
- Chen, Y.; Zhang, Y.; Yu, Z.; Guan, Y.; Chen, R.; Wang, C. Early-Life Phenanthrene Exposure Inhibits Reproductive Ability in Adult Zebrafish and the Mechanism of Action. Chemosphere 2021, 272, 129635. [Google Scholar] [CrossRef]
- Bolden, A.L.; Rochester, J.R.; Schultz, K.; Kwiatkowski, C.F. Polycyclic Aromatic Hydrocarbons and Female Reproductive Health: A Scoping Review. Reprod. Toxicol. 2017, 73, 61–74. [Google Scholar] [CrossRef]
- Guiguen, Y.; Fostier, A.; Piferrer, F.; Chang, C.F. Ovarian Aromatase and Estrogens: A Pivotal Role for Gonadal Sex Differentiation and Sex Change in Fish. Gen. Comp. Endocrinol. 2010, 165, 352–366. [Google Scholar] [CrossRef]
- De Coster, S.; Van Larebeke, N. Endocrine-Disrupting Chemicals: Associated Disorders and Mechanisms of Action. J. Environ. Public Health 2012, 2012, 713696. [Google Scholar] [CrossRef]
- Souza, T.L.; de Morais, T.P.; Neto, F.F.; Opuskevitch, I.; Ferreira, F.C.A.S.; Randi, M.A.F.; de Oliveira Ribeiro, C.A.; de Souza, C.; Prodocimo, M.M. Physicochemical and Bioinformatic Characterization of Oreochromis Niloticus Vitellogenin as an Endocrine Disruption Biomarker. Ecotoxicology 2023, 32, 12–24. [Google Scholar] [CrossRef]
- Tramunt, B.; Montagner, A.; Tan, N.S.; Gourdy, P.; Rémignon, H.; Wahli, W. Roles of Estrogens in the Healthy and Diseased Oviparous Vertebrate Liver. Metabolites 2021, 11, 502. [Google Scholar] [CrossRef] [PubMed]
- Souza, T.L.; da Luz, J.Z.; Barreto, L.d.S.; de Oliveira Ribeiro, C.A.; Neto, F.F. Structure-Based Modeling to Assess Binding and Endocrine Disrupting Potential of Polycyclic Aromatic Hydrocarbons in Danio Rerio. Chem. Biol. Interact. 2024, 398, 111109. [Google Scholar] [CrossRef] [PubMed]
- Badamasi, I.; Odong, R.; Masembe, C. Threats Posed by Xenoestrogenic Chemicals to the Aquatic Ecosystem, Fish Reproduction and Humans: A Review. Afr. J. Aquat. Sci. 2020, 45, 243–258. [Google Scholar] [CrossRef]
- Delbes, G.; Blázquez, M.; Fernandino, J.I.; Grigorova, P.; Hales, B.F.; Metcalfe, C.; Navarro-Martín, L.; Parent, L.; Robaire, B.; Rwigemera, A.; et al. Effects of Endocrine Disrupting Chemicals on Gonad Development: Mechanistic Insights from Fish and Mammals. Environ. Res. 2022, 204, 112040. [Google Scholar] [CrossRef] [PubMed]
- Golshan, M.; Alavi, S.M.H. Androgen Signaling in Male Fishes: Examples of Anti-Androgenic Chemicals That Cause Reproductive Disorders. Theriogenology 2019, 139, 58–71. [Google Scholar] [CrossRef] [PubMed]
- Wang, L.H.; Chen, L.R.; Chen, K.H. In Vitro and Vivo Identification, Metabolism and Action of Xenoestrogens: An Overview. Int. J. Mol. Sci. 2021, 22, 4013. [Google Scholar] [CrossRef]
- Celino-Brady, F.T.; Lerner, D.T.; Seale, A.P. Experimental Approaches for Characterizing the Endocrine-Disrupting Effects of Environmental Chemicals in Fish. Front. Endocrinol. 2021, 11, 619361. [Google Scholar] [CrossRef]
- Xu, Z.; Liu, J.; Wu, X.; Huang, B.; Pan, X. Nonmonotonic Responses to Low Doses of Xenoestrogens: A Review. Environ. Res. 2017, 155, 199–207. [Google Scholar] [CrossRef]
- Fu, D.; Bridle, A.; Leef, M.; Gagnon, M.M.; Hassell, K.L.; Nowak, B.F. Using a Multi-Biomarker Approach to Assess the Effects of Pollution on Sand Flathead (Platycephalus bassensis) from Port Phillip Bay, Victoria, Australia. Mar. Pollut. Bull. 2017, 119, 211–219. [Google Scholar] [CrossRef] [PubMed]
- Pant, D.R.; Ila, K.; Sahu, U.B.; Sehgal, N. Temporal Expression of Thyroid Hormone Regulating Genes (Tsh-b, Tsh-r, Dio2 and Dio3) and Their Correlation with Annual Reproductive Cycle of the Indian Freshwater Catfish, Heteropneustes Fossilis (Bloch). J. Appl. Nat. Sci. 2023, 15, 41–56. [Google Scholar] [CrossRef]
- Deal, C.K.; Volkoff, H. The Role of the Thyroid Axis in Fish. Front. Endocrinol. 2020, 11, 596585. [Google Scholar] [CrossRef]
- Sun, Y.; Li, Y.; Liu, Z.; Chen, Q. Environmentally Relevant Concentrations of Mercury Exposure Alter Thyroid Hormone Levels and Gene Expression in the Hypothalamic–Pituitary–Thyroid Axis of Zebrafish Larvae. Fish Physiol. Biochem. 2018, 44, 1175–1183. [Google Scholar] [CrossRef]
- Gairin, E.; Dussenne, M.; Mercader, M.; Berthe, C.; Reynaud, M.; Metian, M.; Mills, S.C.; Lenfant, P.; Besseau, L.; Bertucci, F.; et al. Harbours as Unique Environmental Sites of Multiple Anthropogenic Stressors on Fish Hormonal Systems. Mol. Cell. Endocrinol. 2022, 555, 111727. [Google Scholar] [CrossRef]
- Nugegoda, D.; Kibria, G. Effects of Environmental Chemicals on Fish Thyroid Function: Implications for Fisheries and Aquaculture in Australia. Gen. Comp. Endocrinol. 2017, 244, 40–53. [Google Scholar] [CrossRef]
- Rurale, G.; Gentile, I.; Carbonero, C.; Persani, L.; Marelli, F. Short-Term Exposure Effects of the Environmental Endocrine Disruptor Benzo(a)Pyrene on Thyroid Axis Function in Zebrafish. Int. J. Mol. Sci. 2022, 23, 5833. [Google Scholar] [CrossRef] [PubMed]
- Laurent, J.; Lavergne, E.; Couteau, J.; Le Floch, S.; Ouddane, B.; Cachot, J.; Davail, B.; Clérandeau, C.; Devin, S.; Fisson, C.; et al. Impacts of Chemical Stress, Season, and Climate Change on the Flounder Population of the Highly Anthropised Seine Estuary (France). Environ. Sci. Pollut. Res. 2022, 29, 59751–59769. [Google Scholar] [CrossRef] [PubMed]
- García-Gasca, A.; Ríos-Sicairos, J.; Hernández-Cornejo, R.; Cunha, I.; Gutiérrez, J.N.; Plascencia-González, H.; de la Parra, L.M.G.; Abad-Rosales, S.; Betancourt-Lozano, M. The White Mullet (Mugil curema) as Biological Indicator to Assess Environmental Stress in Tropical Coastal Lagoons. Environ. Monit. Assess. 2016, 188, 688. [Google Scholar] [CrossRef]
- Verga, J.U.; Huff, M.; Owens, D.; Wolf, B.J.; Hardiman, G. Integrated Genomic and Bioinformatics Approaches to Identify Molecular Links between Endocrine Disruptors and Adverse Outcomes. Int. J. Environ. Res. Public Health 2022, 19, 574. [Google Scholar] [CrossRef]
- Hamilton, P.B.; Cowx, I.G.; Oleksiak, M.F.; Griffiths, A.M.; Grahn, M.; Stevens, J.R.; Carvalho, G.R.; Nicol, E.; Tyler, C.R. Population-Level Consequences for Wild Fish Exposed to Sublethal Concentrations of Chemicals—A Critical Review. Fish Fish. 2016, 17, 545–566. [Google Scholar] [CrossRef]
- Bautista, N.M.; Crespel, A.M.; Bautista, G.; Burggren, W.W. Dietary Crude Oil Exposure during Sex Differentiation Skewed Adult Sex Ratio towards Males in the Zebrafish. Sci. Total Environ. 2023, 892, 164449. [Google Scholar] [CrossRef]
- Ortiz-Zarragoitia, M.; Bizarro, C.; Rojo-Bartolomé, I.; De Cerio, O.D.; Cajaraville, M.P.; Cancio, I. Mugilid Fish Are Sentinels of Exposure to Endocrine Disrupting Compounds in Coastal and Estuarine Environments. Mar. Drugs 2014, 12, 4756–4782. [Google Scholar] [CrossRef] [PubMed]
- Bozinovic, G.; Shea, D.; Feng, Z.; Hinton, D.; Sit, T.; Oleksiak, M.F. PAH-Pollution Effects on Sensitive and Resistant Embryos: Integrating Structure and Function with Gene Expression. PLoS ONE 2021, 16, e0249432. [Google Scholar] [CrossRef]
- Pham, H.Q.; Le, H.M. Seasonal Changes in Three Indices of Gonadal Maturation in Male Golden Rabbitfish (Siganus guttatus): Implications for Artificial Propagation. Fish Physiol. Biochem. 2020, 46, 1111–1120. [Google Scholar] [CrossRef]
- Higuchi, K.; Suzuki, A.; Eba, T.; Hashimoto, H.; Kumon, K.; Morioka, T.; Shiozawa, S.; Soma, S.; Okita, K.; Takashi, T.; et al. Seasonal Changes and Endocrine Regulation of Gonadal Development in Hatchery-Produced Pacific Bluefin Tuna Thunnus Orientalis Broodstock in Sea Cages. Aquaculture 2021, 545, 737199. [Google Scholar] [CrossRef]
- Sueiro, M.C.; Palacios, M.G.; Trudeau, V.L.; Somoza, G.M.; Awruch, C.A. Anthropogenic Impact on the Reproductive Health of Two Wild Patagonian Fish Species with Differing Reproductive Strategies. Sci. Total Environ. 2022, 838, 155862. [Google Scholar] [CrossRef] [PubMed]
- Dubansky, B.; Whitehead, A.; Miller, J.T.; Rice, C.D.; Galvez, F. Multitissue Molecular, Genomic, and Developmental Effects of the Deepwater Horizon Oil Spill on Resident Gulf Killifish (Fundulus grandis). Environ. Sci. Technol. 2013, 47, 5074–5082. [Google Scholar] [CrossRef]
- Zheng, X.; Tang, J.; Song, A.; Zhou, Y.; Miao, J.; Li, Z.; Pan, L. Study on Reproductive Endocrine Disturbance and DNA Damage Mechanism of Female Ruditapes Philippinarum under Benzo[a]Pyrene Stress. Environ. Pollut. 2024, 340, 122844. [Google Scholar] [CrossRef] [PubMed]
- Kummer, V.; Mašková, J.; Zralý, Z.; Neča, J.; Šimečková, P.; Vondráček, J.; Machala, M. Estrogenic Activity of Environmental Polycyclic Aromatic Hydrocarbons in Uterus of Immature Wistar Rats. Toxicol. Lett. 2008, 180, 212–221. [Google Scholar] [CrossRef] [PubMed]
- Segner, H.; Casanova-Nakayama, A.; Kase, R.; Tyler, C.R. Impact of Environmental Estrogens on Yfish Considering the Diversity of Estrogen Signaling. Gen. Comp. Endocrinol. 2013, 191, 190–201. [Google Scholar] [CrossRef] [PubMed]
- Chen, P.; Li, B.; Ou-Yang, L. Role of Estrogen Receptors in Health and Disease. Front. Endocrinol. 2022, 13, 839005. [Google Scholar] [CrossRef]
- Toporova, L.; Balaguer, P. Nuclear Receptors Are the Major Targets of Endocrine Disrupting Chemicals. Mol. Cell. Endocrinol. 2020, 502, 110665. [Google Scholar] [CrossRef]
- Liu, S.; Chen, F.; Zhang, Y.; Cai, L.; Qiu, W.; Yang, M. G Protein-Coupled Estrogen Receptor 1 Mediates Estrogen Effect in Red Common Carp (Cyprinus carpio). Comp. Biochem. Physiol. Part C Toxicol. Pharmacol. 2021, 239, 108868. [Google Scholar] [CrossRef]
- Nelson, E.R.; Habibi, H.R. Estrogen Receptor Function and Regulation in Fish and Other Vertebrates. Gen. Comp. Endocrinol. 2013, 192, 15–24. [Google Scholar] [CrossRef]
- Delfosse, V.; Grimaldi, M.; Cavaillès, V.; Balaguer, P.; Bourguet, W. Structural and Functional Profiling of Environmental Ligands for Estrogen Receptors. Environ. Health Perspect. 2015, 122, 1306–1313. [Google Scholar] [CrossRef]
- Yaşar, P.; Ayaz, G.; User, S.D.; Güpür, G.; Muyan, M. Molecular Mechanism of Estrogen–Estrogen Receptor Signaling. Reprod. Med. Biol. 2017, 16, 4–20. [Google Scholar] [CrossRef]
- Arao, Y.; Korach, K.S. The F Domain of Estrogen Receptor Is Involved in Species-Specific, Tamoxifen-Mediated Transactivation. J. Biol. Chem. 2018, 293, 8495–8507. [Google Scholar] [CrossRef]
- Koide, A.; Zhao, C.; Naganuma, M.; Abrams, J.; Deighton-Collins, S.; Skafar, D.F.; Koide, S. Identification of Regions within the F Domain of the Human Estrogen Receptor α That Are Important for Modulating Transactivation and Protein-Protein Interactions. Mol. Endocrinol. 2007, 21, 829–842. [Google Scholar] [CrossRef] [PubMed]
- Vrtačnik, P.; Ostanek, B.; Mencej-Bedrač, S.; Marc, J. The Many Faces of Estrogen Signaling. Biochem. Med. 2014, 24, 329–342. [Google Scholar] [CrossRef]
- Schug, T.T.; Blawas, A.M.; Gray, K.; Heindel, J.J.; Lawler, C.P. Elucidating the Links between Endocrine Disruptors and Neurodevelopment. Endocrinology 2015, 156, 1941–1951. [Google Scholar] [CrossRef]
- Fertuck, K.C.; Kumar, S.; Sikka, H.C.; Matthews, J.B.; Zacharewski, T.R. Interaction of PAH-Related Compounds with the Alpha and Beta of the Estrogen Receptor. Toxicol. Lett. 2001, 121, 167–177. [Google Scholar] [CrossRef]
- Kiyama, R.; Wada-Kiyama, Y. Estrogenic Endocrine Disruptors: Molecular Mechanisms of Action. Environ. Int. 2015, 83, 11–40. [Google Scholar] [CrossRef] [PubMed]
- Zajda, K.; Gregoraszczuk, E.L. Environmental Polycyclic Aromatic Hydrocarbons Mixture, in Human Blood Levels, Decreased Oestradiol Secretion by Granulosa Cells via ESR1 and GPER1 but Not ESR2 Receptor. Hum. Exp. Toxicol. 2020, 39, 276–289. [Google Scholar] [CrossRef]
- de Souza, T.L.; da Luz, J.Z.; de Almeida Roque, A.; Opuskevitch, I.; da Silva Ferreira, F.C.A.; de Oliveira Ribeiro, C.A.; Neto, F.F. Exploring the Endocrine Disrupting Potential of a Complex Mixture of PAHs in the Estrogen Pathway in Oreochromis Niloticus Hepatocytes. Aquat. Toxicol. 2024, 273, 107002. [Google Scholar] [CrossRef]
- Vondráček, J.; Pivnička, J.; Machala, M. Polycyclic Aromatic Hydrocarbons and Disruption of Steroid Signaling. Curr. Opin. Toxicol. 2018, 11, 27–34. [Google Scholar] [CrossRef]
- Fernandes, D.; Porte, C. Hydroxylated PAHs Alter the Synthesis of Androgens and Estrogens in Subcellular Fractions of Carp Gonads. Sci. Total Environ. 2013, 447, 152–159. [Google Scholar] [CrossRef]
- Evanson, M.; Van Der Kraak, G.J. Stimulatory Effects of Selected PAHs on Testosterone Production in Goldfish and Rainbow Trout and Possible Mechanisms of Action. Comp. Biochem. Physiol. Part C 2001, 130, 249258. [Google Scholar] [CrossRef] [PubMed]
- Hossain, M.S.; Larsson, A.; Scherbak, N.; Olsson, P.E.; Orban, L. Zebrafish Androgen Receptor: Isolation, Molecular, and Biochemical Characterization. Biol. Reprod. 2008, 78, 361–369. [Google Scholar] [CrossRef]
- Smolinsky, A.N.; Doughman, J.M.; Kratzke, L.T.C.; Lassiter, C.S. Zebrafish (Danio rerio) Androgen Receptor: Sequence Homology and up-Regulation by the Fungicide Vinclozolin. Comp. Biochem. Physiol. C Toxicol. Pharmacol. 2010, 151, 161–166. [Google Scholar] [CrossRef] [PubMed]
- Davey, R.A.; Grossmann, M. Androgen Receptor Structure, Function and Biology: From Bench to Bedside. Androg. Recept. Biol. Clin. Biochem. Rev. 2016, 37, 3. [Google Scholar]
- Heemers, H.V.; Tindall, D.J. Androgen Receptor (AR) Coregulators: A Diversity of Functions Converging on and Regulating the AR Transcriptional Complex. Endocr. Rev. 2007, 28, 778–808. [Google Scholar] [CrossRef]
- Heinlein, C.A.; Chang, C. Androgen Receptor (AR) Coregulators: An Overview. Endocr. Rev. 2002, 23, 175–200. [Google Scholar] [CrossRef]
- Bellas, J.; Hylland, K.; Burgeot, T. Editorial: New Challenges in Marine Pollution Monitoring. Front. Mar. Sci. 2020, 6, 820. [Google Scholar] [CrossRef]
- Patel, A.B.; Shaikh, S.; Jain, K.R.; Desai, C.; Madamwar, D. Polycyclic Aromatic Hydrocarbons: Sources, Toxicity, and Remediation Approaches. Front. Microbiol. 2020, 11, 562813. [Google Scholar] [CrossRef] [PubMed]
- Bancel, S.; Cachot, J.; Bon, C.; Rochard, É.; Geffard, O. A Critical Review of Pollution Active Biomonitoring Using Sentinel Fish: Challenges and Opportunities. Environ. Pollut. 2024, 360, 124661. [Google Scholar] [CrossRef]
- Guillante, T.; Fonseca, J.d.S.; Costa, P.G.; Bianchini, A.; Robaldo, R.B.; Zebral, Y.D. Sex-Biased Response of Pollution Biomarkers in Fish: Insights from the Killifish Poecilia Vivipara. Aquat. Toxicol. 2023, 261, 106613. [Google Scholar] [CrossRef] [PubMed]
- Adeniji, A.O.; Okoh, O.O.; Okoh, A.I. Analytical Methods for Polycyclic Aromatic Hydrocarbons and Their Global Trend of Distribution in Water and Sediment: A Review. In Recent Insights in Petroleum Science and Engineering; InTech: London, UK, 2018. [Google Scholar]
- Yemele, O.M.; Zhao, Z.; Nkoh, J.N.; Ymele, E.; Usman, M. A Systematic Review of Polycyclic Aromatic Hydrocarbon Pollution: A Combined Bibliometric and Mechanistic Analysis of Research Trend toward an Environmentally Friendly Solution. Sci. Total Environ. 2024, 926, 171577. [Google Scholar] [CrossRef]
- Soursou, V.; Campo, J.; Picó, Y. Revisiting the Analytical Determination of PAHs in Environmental Samples: An Update on Recent Advances. Trends Environ. Anal. Chem. 2023, 37, e00195. [Google Scholar] [CrossRef]
- Nguyen, T.N.T.; Park, M.K.; Son, J.M.; Choi, S.D. Spatial Distribution and Temporal Variation of Polycyclic Aromatic Hydrocarbons in Runoff and Surface Water. Sci. Total Environ. 2021, 793, 148339. [Google Scholar] [CrossRef]
- Schiedek, D.; Sundelin, B.; Readman, J.W.; Macdonald, R.W. Interactions between Climate Change and Contaminants. Mar. Pollut. Bull. 2007, 54, 1845–1856. [Google Scholar] [CrossRef]
- Tlili, S.; Mouneyrac, C. New Challenges of Marine Ecotoxicology in a Global Change Context. Mar. Pollut. Bull. 2021, 166, 112242. [Google Scholar] [CrossRef]
- Cabral, H.; Fonseca, V.; Sousa, T.; Leal, M.C. Synergistic Effects of Climate Change and Marine Pollution: An Overlooked Interaction in Coastal and Estuarine Areas. Int. J. Environ. Res. Public Health 2019, 16, 2737. [Google Scholar] [CrossRef]
- Zoboli, O.; Weber, N.; Braun, K.; Krampe, J.; Zessner, M. Systematic Underestimation of Polycyclic Aromatic Hydrocarbon Aqueous Concentrations in Rivers. Environ. Sci. Pollut. Res. 2024, 31, 38117–38127. [Google Scholar] [CrossRef] [PubMed]
- Mohammed, R.; Zhang, Z.F.; Kan, Z.; Jiang, C.; Liu, L.Y.; Ma, W.L.; Song, W.W.; Nikolaev, A.; Li, Y.F. Determination of Polycyclic Aromatic Hydrocarbons and Their Methylated Derivatives in Sewage Sludge from Northeastern China: Occurrence, Profiles and Toxicity Evaluation. Molecules 2021, 26, 2739. [Google Scholar] [CrossRef]
- Andersson, J.T.; Achten, C. Time to Say Goodbye to the 16 EPA PAHs? Toward an Up-to-Date Use of PACs for Environmental Purposes. Polycycl. Aromat. Compd. 2015, 35, 330–354. [Google Scholar] [CrossRef]
- Mogashane, T.M.; Mokoena, L.; Tshilongo, J. A Review on Recent Developments in the Extraction and Identification of Polycyclic Aromatic Hydrocarbons from Environmental Samples. Water 2024, 16, 2520. [Google Scholar] [CrossRef]
- Keith, L.H. The Source of U.S. EPA’s Sixteen PAH Priority Pollutants. Polycycl. Aromat. Compd. 2015, 35, 147–160. [Google Scholar] [CrossRef]
- Bordoloi, J.; Boruah, H.P.D. Analysis of Recent Patenting Activities in the Field of Bioremediation of Petroleum Hydrocarbon Pollutants Present in the Environment. Recent. Pat. Biotechnol. 2018, 12, 3–20. [Google Scholar] [CrossRef]
- The Canadian Food Inspection Agency (CFIA). Polycyclic Aromatic Hydrocarbons in Selected Foods; Canadian Food Inspection Agency: Barrie, ON, Canada, 2020.
- Chen, D.; Hu, Y.; Guan, B.; Yuan, C.; Jiang, L.; Shi, M.; Zhou, N.; Ren, Y.; Chen, B.; Ding, H.; et al. Method for Detecting Multiple Polycyclic Aromatic in Aquatic Products and Application Thereof. Patent CN118604201A, 6 September 2024. [Google Scholar]
- Chen, Z.; Li, H.; Huo, L.; Ding, R.; Du, H.; Wang, W.; Li, R.; Wang, F.; Lv, X. Secondary Mass Spectrometry Method for Detecting 16 Kinds of Polycyclic Aromatic in Aquatic Products. Patent CN102854280A, 2 January 2013. [Google Scholar]
- Blake, D.A.; Sun, Y. Antibody Reagents to Detect Polycyclic Aromatic Hydrocarbons Found in Oil Spills. Patent US11029303B2, 30 November 2017. [Google Scholar]
- Nuhu, A.A.; Basheer, C.; Shaikh, A.A.; Al-Arfaj, A.R. Determination of Polycyclic Aromatic Hydrocarbons in Water Using Nanoporous Material Prepared from Waste Avian Egg Shell. Patent US2015377752A1, 31 December 2015. [Google Scholar]
- Peng, X.; Zheng, D.; Liu, L.; Yan, W.; Hu, X.; Li, J.; Xia, Z.; Xia, H.; Peng, L. Application of Naphthyl-Modified Magnetic Ferroferric Oxide Nano Extraction Material in Enrichment and Detection of Polycyclic Aromatic Hydrocarbon. Patent CN115078579A, 20 September 2022. [Google Scholar]
- Chernyaev, A.P.; Zyk, E.N.; Butorin, D.A. Method of Determining General and Polycyclic Aromatic Hydrocarbons in Components of Ecosystem. Patent RU2589897C1, 10 July 2016. [Google Scholar]
- Yum, S.S.; Woo, S.O.; Lee, T.K.; Jeon, H.Y.; Lee, J.R.; Song, J.I. Polycyclic Aromatic Hydrocarbons Exposure Responsive Genes in Scleronephthya Gracillimum and the Method for Diagnosing the Coastal Environment Pollution Using the Same. Patent KR101199440B1, 9 November 2012. [Google Scholar]
- Zheng, D.; Lu, A.; Jiao, H.; Wang, J.; Yang, J.; Wu, B.; Jiang, H. Method for Determining Polycyclic Aromatic Hydrocarbon Pollution in Shellfish by Adopting Gas Chromatography-Mass Spectrometry. Patent CN115561338A, 3 January 2023. [Google Scholar]
- Wei, H.; Li, Z.; Duan, L.; Lin, J.; Li, E.; Wu, Y. Method for Determining Ultra-Trace Aromatic Hydrocarbon in Water. Patent CN112305116A, 2 February 2021. [Google Scholar]
- Wang, Z.; Zhao, H.; Liu, S.; Song, J.; Chen, G.; Qin, P.; Shen, H.; Huang, S.; Wang, C.; Chen, H. Preparation Method and Application of Magnetic Metal Organic Framework Composite Material MUiO-BDA. Patent CN118063840A, 24 May 2024. [Google Scholar]
- Bruguera, S.L.; Griell, H.F.; Treviño, J.S.; Clemente, V.M.O. Passive Ceramic Sampler for Measuring Water Contamination. Patent WO2016207461A1, 29 December 2016. [Google Scholar]
- Yuan, M.; Feng, Y.; Hong, J.; Li, J.; Ding, Y.; Wang, X.; Zhu, H.; Wu, L. Chemical Analyzer for High-Selectivity Detection of Polycyclic Aromatic Hydrocarbon in Environment. Patent CN118913795A, 8 November 2024. [Google Scholar]
- Li, Y.; Feng, J.; Yang, Z.; Shen, Z. A Method for Source Apportionment of PAHs in Roadway Sediments Coupled with Transport and Transformation Process. Patent AU2020101615A4, 10 September 2020. [Google Scholar]
- Rong, Q.; Zhang, H.; Li, Y.; Cheng, H. DGT Device for Polycyclic Aromatic Monitoring and Application Thereof. Patent CN116159342A, 26 May 2023. [Google Scholar]
- Deng, X.; Zhan, J.; Wu, F.; Lin, Y.; Ma, E.; Huang, W.; Yue, N. Method for recognizing Ecological Risks and Calculating Value at Risk for Land Oil Exploitation. Patent CN102062769A, 18 May 2011. [Google Scholar]
- Gao, K.; Wang, Q.; Li, Z.; Zhao, X.; Wu, Y.; Zhao, X.; Mei, P.; Zhang, Z. Application of Three-Spined Stickleback CYP1 Family Gene in Preparation of Water Body Pollution Detection Biomarker and Detection Method Thereof. Patent CN111208270A, 29 May 2020. [Google Scholar]
- Kosa, N.M.; Krebs, J.F.; Kasal, D.N. Enzymatic Method for Detecting Hydrocarbons. Patent US10871484B2, 22 December 2020. [Google Scholar]
- Vamvounis, G. Identification of Polycyclic Aromatic Hydrocarbons. Patent AU2017200771A1, 23 August 2018. [Google Scholar]
- Ghosh, U.; Jalalizadeh, M. Actively Shaken In-Situ Passive Sampling Device. Patent US10551283B2, 4 February 2020. [Google Scholar]
- Gotor, R.; Bell, J.; Rurack, K. Detection of Hydrocarbon Contamination in Soil and Water. Patent US11561175B2, 24 January 2023. [Google Scholar]
- Usova, S.V.; Vershinin, V.I.; Mamontova, A.V. Method for Determining the Total Content of Monocyclic Aromatic Hydrocarbons in Water. Patent RU2017109544A, 21 September 2018. [Google Scholar]
- Fan, L.; Shafie, S.R. Extraction of Harmful Compounds from Materials Containing Such Harmful Compounds. Patent US20140088209, 19 September 2013. [Google Scholar]
- Krebs, J.F.; Duvall-Jisha, J.; Resnick, S. Method of Detecting the Presence of Polycyclic Aromatic Hydrocarbons. Patent US20140154723, 5 June 2015. [Google Scholar]
- Blake, D.; Sun, Y. PAH Antibodies and Uses Thereof. Patent WO2016196638, 8 June 2016. [Google Scholar]
- Zhang, Q.; Liu, P.; Li, S.; Zhang, X.; Chen, M. Progress in the Analytical Research Methods of Polycyclic Aromatic Hydrocarbons (PAHs). J. Liq. Chromatogr. Relat. Technol. 2020, 43, 425–444. [Google Scholar] [CrossRef]
- Wang, H.; Xia, X.; Liu, R.; Wang, Z.; Zhai, Y.; Lin, H.; Wen, W.; Li, Y.; Wang, D.; Yang, Z.; et al. Dietary Uptake Patterns Affect Bioaccumulation and Biomagnification of Hydrophobic Organic Compounds in Fish. Environ. Sci. Technol. 2019, 53, 4274–4284. [Google Scholar] [CrossRef] [PubMed]
- Kelly, J.M.; Ivatt, P.D.; Evans, M.J.; Kroll, J.H.; Hrdina, A.I.H.; Kohale, I.N.; White, F.M.; Engelward, B.P.; Selin, N.E. Global Cancer Risk From Unregulated Polycyclic Aromatic Hydrocarbons. Geohealth 2021, 5, e2021GH000401. [Google Scholar] [CrossRef] [PubMed]
- Lourenço, R.A.; de Oliveira, F.F.; de Souza, J.M.; Nudi, A.H.; de Luca Rebello Wagener, Â.; de Fátima Guadalupe Meniconi, M.; Francioni, E. Monitoring of Polycyclic Aromatic Hydrocarbons in a Produced Water Disposal Area in the Potiguar Basin, Brazilian Equatorial Margin. Environ. Sci. Pollut. Res. 2016, 23, 17113–17122. [Google Scholar] [CrossRef] [PubMed]
Species | Common Name | Compound | Observed Effect | Matrix and Concentration | Reference |
---|---|---|---|---|---|
Fundulus heteroclitus | Mummichog | Benzo[a]pyrene | Hepatocellular carcinomas | Filtered seawater; 400 µg/L | [58] |
Chanos chanos | Milkfish | Anthracene | Oxidative stress Neurotoxicity | Seawater; 0.188 mg/L | [59] |
Chanos chanos | Milkfish | Benzo[a]pyrene | Increased catalase and lipid peroxidation; inhibition of acetylcholinesterase | Seawater; 0.031 mg/L | [59] |
Pomatoschistus microps | Common goby | Pyrene | Inhibition of acetylcholinesterase | Artificial salt water; 20 µg/L | [60] |
Cynoscion nebulosus | Spotted seatrout | Total PAHs (oil spill) | Reduction of lymphocytes and increase of splenic melano-macrophages; increased activity of EROD | Seawater | [61] |
Fundulus grandis | Gulf killifish | Total PAHs (oil spill) | Reduction of lymphocytes and inflammatory response | Seawater | [61] |
Pagrus major | Red seabream | Benzo[a]pyrene | Increased EROD activity; increased cortisol level; and liver damage | Seawater; 4 and 8 µg/L | [62] |
Melanogrammus aeglefinus | Haddock | Dispersed crude oil (parental and alkylated PAHs) | Cardiotoxicity and craniofacial malformation in embryos | Seawater; >0.7 µg/L | [63] |
Mugilogobius chulae | Chulae’s goby | Benzo[a]pyrene | Inhibition of genes associated with lipid metabolism | Seawater; 6 µg/L | [64] |
Boreogadus saida | Arctic cod | Total PAHs | PAH bioaccumulation | Biological tissue; 36 to 128 ng/g | [65] |
Girella punctata | Largescale blackfish | Benzo[a]anthracene | Spinal deformity; liver damage | Seawater: 10 ng/g | [66] |
Pagrus major | Red seabream | Phenanthrene | Increased activity of SOD and EROD in serum and liver | Seawater; 20 µg/L | [67] |
Oncorhynchus tshawytscha | Chinook salmon | Petroleum-derived total PAHs light molecular weight (LMW) and heavy molecular weight (HMW) | Immune suppression of phagocytic activity and lymphocyte proliferation | Sediment (LMW: 120 ± 120 mg/g; HMW: 21 ± 15 mg/g) | [68] |
Teleost fish species (various) | - | Petroleum-derived total PAHs | Developmental defects in embryos and larvae | Sediment and seawater (unspecified concentrations) | [69] |
Teleost fish species (various) | - | Total PAHs | Physiological effects (e.g., metabolic, physiological, and reproductive impacts) | Sediment and seawater (unspecified concentrations) | [70] |
Oryzias melastigma | Marine medaka | Phenanthrene | Teratogenic effects on early development | Seawater; 0.1–0.3 mg/L | [71] |
Species | Common Name | Compound | Exposure Conditions | Reproductive Effects | Reference |
---|---|---|---|---|---|
Epinephelus marginatus | Dusky grouper | Phenanthrene | Waterborne exposure of juveniles for 96 h to 0.1 and 1 mg/L | Dysfunctions in steroidogenesis; reduction of 11-KT in vitro; impairment in sexual inversion and gonadal maturity | [86] |
Oryzias melastigma | Marine medaka | Phenanthrene | Waterborne exposure of juveniles for 80 days to 0.06, 0.6, 6, and 60 g/L | Reduction of vitellogenic oocytes; downregulation of GnRH, FSH, LH, CYP19A, ER, and VTG; reduced hatchability in embryos | [87] |
Solea solea | Common sole | Benzo[a]pyrene | Waterborne exposure of adult females for 15 days to 21 and 50 µg/L | Hepatic and ovarian accumulation of BaP; oocyte atresia; reduced gonadosomatic index; decreased ER-α; increased hepatic aromatase | [88] |
Gadus morhua | Atlantic cod | Mixture of PAHs (Benzo[a]pyrene, Dibenzothiophene; Fluorene, Naphthalene, Phenanthrene, and Pyrene) | Intraperitoneal exposure of juvenile females for 14 days to 40 and 800 µg/kg | Reduction of dopamine and metabolites; alteration of dopaminergic and estrogenic gene expression; decrease in ER-α and CYP19a | [89] |
Paralichthys lethostigma | Southern flounder | Oil (sediment + Macondo MC252 oil) | Water-benthic exposure of juveniles for 32 days to 0, 0.7, 8, 54, 127, and 395 mg/kg | CYP1a induction in liver; increased mortality; reduced growth with high concentrations of PAHs | [90] |
Oryzias melastigma | Marine medaka | Phenanthrene; Phenanthrene attached to microplastics | Waterborne exposure of adult females for 60 days to 50 μg/L Phenanthrene and 2, 20, and 200 μg/L of microplastics | Bioaccumulation of Phenanthrene in the ovaries; dysfunctions in the HPG axis; reduction of VTG level; inhibition of ovarian maturity; downregulation of LHβ, FSHβ, CYP17, and CYP19a | [91] |
Liza klunzingeri | Klunzinger’s mullet | Benzo[a]pyrene | Culture of ovarian and brain cells of adult females; exposure of the cells for 48 h to 1 × 10−6, 2 × 10−6 and 3 × 10−6 mol/L | Aromatase inhibition; reduction in E2 production; dysfunctions in estrogen biosynthesis | [92] |
Gadus morhua | Atlantic cod | Benzo[a]pyrene; Benzo[a]pyrene + EE2 | Ex vivo exposure of liver slices of juveniles to 0.1, 1, and 10 μM, alone and mixed with EE2, for 48 h | Upregulation of the CYP and AhR genes; downregulation of VTG and ZNF; exposure to the mixture maintained the expression profiles of the individual compounds, but with attenuation of the estrogenic effects of EE2 | [93] |
Oryzias melastigma | Marine medaka | Benzo[a]pyrene | Waterborne exposure of embryos, juveniles and adults for 142 days to 2, 20, and 200 µg/L | Delayed hatching; altered sex ratio; downregulation of ERα, CYP19a, and VTG1; increased androgen receptors | [94] |
Ancylopsetta dilecta, Cyclopsetta chittendeni, C. fimbriata, Monolene sessilicauda, Syacium micrurum, S. papillosum, S. gunteri and Trichopsetta ventralis | Three-spot flounder; Mexican flounder; Fringed flounder; Deepwater sole; Channel flounder; Dusky flounder; Shoal flounder; and Sargassum flounder (respectively) | - | Field study with animals collected in two regions of the Gulf of Mexico | VTG induction in males; association with metals and biliary PAH metabolites; evidence of feminization and inhibited spermatogenesis | [95] |
Sebastes schlegelii | Black rockfish | Benzo[a]pyrene | Intraperitoneal exposure of adults for 48 h to 2, 20, and 200 μg/g body weight | CYP1A induction; presence of VTG and ZRP in immature males and females; possible endocrine dysfunction | [96] |
Boreogadus saida | Polar cod | Benzo[a]pyrene; Benzo[a]pyrene + EE2 | Ex vivo exposure of liver slices of adult females to 0.1, 1 and 10 μM, alone and mixed with 5 nM EE2, for 72 h | CYP1a induction; antiestrogenic effects with co-exposure (reduction of ESR1, VTG, and ZP); activation of AhR | [97] |
Carcharodon carcharias | Great white shark | - | Field collection of juveniles and adults from South African coast; use of skin biopsy | CYP1A induction; presence of VTG and ZRP in young males and females | [98] |
Oncorhynchus kisutch | Coho salmon | Oil WAF | Waterborne exposure of juveniles for 96 h to 100, 320, and 1000 mg/L | Induction of CYP1a and AhR; disruption of estrogenic genes such as VTG and CYP19 | [99] |
Oryzias melastigma | Marine medaka | Oil WAF | Waterborne exposure of embryos for 7 days to 0.5, 5, 50, and 500 μg/L, with subsequent creation of organisms until the adult phase (130 dpf) | Decreased GSI, E2, and VTG; increased T, ARα, Arβ, and CYP19b; VTG promoter methylation in adult phase | [22] |
Boreogadus saida | Polar cod | Crude oil | Waterborne exposure of adults for 131 days to 13 μg/L, with food restriction during spawning; the concentration at the end of the experiment was 0.09 μg/L | Alteration in the expression of VTGα, ER1, ZP2, and ZP3; early spawning; alteration in gamete quality, independent of food restriction | [100] |
Boreogadus saida | Polar cod | Crude oil | Dietary exposure of adults for 217 days prior to spawning to 0.11, 0.57, and 1.14 μg crude oil/g fish/day | Induction of EROD; alteration of sperm motility | [101] |
Dicentrarchus labrax | European seabass | Sediments enriched with Phenanthrene and Benzo[b]fluoranthene | Trophic exposure of juveniles for 28 days to contaminated sediment (250–800 ng/g) | PHE induced oxidative stress and CYP activation; BbF compromised metabolic defenses; the mixtures caused liver injury associated with the AhR pathway | [12] |
Melanogrammus aeglefinus | Haddock | Extracts of water produced from oil (2-ring PAHs); crude oil (3-ring PAHs); and heavy pyrogenic PAHs (4/5/6-ring PAHs) | Trophic exposure of juveniles for 67 days to 0.31 PAH/kg fish/day of water produced from oil to 0.45 PAH/kg fish/day of crude oil, and to 0.65 PAH/kg fish/day of pyrogenic PAHs, followed by a two-month recovery | Heavier PAHs induced CYP1a and AhR expression, increased CYP activity and biliary metabolites; exposure to crude oil showed CYP1a induction | [102] |
Sparus aurata | Gilthead seabream | Phenanthrene, Benzo[a]pyrene, and Benzo[b]fluoranthene | In vitro exposure of hepatocytes extracted from adults, to isolated (0.1, 1, 10, and 50 μM) and mixed (1:1, 1:2, and 2:1) PAHs, for 24 and 48 h | Benzo[a]pyrene induced Cyp1A1 gene and protein expression by increasing its activity; mixtures containing Phenanthrene and Benzo[a]pyrene further increased CYP1A1 mRNA levels | [103] |
Gobionotothen gibberifrons, Notothenia rossii, Chaenocephalus aceratus and Champsocephalus gunnari | Humped rockcod; Marbled rockcod; Blackfin icefish; and Mackerel icefish (respectively) | Benzo[a]pyrene | In vitro exposure of S9 liver fractions from adults, to 0.5, 1 and 2 μM, for 0, 10, 20, 30, and 60 min | Hepatic EROD activity was highest in C. gunnari and C. aceratus, and slightly lower in G. gibberifrons and N. rossii | [104] |
Mugil cephalus | Flathead grey mullet | - | Field collection of adults from western coast of the Black Sea, Turkey | EROD activities and CYP1A levels were highly elevated, correlating with the high levels of PAHs detected in the liver of the animals | [105] |
Lutjanus campechanus and Balistes capriscus | Red snapper and Grey triggerfish, respectively | - | Field collection of adults from north-central Gulf of Mexico | High activities of Benzo[a]pyrene hydroxylase and EROD, which was higher in B. capriscus | [106] |
Sciades herzbergii | Pemecou sea catfish | - | Field collection of adults from an estuary of the Amazon Equatorial Coast contaminated with PAHs | Histological changes in the gonads (melanomacrophages in the ovaries and testes; atretic oocytes and cytoplasmic retraction in the ovaries) | [107] |
Fundulus grandis | Gulf killifish | - | Field collection of adults from the Gulf of Mexico after the Deepwater Horizon explosion | Higher sex ratio of females; lower GSI and testicular germinal epithelium in males | [108] |
Hippocampus erectus | Lined seahorse | Benzo[a]pyrene | Waterborne exposure of adults for 7 days to 0.5, 5, and 50 μg/L | Concentration-dependent damage to ovarian, testicular and brood pouch tissue; differential expression of genes related to CYP pathways | [109] |
Acanthopagrus arabicus | Arabian seabream | Phenanthrene | Intraperitoneal exposure of adults for 21 days to 2, 20 and 40 pg/g of body weight | T3 and T4 levels decreased dose-dependently until day 7 and then increased until the end of the experiment; decreased thyroid follicle epithelial thickness and increased follicle diameter were also observed | [110] |
Liza abu | Abu mullet | Benzo[a]pyrene | Intraperitoneal exposure of adults to 2, 10, and 25 mg/kg of body weight; samples were collected 1, 2, 4, 7, and 14 days after injection | Decrease in plasma levels of T3 and T4 and increase in TSH concentration | [111] |
Liza klunzingeri | Klunzinger’s mullet | Naphthalene | Intraperitoneal exposure of adult females for 3 and 72 h to 50 mg/ kg of body weight | Decrease in T4 levels at both times; T3 decreased only after 72 h | [112] |
Patent Publication Number | Patent Content | Publication Date (dd/mm/yyyy) | Applicant Country | Reference |
CN118604201A | Method for detecting multiple PAHs in aquatic products and application thereof | 06.09.2024 | China | [207] |
CN102854280A | Secondary mass spectrometry method for detecting 16 kinds of PAHs in aquatic products | 02.01.2013 | China | [208] |
US11029303B2 | Antibody compositions that specifically bind to PAHs | 08.06.2021 | United States of America | [209] |
US2015377752A1 | Determination of PAH in water using nanoporous material prepared from waste avian eggshell | 31.12.2015 | United States of America | [210] |
CN115078579A | Application of naphthyl-modified magnetic ferroferric oxide nanoextraction material in enrichment and detection of PAHs | 20.09.2022 | China | [211] |
RU2589897C1 | Method of determining general and PAHs in components of ecosystem | 10.07.2015 | Russia | [212] |
KR101199440B1 | PAH exposure-responsive genes in Scleronephthya gracillimum and the method for diagnosing the coastal environment pollution using the same | 09.11.2012 | Korea | [213] |
CN115561338A | Method for determining PAH pollution in shellfish by adopting gas chromatography-mass spectrometry | 03.01.2023 | China | [214] |
CN112305116A | Method for determining ultra-trace PAH in water | 02.02.2021 | China | [215] |
CN118063840A | Preparation method and application of magnetic metal-organic framework composite material MUiO-BDA | 24.05.2024 | China | [216] |
WO2016207461A1 | Passive ceramic sampler for measuring water contamination | 29.12.2016 | Spain | [217] |
CN118913795A | Chemical analyzer for high-selectivity detection of PAH in the environment | 08.11.2024 | China | [218] |
AU2020101615A4 | A method for source apportionment of PAHs in roadway sediments coupled with transport and transformation processes | 10.09.2010 | Australia | [219] |
CN116159342A | DGT device for PAH monitoring and application thereof | 26.05.2023 | China | [220] |
CN102062769A | Method for recognizing ecological risks and calculating value at risk for land oil exploitation | 18.05.2011 | China | [221] |
CN111208270A | Application of the three-spined stickleback CYP1 family gene in the preparation of a water body pollution detection biomarker and the detection method thereof | 29.05.2020 | China | [222] |
US10871484B2 | Enzymatic method for detecting PAHs | 22.12.2020 | United States of America | [223] |
AU2017200771A1 | Identification of PAHs | 23.08.2008 | Australia | [224] |
US10551283B2 | Actively shaken in-situ passive sampling device | 04.02.2020 | United States of America | [225] |
US11561175B2 | Detection of hydrocarbon contamination in soil and water | 24.01.2023 | Germany | [226] |
RU2017109544A | Method for determining the total content of monocyclic aromatic hydrocarbons in water | 21.09.2018 | Russia | [227] |
US20140088209 | Extraction of harmful compounds from materials containing such harmful compounds | 19.09.2013 | United States of America | [228] |
US20140154723 | Method of detecting the presence of PAHs | 05.06.2014 | United States of America | [229] |
WO2016196638 | PAH antibodies and uses thereof | 08.06.2016 | United States of America | [230] |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Pozzan, R.; de Almeida Roque, A.; Iwamoto, H.; de Campos Guerreiro, F.; da Silva, A.P.; Rubio-Vargas, D.A.; de Marchi, M.; de Oliveira, F.; Martínez-Burgos, W.J.; Prodocimo, M.M.; et al. Polycyclic Aromatic Hydrocarbons in Marine Environments Affect Fish Reproduction—A Critical Review. Toxics 2025, 13, 747. https://doi.org/10.3390/toxics13090747
Pozzan R, de Almeida Roque A, Iwamoto H, de Campos Guerreiro F, da Silva AP, Rubio-Vargas DA, de Marchi M, de Oliveira F, Martínez-Burgos WJ, Prodocimo MM, et al. Polycyclic Aromatic Hydrocarbons in Marine Environments Affect Fish Reproduction—A Critical Review. Toxics. 2025; 13(9):747. https://doi.org/10.3390/toxics13090747
Chicago/Turabian StylePozzan, Roberta, Aliciane de Almeida Roque, Hissashi Iwamoto, Fernando de Campos Guerreiro, Ana Paula da Silva, Dámaso Angel Rubio-Vargas, Micheli de Marchi, Felipe de Oliveira, Walter José Martínez-Burgos, Maritana Mela Prodocimo, and et al. 2025. "Polycyclic Aromatic Hydrocarbons in Marine Environments Affect Fish Reproduction—A Critical Review" Toxics 13, no. 9: 747. https://doi.org/10.3390/toxics13090747
APA StylePozzan, R., de Almeida Roque, A., Iwamoto, H., de Campos Guerreiro, F., da Silva, A. P., Rubio-Vargas, D. A., de Marchi, M., de Oliveira, F., Martínez-Burgos, W. J., Prodocimo, M. M., & de Oliveira Ribeiro, C. A. (2025). Polycyclic Aromatic Hydrocarbons in Marine Environments Affect Fish Reproduction—A Critical Review. Toxics, 13(9), 747. https://doi.org/10.3390/toxics13090747