Cement Industry Pollution and Its Impact on the Environment and Population Health: A Review
Abstract
1. Introduction
- Collecting the raw material—calcium carbonate (mainly), shale, sand or clay, and bauxite, in small quantities (depending on the receipt).
- Crushing the raw material into pieces about 10 cm in diameter.
- Obtaining the ‘raw meal’ by grinding the raw material.
- Preheating the ‘raw meal’ using the hot gases evacuated from the kiln, in up to six cyclone stages.
- Precalcining, to decompose the limestone.
- Production of the clinker. After precalcining, the ‘raw meal’ goes to the kiln, where the temperature is about 1000 °C. For heating the ‘raw meal’ to about 1450 °C, necessary for clinker formation, a temperature up to 2000 °C should be reached in the rotating kiln, which is obtained by firing the fuel inside it.
- Cooling and storage: The near-molten mixture is rapidly cooled to 100–200 °C.
2. Atmospheric Pollution and the Environmental and Health Impacts
2.1. Sources of Atmospheric Pollution and the Environmental Impacts
- ▪
- In the raw mills and preheating zone:
- ▪
- In the calcining zone:
- ▪
- In the burning zone:
- ▪
- In the raw mills and preheating zone:
- ▪
- In the calcining zone:
- ▪
- In the burning zone:
2.2. Health Impact of Atmospheric Pollution from Cement Manufacturing
3. Noise Pollution and Its Impact on Environment and Population
3.1. Noise Pollution and Its Impact on the Environment
3.2. Health Impact of Noise Pollution from Cement Manufacturing
4. Soil Pollution from the Cement Industry and Its Impact on Environment and Population Health
4.1. Soil Pollution from Cement Industry
4.2. Impact of Soil Pollution with Heavy Metals from Cement Industry on Public Health
5. Water Pollution from the Cement Industry and Its Impact on Environment and Population Health
6. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Aıtcin, P. The durability characteristics of high performance concrete: A review. Cem. Concr. Compos. 2003, 25, 409–420. [Google Scholar] [CrossRef]
- Al-Amoudi, O.S.B.; Al-Kutti, W.A.; Ahmad, S.; Maslehuddin, M. Correlation between compressive strength and certain durability indices of plain and blended cement concretes. Cem. Concr. Compos. 2009, 31, 672–676. [Google Scholar] [CrossRef]
- Hosen, K.; Al Maruf, M.A.; Howlader, R.; Chakma, K.; Mia, M.R. Concrete Strength and Aggregate Properties: In-Depth Analysis of Four Sources. Civ. Eng. J. 2024, 10, 1254–1264. [Google Scholar] [CrossRef]
- Zeyad, A.M.; Khan, A.H.; Tayeh, B.A. Durability and strength characteristics of high-strength concrete incorporated with volcanic pumice powder and polypropylene fibers. J. Mater. Res. Technol. 2020, 9, 806–818. [Google Scholar] [CrossRef]
- Gokce, A.; Nagataki, S.; Saeki, T.; Hisada, M. Freezing and thawing resistance of air-entrained concrete incorporating recycled coarse aggregate: The role of air content in demolished concrete. Cem. Concr. Res. 2004, 34, 799–806. [Google Scholar] [CrossRef]
- Majumdar, A.J.; Laws, V. Glass fibre reinforced cement. Mat. Sci. Eng. 1994, 15, 107–127. [Google Scholar] [CrossRef]
- Gebhard, L.; Mata-Falcón, J.; Ammann, R.; Preßmair, N.; Kromoser, B.; Menna, C.; Baghdadi, A.; Kloft, H.; Gabriel, M.; Walch, M.; et al. Enhancing structural efficiency with digital concrete–Principles, opportunities and case studies. Cem. Concr. Res. 2024, 185, 107645. [Google Scholar] [CrossRef]
- Voronin, K.; Permyakov, M.; Davydova, A. Lime slag binding agent for road concrete. IOP Conf. Ser. Mater. Sci. Eng. 2019, 687, 022042. [Google Scholar] [CrossRef]
- Ahmad, J.; Kontoleon, K.; Al-Mulali, M.; Shaik, S.; El Ouni, M.; El-Shorbagy, M. Partial substitution of binding material by bentonite clay (BC) in concrete: A review. Buildings 2022, 12, 634. [Google Scholar] [CrossRef]
- Su, N.; Lou, L.; Amirkhanian, A.; Amirkhanian, S.N.; Xiao, F. Assessment of effective patching material for concrete bridge deck-A review. Constr. Build. Mater. 2021, 293, 123520. [Google Scholar] [CrossRef]
- Murray, M. 11—Patching of deteriorated concrete structures. In Failure, Distress and Repair of Concrete Structures; Delatte, N., Ed.; Woodhead Publishing: Sawston, UK, 2009; pp. 282–295. [Google Scholar]
- Gagg, C.R. Cement and concrete as an engineering material: An historic appraisal and case study analysis. Eng. Fail. Anal. 2014, 40, 114–140. [Google Scholar] [CrossRef]
- Nilimaa, J. Smart materials and technologies for sustainable concrete construction. Dev. Built Environ. 2023, 15, 100177. [Google Scholar] [CrossRef]
- Chung, D. Use of polymers for cement-based structural materials. J. Mater. Sci. 2004, 39, 2973–2978. [Google Scholar] [CrossRef]
- Mechtcherine, V. Novel cement-based composites for the strengthening and repair of concrete structures. Constr. Build. Mater. 2013, 41, 365–373. [Google Scholar] [CrossRef]
- Hosen, K. Seismic vulnerability and rehabilitation strategies for industrial RC structures. Civ. Environ. Eng. Rep. 2024, 34, 328–343. [Google Scholar] [CrossRef]
- Cazacu, C.E.; Dumitriu, C.Ș.; Bărbulescu, A. Concrete CFRP-Reinforced Beam Performances, Tests and Simulations. Sustainability 2024, 16, 2614. [Google Scholar] [CrossRef]
- Hosen, K. Assessment and Rehabilitation of Seismically Vulnerable Industrial RCC Structures. Computat. Eng. Phys. Model. 2024, 7, 30–48. [Google Scholar] [CrossRef]
- Afrin, H.; Huda, N.; Abbasi, R. An overview of eco-friendly alternatives as the replacement of cement in concrete. IOP Conf. Ser. Mater. Sci. Eng. 2021, 1200, 012003. [Google Scholar] [CrossRef]
- Siddika, A.; Al Mamun, M.A.; Alyousef, R.; Amran, Y.M.; Aslani, F.; Alabduljabbar, H. Properties and utilizations of waste tire rubber in concrete: A review. Constr. Build. Mater. 2019, 224, 711–731. [Google Scholar] [CrossRef]
- Belaïd, F. How does concrete and cement industry transformation contribute to mitigating climate change challenges? Resour. Conserv. Recycl. Adv. 2022, 15, 200084. [Google Scholar] [CrossRef]
- The Global Cement Report 15th Edition. Available online: https://www.cemnet.com/Publications/global-cement-report (accessed on 9 April 2025).
- Statista. Global Cement Production Volume. Available online: https://www.statista.com/statistics/1087115/global-cement-production-volume/ (accessed on 9 April 2025).
- Liu, X.; Yang, L.; Du, J.; Zhang, H.; Hu, J.; Chen, A.; Lv, W. Carbon and air pollutant emissions forecast of China’s cement industry from 2021 to 2035. Resour. Conserv. Recycl. 2024, 204, 107498. [Google Scholar] [CrossRef]
- Li, R.; Wei, Y.; Cai, W.; Liu, Y.; You, K.; Yu, Y. Tracking cement transportation carbon emissions in China: Historical assessment and future simulation. Environ. Impact Assess. Rev. 2015, 110, 107696. [Google Scholar] [CrossRef]
- Chen, J.; Hu, L.; Sun, H.; Fan, Y.; Zhou, X.; He, Y.; Su, X.; Wang, Y.; Hou, L.; Ma, W. Examination of spatial and temporal evolution characteristics of carbon emission and influencing factors in territorial spatial functional areas: A case study of the mountainous city Chongqing. Integr. Environ. Assess. Manag. 2025, 21, 360–373. [Google Scholar] [CrossRef] [PubMed]
- Bourke, I. The Environmental Cost of China’s Addiction to Cement. 2024. Available online: https://www.bbc.com/future/article/20240419-the-environmental-cost-of-chinas-addiction-to-cement (accessed on 8 April 2025).
- European Production of Cement by Country. Available online: https://www.reportlinker.com/dataset/2f9b7c6d05f4b3329b97196c5fc4d3411a0cc1f6 (accessed on 8 April 2025).
- Panagoda, L.P.S.S.; Sandeepa, R.A.H.T.; Perera, W.A.V.T.; Sandunika, D.M.I.; Siriwardhana, S.M.G.T.; Alwis, M.K.S.D.; Dilka, S.H.S. Cement Manufacturing Process and Its Environmental Impact. J. Res. Technol. Eng. 2023, 4, 161–168. [Google Scholar]
- CEMBUREAU. The Story of Cement Manufacture. Available online: https://cembureau.eu/media/drylkjo0/manufacturing-process-factsheet_update-jan2021.pdf (accessed on 5 April 2025).
- Mohamad, N.; Muthusamy, K.; Embong, R.; Kusbiantoro, A.; Hashim, M.H. Environmental impact of cement production and Solutions: A review. Mater. Today Proc. 2022, 48, 741–746. [Google Scholar] [CrossRef]
- Liao, S.; Wang, D.; Xia, C.; Tang, J. China’s provincial process CO2 emissions from cement production during 1993–2019. Sci. Data 2022, 9, 165. [Google Scholar] [CrossRef]
- CarbonBrief. Analysis: CO2 Emissions Will Reach New High in 2024 Despite Slower Growth. Available online: https://www.carbonbrief.org/analysis-global-co2-emissions-will-reach-new-high-in-2024-despite-slower-growth/ (accessed on 23 April 2025).
- Fennell, P.; Driver, J.; Bataille, C.; Davis, S.J. Going net zero for cement and steel. Nature 2022, 603, 574–577. [Google Scholar] [CrossRef]
- Ige, O.E.; Von Kallon, D.V.; Desai, D. Carbon emissions mitigation methods for cement industry using a systems dynamics model. Clean Technol. Environ. Pol. 2024, 26, 579–597. [Google Scholar] [CrossRef]
- Kajaste, R.; Hurme, M. Cement industry greenhouse gas emissions—Management options and abatement cost. J. Clean. Prod. 2016, 112, 4041–4052. [Google Scholar] [CrossRef]
- Shivaprasad, K.N.; Yang, H.-M.; Singh, J.K. A path to carbon neutrality in construction: An overview of recent progress in recycled cement usage. J. CO2 Util. 2024, 83, 102816. [Google Scholar] [CrossRef]
- Uwasu, M.; Hara, K.; Yabar, H. World cement production and environmental implications. Environ. Dev. 2014, 10, 36–47. [Google Scholar] [CrossRef]
- Anand, S.; Vrat, P.; Dahiya, R. Application of a system dynamics approach for assessment and mitigation of CO2 emissions from the cement industry. J. Environ. Manag. 2006, 79, 383–398. [Google Scholar] [CrossRef] [PubMed]
- Friedlingstein, P.; O’Sullivan, M.; Jones, M.J.; Andrew, R.M.; Baker, D.C.E.; Hauck, J.; Landschützer, P.; Le Quéré, C.; Luijkx, I.T.; Peters, G.P.; et al. Global Carbon Budget 2023. Earth Syst. Sci. Data 2023, 15, 5301–5369. [Google Scholar] [CrossRef]
- Agrawal, S.; Volaity, S.S.; Kilambi, S.; Kumar, A.; Neithalath, N. A low-carbon approach for lime production using self-propagating high temperature synthesis-driven limestone calcination. Renew. Sustain. Energ. Rev. 2025, 210, 115192. [Google Scholar] [CrossRef]
- Simoni, M.; Wilkes, M.D.; Brown, S.; Provis, J.L.; Kinoshita, H.; Hanein, T. Decarbonising the lime industry: State-of-the-art. Renew. Sustain. Energy Rev. 2022, 168, 112765. [Google Scholar] [CrossRef]
- Kumar, S.; Srivastava, R.; Koh, J. Utilization of zeolites as CO2 capturing agents: Advances and future perspectives. J. CO2 Util. 2020, 41, 101251. [Google Scholar] [CrossRef]
- Oschatz, M.; Antonietti, M. A search for selectivity to enable CO2 capture with porous adsorbents. Energy Environ. Sci. 2018, 11, 57–70. [Google Scholar] [CrossRef]
- Khaiyum, M.; Sarker, S.; Kabir, G. Evaluation of carbon emission factors in the cement industry: An emerging economy context. Sustainability 2023, 15, 15407. [Google Scholar] [CrossRef]
- Althoey, W.; Ansari, F.S.; Sufian, M.; Deifalla, A.F. Advancements in low-carbon concrete as a construction material for the sustainable built environment. Dev. Built Environ. 2023, 16, 100284. [Google Scholar] [CrossRef]
- Figures from the Global Carbon Budget 2024. Available online: https://robbieandrew.github.io/GCB2024/ (accessed on 5 April 2025).
- Marmier, A. Decarbonisation Options for the Cement Industry; European Commission: Joint Research Centre and Publications Office of the European Union: Petten, The Netherlands, 2023; Available online: https://data.europa.eu/doi/10.2760/174037 (accessed on 9 April 2025).
- IEA. Energy Technology Perspectives 2020. Available online: https://iea.blob.core.windows.net/assets/7f8aed40-89af-4348-be19-c8a67df0b9ea/Energy_Technology_Perspectives_2020_PDF.pdf (accessed on 9 April 2025).
- Hanifa, M.; Agarwal, R.; Sharma, U.; Thapliyal, P.; Singh, L. A review on CO2 capture and sequestration in the construction industry: Emerging approaches and commercialised technologies. J. CO2 Util. 2023, 67, 102292. [Google Scholar] [CrossRef]
- Zhaurova, M.; Soukka, R.; Horttanainen, M. Multi-criteria evaluation of CO2 utilization options for cement plants using the example of Finland. Int. J. Greenh. Gas Control 2021, 112, 103481. [Google Scholar] [CrossRef]
- Global Energy Review 2020. Available online: https://www.iea.org/reports/global-energy-review-2020 (accessed on 10 April 2025).
- Eurostat. Greenhouse Emission by Source Sectors. Available online: https://ec.europa.eu/eurostat/databrowser/view/env_air_gge__custom_16229276/default/table?lang=en (accessed on 11 April 2025).
- Cheng, D.; Reiner, D.M.; Yang, F.; Cu, C.; Meng, J.; Shan, Y.; Liu, Y.; Tao, S.; Guan, D. Projecting future carbon emissions from cement production in developing countries. Nat. Commun. 2023, 14, 8213. [Google Scholar] [CrossRef] [PubMed]
- Chen, C.; Xu, R.; Tong, D.; Qin, X.; Cheng, J.; Liu, J.; Zheng, B.; Yan, L.; Zhang, Q. A striking growth of CO2 emissions from the global cement industry driven by new facilities in emerging countries. Environ. Res. Lett. 2022, 17, 044007. [Google Scholar] [CrossRef]
- Carbon Dioxide Emissions from the Manufacture of Cement Worldwide from 1990 to 2023, by Select Country. Available online: https://www.statista.com/statistics/1091672/carbon-dioxide-emissions-global-cement-manufacturing/ (accessed on 10 April 2025).
- Schneider, M.; Romer, M.; Tschudin, M.; Bolio, H. Sustainable cement production—Present and future. Cem. Concr. Res. 2011, 41, 642–650. [Google Scholar] [CrossRef]
- Yang, J.; Xiao, Y.; Wang, C. Sulfur behavior in cement kilns using alternative fuels. J. Clean. Prod. 2014, 67, 147–154. [Google Scholar] [CrossRef]
- Dumitru, A.; Olaru, E.-A.; Dumitru, M.; Iorga, G. Assessment of air pollution by aerosols over a coal open-mine influenced region in southwestern Romania. Rom. J. Phys. 2024, 69, 801. [Google Scholar] [CrossRef]
- Conesa, J.A.; Fullana, A.; Font, R. Pollutant emissions from the co-combustion of solid wastes with coal. Atmos. Environ. 2008, 42, 1275–1282. [Google Scholar] [CrossRef]
- U.S. EPA. Alternative Control Techniques Document—NOx Emissions from Cement Manufacturing; U.S. Environmental Protection Agency: Research Triangle Park, NC, USA, 2007.
- Karstensen, K.H. Formation, release and control of dioxins in cement kilns. Chemosphere 2008, 70, 543–560. [Google Scholar] [CrossRef]
- Van Loo, S.; Koppejan, J. The Handbook of Biomass Combustion and Co-Firing; Earthscan: London, UK, 2008. [Google Scholar]
- European IPPC Bureau. Reference Document on Best Available Techniques in the Cement, Lime and Magnesium Oxide Manufacturing Industries; European Commission: Seville, Spain, 2010. [Google Scholar]
- U.S. EPA. Air Pollution Inventories. 2021. Available online: https://www.epa.gov/air-emissions-inventories (accessed on 12 April 2025).
- Hasanbeigi, A.; Bhadbhade, N.; Ghosh, A. Air Pollution from Global Cement Industry—An International Benchmarking of Criteria Air Pollutants Intensities; Global Efficiency Intelligence: St. Petersburg, FL, USA, August 2022; Available online: https://static1.squarespace.com/static/5877e86f9de4bb8bce72105c/t/62ef78a371716a77fcb7790f/1659861171704/Cement+CAP+Study-final.pdf (accessed on 12 April 2025).
- Ali, M.B.; Saidur, R.; Hossain, M.S. A review on emission analysis in cement industries. Renew. Sustain. Energy Rev. 2011, 15, 2252–2261. [Google Scholar] [CrossRef]
- EMEP Centre on Emission Inventories and Projections. Data Viewer—Reported Emissions Data. Available online: https://www.ceip.at/data-viewer-2/officially-reported-emissions-data (accessed on 12 April 2025).
- Edwards, P. Global Cement: Environmental Standards. Available online: https://www.globalcement.com/images/stories/documents/articles/eGC-Mar14-25web.pdf (accessed on 15 April 2025).
- Neuffer, B.; Laney, M. Alternative Control Techniques Document Update—NOx Emissions from New Cement Kilns. Available online: https://www3.epa.gov/ttncatc1/dir1/cement_updt_1107.pdf (accessed on 12 April 2025).
- Öztürk, B.; Öztürk, O.; Karademir, A. NOx emission modeling at cement plants with co-processing alternative fuels using ANN. Environ. Eng. Res. 2022, 27, 210277. [Google Scholar] [CrossRef]
- Younis, A. NOx Emissions from the Cement Industry. Available online: https://www.linkedin.com/pulse/nox-emissions-from-cement-industry-ahmed-younis/ (accessed on 12 April 2025).
- Ibrahim, H.G.; Okasha, A.Y.; Elatrash, M.S.; Al-Meshragi, M.A. Emissions of SO2, NOx and PMs from cement plant in vicinity of Khoms city in Northwestern Libya. J. Environ. Sci. Eng. 2012, 1, 620–628. [Google Scholar]
- Kim, T.H.; Chae, C.U. Environmental Impact Analysis of Acidification and Eutrophication Due to Emissions from the Production of Concrete. Sustainability 2016, 8, 578. [Google Scholar] [CrossRef]
- Omar, A.; Muthusamy, K. Concrete industry, environment issue, and green concrete: A review. Construction 2022, 2, 1–9. [Google Scholar] [CrossRef]
- UN Environment Programme. Global Nitrous Oxide Assessment. 2024. Available online: https://www.unep.org/resources/report/global-nitrous-oxide-assessment (accessed on 12 April 2025).
- Winiwarter, W.; Klimont, Z. The role of N-gases (N2O, NOx, NH3) in cost-effective strategies to reduce greenhouse gas emissions and air pollution in Europe. Curr. Opin. Environ. Sustain. 2011, 3, 438–445. [Google Scholar] [CrossRef]
- Brown, D.; Sadiq, R.; Hewage, K. An overview of air emission intensities and environmental performance of grey cement manufacturing in Canada. Clean Technol. Environ. Policy 2014, 16, 1119–1131. [Google Scholar] [CrossRef]
- Mishra, S.; Siddiqui, N.A. A review on environmental and health impacts of cement manufacturing emissions. Int. J. Geol. Agric. Environ. Sci. 2014, 2, 26–31. [Google Scholar]
- Horkoss, S. 2008 Reducing the SO2 emission from a cement kiln. Int. J. Nat. Soc. Sci 2008, 1, 7–15. [Google Scholar]
- Taylor, H.F.W. Cement Chemistry; Tomas Telford: New York, NY, USA, 2004. [Google Scholar]
- Zhang, T.; Peng, H.; Wu, C.; Guo, Y.; Wang, J.; Chen, X.; Wei, J.; Yu, Q. Process compatible desulfurization of NSP cement production: A novel strategy for efficient capture of trace SO2 and the industrial trial. J. Clean. Prod. 2023, 411, 137344. [Google Scholar] [CrossRef]
- Isaiah, O.O.; Olusegun, O.A.; Blessing, A.G.; Samson, A.O. Environmental and Health Implications of Cement Production Plant Emissions in Nigeria: Ewekoro Cement Plant as a Case Study. Chem. J. 2021, 6, 1–8. [Google Scholar]
- Najjar, Y.S. Gaseous pollutants formation and their harmful effects on health and environment. Innov. Energy Pol. 2011, 1, E101203. [Google Scholar] [CrossRef]
- Gupta, R.K.; Majumdar, D.; Trivedi, J.V.; Bhanarkar, A.D. Particulate matter and elemental emissions from a cement kiln. Fuel Process. Technol. 2012, 104, 343–351. [Google Scholar] [CrossRef]
- van Oss, H.G.; Padovani, A.C. Cement Manufacture and the Environment Part II: Environmental Challenges and Opportunities. J. Ind. Ecol. 2003, 7, 93–126. [Google Scholar] [CrossRef]
- Abdul-Wahab, S.A.; Al-Dhamri, H.; Ram, G.; Chatterjee, V.P. An overview of alternative raw materials used in cement and clinker manufacturing. Int. J. Sustain. Eng. 2021, 14, 743–760. [Google Scholar] [CrossRef]
- Clearing the Air: Dust Collection & Emission Control Technologies for Global Cement Industry. Available online: https://techflow.net/articles/clearing-the-air-dust-collection-emission-control-technologies-for-global-cement-industry (accessed on 10 April 2024).
- Kalafatoglu, E.; Ors, N.; Ozdemir, S.S.; Munlafalioglu, I. Trace element emissions from some cement plants in Turkey. Water Air Soil Pollut. 2001, 129, 91–100. [Google Scholar] [CrossRef]
- Kalacic, I. Chronic nonspecific lung disease in cement workers. Arch. Environ. Health 1973, 26, 78–83. [Google Scholar] [CrossRef]
- Li, X.; Zhu, J.; Guo, P.; Wang, J.; Qiu, Z.; Lu, R.; Qiu, H.; Li, M.; Jiang, D.; Li, Y.; et al. Preliminary studies on the source of PM10 aerosol particles in the atmosphere of Shanghai City by analyzing single aerosol particles. Nucl. Instrum. Methods Phys. Res. B 2003, 210, 412–417. [Google Scholar] [CrossRef]
- Kholodov, A.; Zakharenko, A.; Drozd, V.; Chernyshev, V.; Kirichenko, K.; Seryodkin, I.; Karabtsov, A.; Olesik, S.; Khvost, E.; Vakhnyuk, I.; et al. Identification of cement in atmospheric particulate matter using the hybrid method of laser diffraction analysis and Raman spectroscopy. Heliyon 2020, 6, e03299. [Google Scholar] [CrossRef]
- Al Smadi, B.M.; Al-Zboon, K.K.; Shatnawi, K.M. Assessment of Air Pollutants Emissions from a Cement Plant: A Case Study in Jordan. Jordan J. Civ. Eng. 2009, 3, 265–281. [Google Scholar]
- Wang, Y.; Wang, X.; Ning, M.; He, J.; He, J.; Lei, W.; Hou, S. The collaborative pollutants and carbon dioxide emission reduction and cost of ultra-low pollutant emission retrofit in China’s cement kiln. J. Clean. Prod. 2023, 405, 136939. [Google Scholar] [CrossRef]
- Cross, J.-M. Fact Sheet|Short-Lived Climate Pollutants: Why Are They Important? Available online: https://www.eesi.org/papers/view/fact-sheet-short-lived-climate-pollutants (accessed on 13 June 2025).
- Schmidt, C.W. Black Carbon: The Dark Horse of Climate Change Drivers. Available online: https://ehp.niehs.nih.gov/doi/10.1289/ehp.119-a172 (accessed on 13 June 2025).
- Montelongo-Reyes, M.M.; Otazo-Sánchez, E.M.; Romo-Gómez, C.; Gordillo-Martínez, A.J.; Galindo-Castillo, E. GHG and black carbon emission inventories from Mezquital Valley: The main energy provider for Mexico Megacity. Sci. Total Environ. 2015, 527–528, 455–464. [Google Scholar] [CrossRef]
- Method for Controlling Ammonia Content in Cement Flue Gas and Cement Plant with Controlled Ammonia Emission. Available online: https://patents.google.com/patent/EP3299080A1/en (accessed on 12 June 2025).
- Guo, Y.; Mu, B.; Liu, P.; Luo, L.; Hao, L.; Li, Y.; Zhu, T. Ammonia emission estimation for the cement industry in northern China. Atmos. Pollut. Res. 2020, 11, 1738–1742. [Google Scholar] [CrossRef]
- Roe, S.M.; Spiwey, M.D.; Lindquist, H.C.; Thesing, K.B.; Strait, R.P.; Pechan, E.H.; Assoc. Inc. Estimating Ammonia Emissions from Anthropogenic Nonagricutural Sources-Draft Final Report. 2004. Available online: https://www.epa.gov/sites/default/files/2015-08/documents/eiip_areasourcesnh3.pdf (accessed on 11 June 2025).
- Koch, H.-J.; Prenzel, H. Versuche uber Geruchsentwicklungen beim Frischestrich mit NH3- befrachteter Flugasche. Betonw. Fert.-Tech. 1989, 11, 72–75. [Google Scholar]
- Spanka, G.; Thielen, G. Freisetzung fluchtiger Substanzen aus zementgebundenen Bauprodukten (Teil 2). Beton 1999, 3, 173–177. [Google Scholar]
- Chyliński, F.; Goljan, A.; Michalik, A. Fly Ash with Ammonia: Properties and Emission of Ammonia from Cement Composites. Materials 2021, 14, 707. [Google Scholar] [CrossRef]
- Hjellström, K. Chemical Emissions from Concrete. Licentiate Thesis, Division of Building Materials, LTH, Lund University, Lund, Sweden, 2004. Available online: https://lucris.lub.lu.se/ws/files/4892497/1659440.pdf (accessed on 12 June 2025).
- Huang, Y.-C.T. Outdoor Air Pollution. A Global Perspective. J. Occup. Environ. Med. 2014, 56, S3–S7. [Google Scholar] [CrossRef]
- César, A.C.; Carvalho, J.A., Jr.; Nascimento, L.F. Association between NOx exposure and deaths caused by respiratory diseases in a medium-sized Brazilian city. Braz. J. Med. Biol. Res. 2015, 48, 1130–1135. [Google Scholar] [CrossRef]
- Goldberg, M.S.; Burnett, R.T.; Stieb, D.M.; Brophy, J.M.; Daskalopoulou, S.S.; Valois, M.F.; Brook, J.R. Associations between ambient air pollution and daily mortality among elderly persons in Montreal, Quebec. Sci. Total Environ. 2013, 463, 931–942. [Google Scholar] [CrossRef]
- Rai, P.K. Multifaceted Health Impacts of Particulate Matter (PM) and Its Management: An Overview. Environ. Skept. Crit. 2015, 4, 1–26. [Google Scholar]
- Etim, M.-A.; Babaremu, K.; Lazarus, J.; Omole, D. Health risk and environmental assessment of cement production in Nigeria. Atmosphere 2021, 12, 1111. [Google Scholar] [CrossRef]
- Kim, C.H.; Park, B.; Baek, M.S. The effect of long-term exposure to a mixture of air pollutants on chronic obstructive pulmonary disease. Ecotoxicol. Environ. Safe 2025, 292, 117978. [Google Scholar] [CrossRef]
- Chiritescu, R.-V.; Luca, E.; Iorga, G. Observational study of major air pollutants over urban Romania in 2020 in comparison with 2019. Rom. Rep. Phys. 2024, 76, 702. [Google Scholar]
- Ramamoorthy, T.; Nath, A.; Singh, S.; Mathew, S.; Pant, A.; Sheela, S.; Kaur, G.; Sathishkumar, K.; Mathur, P. Assessing the Global Impact of Ambient Air Pollution on Cancer Incidence and Mortality: A Comprehensive Meta-Analysis. JCO Glob. Oncol. 2024, 10, e2300427. [Google Scholar] [CrossRef] [PubMed]
- Health Impacts of Air Pollution in Canada 2021 Report. Available online: https://www.canada.ca/en/health-canada/services/publications/healthy-living/health-impacts-air-pollution-2021.html (accessed on 24 April 2025).
- US EPA Basic Information About NO2. Available online: https://www.epa.gov/no2-pollution/basic-information-about-no2 (accessed on 13 April 2025).
- Hajtar, L.; Herczeg, L. Influence of carbon-dioxide concentration on human well-being and intensity of mental work. Időjárás 2012, 116, 145–169. [Google Scholar]
- Satish, U.; Mendell, M.J.; Shekhar, K.; Hotchi, T.; Sullivan, D.; Strufert, S.; Fisk, W.J. Is CO2 an indoor pollutant? Direct effects of low-to-moderate CO2 concentrations on human decision-making performance. Environ. Health Perspect. 2012, 120, 1671–1677. [Google Scholar] [CrossRef]
- Allen, J.G.; MacNaughton, P.; Satish, U.; Santanam, S.; Vallarino, J.; Spengler, J.D. Associations of cognitive function scores with carbon dioxide, ventilation, and volatile organic compound exposures in office workers: A controlled exposure study of green and conventional office environment. Environ. Health Perspect. 2016, 124, 805–812. [Google Scholar] [CrossRef]
- Jacobson, T.A.; Kler, J.S.; Hernke, M.T.; Braun, R.K.; Meyer, K.C.; Funk, W.E. Direct human health risks of increased atmospheric carbon dioxide. Nat. Sustain. 2019, 2, 691–701. [Google Scholar] [CrossRef]
- Snow, S.; Boyson, A.S.; Paas, K.H.W.; Gough, H.; King, M.-F.; Barlow, J.; Noakes, C.J.; Schraefel, M.C. Exploring the physiological, neurophysiological and cognitive performance effects of elevated carbon dioxide concentrations indoors. Build. Environ. 2019, 156, 243–252. [Google Scholar] [CrossRef]
- Naiyer, S.; Abbas, S.S. Effect of Greenhouse Gases on Human Health. In Greenhouse Gases: Sources, Sinks and Mitigation; Sonwani, S., Saxena, P., Eds.; Springer: Singapore, 2022; pp. 85–106. [Google Scholar]
- Smith, D. Is Carbon Dioxide Harmful to People? Available online: https://learn.kaiterra.com/en/air-academy/is-carbon-dioxide-harmful-to-people (accessed on 15 September 2023).
- Bărbulescu, A. Modeling Greenhouse Gas Emissions from Agriculture. Atmosphere 2025, 16, 295. [Google Scholar] [CrossRef]
- Bărbulescu, A. Statistical analysis and modeling of the CO2 series emitted by Thirty European countries. Climate 2024, 12, 34. [Google Scholar] [CrossRef]
- Ehleringer, J.R.; Cerling, T.; Dearing, M.D. A History of Atmospheric CO2 and Its Effects on Plants, Animals, and Ecosystems; Ecological Studies 177; Springer: Berlin/Heidelberg, Germany, 2005. [Google Scholar]
- Hunter, P. The impact of CO2. The global rise in the levels of CO2 is good for trees, bad for grasses and terrible for corals. EMBO Rep. 2007, 8, 1104–1106. [Google Scholar] [CrossRef]
- Gauderman, W.J.; Avol, E.; Gilliland, F. The effect of air pollution on lung development from 10 to 18 years of age. N. Engl. J. Med. 2004, 351, 1057–1067. [Google Scholar] [CrossRef] [PubMed]
- Achakulwisut, P.; Brauer, M.; Hystad, P.; Anenberg, S.C. Global, national, and urban burdens of paediatric asthma incidence attributable to ambient NO2 pollution: Estimates from global datasets. Lancet Planet. Health 2019, 3, E166–E178. [Google Scholar] [CrossRef]
- Gowers, A.M.; Walton, H.; Exley, K.S.; Hurley, J.F. Using epidemiology to estimate the impact and burden of exposure to air pollutants. Phil. Trans. R. Soc. Lond. Ser. A Math. Phys. Eng. Sci. 2020, 378, 20190321. [Google Scholar] [CrossRef] [PubMed]
- Lang, S.; Li, M.; Guo, C.; Requia, W.J.; Sakhvidi, M.J.Z.; Lin, K.; Zhu, Q.; Chen, Z.; Cao, P.; Yang, L.; et al. Associations of long-term exposure to nitrogen oxides with all-cause and cause-specific mortality. Nat. Commun. 2025, 16, 1730. [Google Scholar] [CrossRef]
- Boers, E.; Barrett, M.; Su, J.G.; Benjafield, A.V.; Sinha, S.; Kaye, L.; Zar, H.J.; Vuong, V.; Tellez, D.; Gondalia, R.; et al. Global burden of chronic obstructive pulmonary disease through 2050. JAMA Netw. Open 2023, 6, e2346598. [Google Scholar] [CrossRef]
- Weichenthal, S.; Bai, L.; Hatzopoulou, M.; Van Ryswyk, K.; Kwong, J.C.; Jerrett, M.; van Donkelaar, A.; Martin, R.V.; Burnett, R.T.; Lu, H.; et al. Long-term exposure to ambient ultrafine particles and respiratory disease incidence in in Toronto, Canada: A cohort study. Environ. Health 2017, 16, 64. [Google Scholar] [CrossRef]
- Guo, C.; Zhang, Z.; Lau, A.K.H.; Lin, C.Q.; Chuang, Y.C.; Chan, J.; Jiang, W.K.; Ta, T.; Yeoh, E.-K.; Chan, T.-C.; et al. Effect of long-term exposure to fine particulate matter on lung function decline and risk of chronic obstructive pulmonary disease in Taiwan: A longitudinal, cohort study. Lancet Planet. Health 2018, 2, e114–e125. [Google Scholar] [CrossRef]
- Harrison, R.M.; Yin, J. Particulate matter in the atmosphere: Which particle properties are important for its effects on health? Sci. Total Environ. 2000, 249, 85–101. [Google Scholar] [CrossRef]
- Anderson, J.O.; Thundiyil, J.G.; Stolbach, A. Clearing the air: A review of the effects of particulate matter air pollution on human health. J. Med. Toxicol. 2012, 8, 166–175. [Google Scholar] [CrossRef]
- Pozzer, A.; Anenberg, S.C.; Dey, S.; Haines, A.; Lelieveld, J.; Chowdhury, S. Mortality attributable to ambient air pollution: A review of global estimates. GeoHealth 2023, 7, e2022GH000711. [Google Scholar] [CrossRef]
- Hamra, G.B.; Guha, N.; Cohen, A.J.; Laden, F.; Raaschou-Nielsen, O.; Samet, J.M.; Vineis, P.; Forastiere, F.; Saldiva, P.; Yorfuji, T.; et al. Outdoor particulate matter exposure and lung cancer: A systematic review and meta-analysis. Environ. Health Perspect. 2014, 122, 906–911. [Google Scholar] [CrossRef] [PubMed]
- Lee, S.; Tian, D.; He, R.; Cragg, J.J.; Carsten, C.; Giang, A.; Gill, P.K.; Johnson, K.M.; Brigham, E. Ambient air pollution exposure and adult asthma incidence: A systematic review and meta-analysis. Lancet Planet. Health 2024, 8, e1065–e1078. [Google Scholar] [CrossRef] [PubMed]
- Heft-Neal, S.; Burney, J.; Bendavid, E.; Burke, M. Robust relationship between air quality and infant mortality in Africa. Nature 2018, 559, 254–258. [Google Scholar] [CrossRef] [PubMed]
- Balakrishnan, K.; Ghosh, S.; Thangavel, G.; Sambandam, S.; Mukhopadhyay, K.; Puttaswamy, N.; Sadasivam, A.; Ramaswamy, P.; Johnson, P.; Kuppuswamy, R.; et al. Exposures to fine particulate matter (PM2.5) and birthweight in a rural-urban, mother-child cohort in Tamil Nadu, India. Environ. Res. 2018, 161, 524–531. [Google Scholar] [CrossRef]
- Stump, Á.; Szabó-Morvai, Á. The effect of air pollution on fertility in 657 European regions. J. Environ. Econ. Manag. 2025, 130, 103111. [Google Scholar] [CrossRef]
- Juginović, A.; Vuković, M.; Aranza, I.; Biloš, V. Health impacts of air pollution exposure from 1990 to 2019 in 43 European countries. Sci. Rep. 2021, 11, 22516. [Google Scholar] [CrossRef]
- Khaniabadi, Y.O.; Sicard, P.; Taiwo, A.M.; De Marco, A.; Esmaeili, S.; Rashidi, R. Modeling of particulate matter dispersion from a cement plant: Upwind-downwind case study. J. Environ. Chem. Eng. 2018, 6, 3104–3110. [Google Scholar] [CrossRef]
- Wahas, A.; Sobia, N.; Nafees, M.; Rahid, H. Assessment of particulate matter (PM10 & PM2.5) and associated health problems in different areas of cement industry, Hattar, Haripur. J. Sci. Technol. 2013, 37, 7–15. [Google Scholar]
- de Souza Zorzenão, P.C.; dos Santos Silva, J.C.; Bufato Moreira, C.A.; Pinto, V.M.; de Souza Tadano, Y.; Yamamoto, C.I.; Moreton Godoi, R.H. Impacts of PM2.5 exposure near cement facilities on human health and years of life lost: A case study in Brazil. J. Environ. Manag. 2024, 370, 122975. [Google Scholar] [CrossRef]
- Sánchez-Soberón, F.; Rovira, J.; Mari, M.; Sierra, J.; Nadal, M.; Domingo, J.L.; Schuhmacher, M. Main components and human health risks assessment of PM10, PM2.5, and PM1 in two areas influenced by cement plants. Atmos. Environ. 2015, 120, 109–116. [Google Scholar] [CrossRef]
- Mehraj, S.S.; Bhat, G.A.; Balkhi, H.M.; Gul, T. Health risks for population living in the neighborhood of a cement factory. Afr. J. Environ. Sci. Technol. 2013, 7, 1044–1052. [Google Scholar] [CrossRef]
- García-Pérez, J.; López-Abente, G.; Castelló, A.; González-Sánchez, M.; Fernández-Navarro, P. Cancer mortality in towns in the vicinity of installations for the production of cement, lime, plaster, and magnesium oxide. Chemosphere 2015, 128, 103. [Google Scholar] [CrossRef] [PubMed]
- Koh, D.-H.; Kim, T.-W.; Jang, S.H.; Ryu, H.-W. Cancer mortality and incidence in cement industry workers in Korea. Saf. Health Work 2011, 2, 243–249. [Google Scholar] [CrossRef]
- Lee, H.S.; Lee, C.G.; Kim, D.H.; Song, H.S.; Jung, M.S.; Kim, J.Y.; Park, C.H.; Ahn, S.C.; Yu, S.D. Emphysema prevalence related air pollution caused by a cement plant. Ann. Occup. Environ. Med. 2016, 28, 17. [Google Scholar] [CrossRef]
- Kim, S.H.; Lee, C.G.; Song, H.S.; Lee, H.S.; Jung, M.S.; Kim, J.Y.; Park, C.H.; Ahn, S.C.; Yu, S.D. Ventilation impairment of residents around a cement plant. Ann. Occup. Environ. Med. 2015, 27, 3. [Google Scholar] [CrossRef]
- Eom, S.-Y.; Cho, E.-B.; Oh, M.-K.; Kweon, S.-S.; Nam, H.-S.; Kim, Y.-D.; Kim, H. Increased incidence of respiratory tract cancers in people living near Portland cement plants in Korea. Int. Arch. Occup. Environ. Health 2017, 90, 859–864. [Google Scholar] [CrossRef]
- Le, T.N.; Straatman, L.V.; Lea, J.; Westerberg, B. Current insights in noise-induced hearing loss: A literature review of the underlying mechanism, pathophysiology, asymmetry, and management options. J. Otolaryngol.-Head Neck Surg. 2017, 46, 41. [Google Scholar] [CrossRef]
- Thai, T.; Kučera, P.; Bernatik, A. Noise pollution and its correlations with occupational noise-induced hearing loss in cement plants in Vietnam. Int. J. Environ. Res. Public Health 2021, 18, 4229. [Google Scholar] [CrossRef]
- Zhu, X.; Yang, J.; Quang, Q.; Liu, T. A review on pollution treatment in cement industrial areas: From prevention techniques to python-based monitoring and controlling models. Processes 2022, 10, 2682. [Google Scholar] [CrossRef]
- Mndeme, F.G.; Mkoma, S.L. Assessment of work zone noise levels at a cement factory in Tanga, Tanzania. Ethiop. J. Environ. Stud. Manag. 2012, 5, 225–231. [Google Scholar]
- Zhang, C.; Yuan, S.; Li, D. Comprehensive control of the noise occupational hazard in cement plant. Procedia Eng. 2012, 43, 186–190. [Google Scholar] [CrossRef]
- Ali, M.E.A.M.; Elhassan, B.M.; Ali, A.A.H. The noise pollution and heat stress in different parts of Rabak Cement Factory, White Nile State, Sudan. Int. J. Sci. Technol. Res. Arch. 2022, 2, 16–21. [Google Scholar]
- Noorpoor, A.; Ahmadi Orkomi, A. Acoustic Analysis of Machineries in the Cement Industry. Open J. Saf. Sci. Technol. 2014, 4, 98–105. [Google Scholar] [CrossRef]
- Sordello, R.; Ratel, O.; Flamerie De Lachapelle, F.; Leger, C.; Dambry, A.; Vanpeene, S. Evidence of the impact of noise pollution on biodiversity: A systematic map. Environ. Evid. 2020, 9, 20. [Google Scholar] [CrossRef]
- Erbe, C.; Dent, M.L.; Gannon, W.L.; McCauley, R.D.; Römer, H.; Southall, B.L.; Stansbury, A.L.; Stoeger, A.S. The effects of noise on animals. In Exploring Animal Behavior Through Sound. Volume 1: Methods; Erbe, C., Thomas, J.A., Eds.; Springer/ASA Press: Cham, Switzerland, 2022; pp. 459–506. [Google Scholar]
- Hemmat, W.; Hesam, A.M.; Atifnigar, H. Exploring noise pollution, causes, effects, and mitigation strategies: A review paper. Eur. J. Theor. Appl. Sci. 2023, 1, 995–1005. [Google Scholar] [CrossRef]
- Moldoveanu, O.C.; Maggioni, M.; Dani, F.R. Environmental ameliorations and politics in support of pollinators. Experiences from Europe: A review. J. Environ. Manag. 2024, 362, 121219. [Google Scholar] [CrossRef]
- Ismail, A.F.; Daud, N.A.; Ismail, Z.; Baharudin, A. Noise-Induced Hearing Loss Among Quarry Workers in a North-Eastern State of Malaysia: A Study on Knowledge, Attitude and Practice. Oman Med. J. 2013, 28, 331–336. [Google Scholar] [CrossRef]
- Hernández-Gaytán, S.I.; Santos-Burgoa, C.; Becker-Meyer, J.P.; Macías-Carrillo, C.; López-Cervantes, M. Prevalence of hearing loss and correlated factors in a cement plant. Salud Publica Mex. 2000, 42, 106–111. [Google Scholar] [CrossRef]
- Ali, A.; Garandawa, H.I.; Nwawolo, C.C.; Somefun, O.O. Noise-Induced Hearing Loss at Cement Company, Nigeria. Online J. Med. Med. Sci. Res. 2012, 1, 49–54. [Google Scholar]
- Lee, Y.; Lee, S.; Lee, W. Occupational and Environmental Noise Exposure and Extra-Auditory Effects on Humans: A Systematic Literature Review. GeoHealth 2023, 7, e2023GH000805. [Google Scholar] [CrossRef]
- Staseva, E.; Kvitkina, M.; Litvinov, A.; Kobzeva, N. The effect of noise on the human body, in particular, on cardiovascular diseases. E3S Web Conf. 2020, 164, 01028. [Google Scholar] [CrossRef]
- Toure, H.; Baïla, D.B.; Amadou, T.C.; Diatta, A.E.R. Risk Assessment of Noise Pollution in a Cement Plant: Perspectives and Recommendations. Glob. J. Med. Commun. Health Arch. 2023, 1, 70–77. [Google Scholar] [CrossRef]
- Maqsood, N.; Younes, I.; Minallah, M.N. Industrial Noise Pollution and Its Impact on the Hearing Capacity of Workers: A Case Study of Gujranwala City, Pakistan. Int. J. Econ. Environ. Geol. 2019, 2, 45–49. [Google Scholar]
- Mokhtar, M.; Kamaruddin, S.; Khan, A.Z.; Mallick, Z. A study on the effects of noise on industrial workers in Malaysia. J. Teknol. 2007, 46, 17–30. [Google Scholar] [CrossRef]
- Fernández, M.D.; Quintana, S.; Chavarría, N.; Ballesteros, J.A. Noise exposure of workers of the construction sector. Appl. Acoust. 2009, 70, 753–760. [Google Scholar] [CrossRef]
- Adekola, F.A.; Inyinbo, A.A.; Abdul–Raheem, A.M.O. Heavy metals distribution and speciation in soils around a mega cement factory in north–central Nigeria. Ethiop. J. Environ. Stud. Manag. 2012, 5, 11–19. [Google Scholar] [CrossRef]
- El-Sherbiny, M.M.; Ismail, A.I.; El-Hefnawy, M.E. A preliminary assessment of potential ecological risk and soil contamination by heavy metals around a cement factory, western Saudi Arabia. Open Chem. 2019, 17, 671–684. [Google Scholar] [CrossRef]
- Awos, A.; Thompson, S.; Adedeji, O.; Zvomuya, F.; Zhang, Q. Monitoring of Air Quality for Particulate Matter (PM2.5, PM10) and Heavy Metals Proximate to a Cement Factory in Ewekoro, Nigeria. J. Geosci. Environ. Prot. 2024, 12, 152–180. [Google Scholar]
- Egbe, E.R.; Nsonwu-Anyanwu, A.C.; Offor, S.J.; Opara Usoro, C.A.; Etukudo, M.H. Heavy metal content of the soil in the vicinity of united cement factory in Southern Nigeria. J. Adv. Environ. Health Res. 2019, 7, 122–130. [Google Scholar]
- Maina, H.M.; Egila, J.N.; Nkafamiya, I.I.; Shagal, M.H. Impact of cement dust deposition on the elemental composition of soils in the vicinity of Ashaka cement factory, Nigeria. Int. Res. J. Agric. Sci. Soil Sci. 2013, 3, 66–74. [Google Scholar]
- Ismail, Z.; Ali, S.; Zulfiqar, A.; El-Serehy, H.A. Impact of cement industries on potentially toxic elements’ contamination and other characteristics of topsoil: A case study. Environ. Pollut. Bioavailab. 2023, 35, 550–565. [Google Scholar] [CrossRef]
- Schuhmacher, M.; Nadal, M.; Domingo, J.L. Environmental monitoring of PCDD/Fs and metals in the vicinity of a cement plant after using sewage sludge as a secondary fuel. Chemosphere 2009, 74, 1502–1508. [Google Scholar] [CrossRef] [PubMed]
- Rovira, J.; Mari, M.; Schuhmacher, M.; Nadal, M.; Domingo, J.L. Monitoring environmental pollutants in the vicinity of a cement plant: A temporal study. Arch. Environ. Contam. Toxicol. 2011, 60, 372–384. [Google Scholar] [CrossRef] [PubMed]
- Olatunde, K.A.; Sosanya, P.A.; Bada, B.S.; Ojekunle, Z.O.; Abdussalaam, S.A. Distribution and ecological risk assessment of heavy metals in soils around a major cement factory, Ibese, Nigeria. Sci. Afr. 2020, 9, e00496. [Google Scholar] [CrossRef]
- Soussia, T.; Guendon, P.; Lawan, R.; Gbaguidi, C.D.; Edorh, P.A. Assessment of Cement Dust Deposit in a Cement Factory in Cotonou (Benin). J. Environ. Prot. 2015, 6, 675–682. [Google Scholar] [CrossRef]
- Ogedengbe, K.; Oke, A. Pollution impact of cement production on air, soil and water in a production location in Nigeria. J. Sci. Technol. 2011, 31, 46–56. [Google Scholar] [CrossRef]
- Anurag, K.R.; Sahu, N. Impact of cement industries dust on soil properties in Bhatapara, Chhattisgarh. Ann. Plant Soil Res. 2021, 23, 209–214. [Google Scholar]
- Lamare, R.E.; Singh, O.P. Effect of cement dust on soil physico-chemical properties around cement plants in Jaintia Hills, Meghalaya. Environ. Eng. Res. 2020, 25, 409–417. [Google Scholar] [CrossRef]
- Jadaoon, S.; Amin, A.A.; Malik, A.; Kamal, H. Soil pollution by the cement industry in the Bazian vicinity, Kurdistan region. J. Environ. Anal. Toxicol. 2016, 6, 1000413. [Google Scholar] [CrossRef]
- Lanphear, B.P.; Hornung, R.; Khoury, J.; Yolton, K.; Baghurst, P.; Bellinger, D.C.; Canfield, R.L.; Dietrich, K.N.; Bornschein, R.; Greene, T.; et al. Low-level environmental lead exposure and children’s intellectual function: An international pooled analysis. Environ. Health Perspect. 2005, 113, 894–899, Erratum in Environ. Health Perspect. 2019, 127, 99001. [Google Scholar]
- Järup, L.; Åkesson, A. Current status of cadmium as an environmental health problem. Toxicol. Appl. Pharmacol. 2009, 238, 201–208. [Google Scholar] [CrossRef] [PubMed]
- Costa, M.; Klein, C.B. Toxicity and carcinogenicity of chromium compounds in humans. Crit. Rev. Toxicol. 2006, 36, 155–163. [Google Scholar] [CrossRef] [PubMed]
- Chemical Agents and Related Occupations. IARC Monographs on the Evaluation of Carcinogenic Risks to Humans Volume 100F. Available online: https://publications.iarc.fr/Book-And-Report-Series/Iarc-Monographs-On-The-Identification-Of-Carcinogenic-Hazards-To-Humans/Chemical-Agents-And-Related-Occupations-2012 (accessed on 14 June 2025).
- Chang, X.; Zhao, H.; Gao, J.; Chen, L.; Zhu, A.; Wang, C.; Yu, S.; Ren, X.; Ge, P.; Sun, Y. Pulmonary toxicity of exposure to nano nickel oxide. Micro Nano Lett. 2018, 13, 733–738. [Google Scholar] [CrossRef]
- Begum, W.; Rai, S.; Banerjee, S.; Bhattacharjee, S.; Mondal, M.H.; Bhattarai, A.; Saha, B. A comprehensive review on the sources, essentiality and toxicological profile of nickel. RSC Adv. 2022, 12, 9139–9153. [Google Scholar] [CrossRef]
- Kasprzak, K.S.; Sunderman, F.W.; Salnikow, K. Nickel carcinogenesis. Mutat. Res. 2003, 533, 67–97. [Google Scholar] [CrossRef]
- Magaye, R.; Zhao, J. Recent progress in studies of metallic nickel and nickel-based nanoparticles’ genotoxicity and carcinogenicity. Environ. Toxicol. Pharmacol. 2012, 34, 644–650. [Google Scholar] [CrossRef]
- Sunderman, F.W. Mechanisms of nickel carcinogenesis. Scand. J. Work Environ. Health 1989, 15, 1–12. [Google Scholar] [CrossRef]
- Ahlström, M.G.; Thyssen, J.P.; Wennervaldt, M.; Menné, T.; Johansen, J.D. Nickel allergy and allergic contact dermatitis: A clinical review of immunology, epidemiology, exposure, and treatment. Contact Dermat. 2019, 81, 227–241. [Google Scholar] [CrossRef]
- New Jersey Depatment of Health and Senior Services. Hazardous Substance Fact Sheet. Available online: https://nj.gov/health/eoh/rtkweb/documents/fs/1345.pdf (accessed on 7 July 2025).
- Brewer, G.J.; Askari, F.K. Wilson’s disease: Clinical management and therapy. J. Hepatol. 2005, 42, S13–S21. [Google Scholar] [CrossRef]
- Fosmire, G.J. Zinc toxicity. Am. J. Clin. Nutr. 1990, 51, 225–227. [Google Scholar] [CrossRef]
- Kosmatka, S.H.; Kerkhoff, B.; Panarese, W.C. Design and Control of Concrete Mixtures, EB001, 14th ed.; Portland Cement Association: Skokie, IL, USA, 2002. [Google Scholar]
- Ani, J.; Asegbeloyin, J.; Melkiti, M. Physicochemical characterization of industrial effluents: Case studies of beverage and fibre cement plants in Enugu, Nigeria. N. Y. Sci. J. 2011, 4, 114–117. [Google Scholar]
- Ipeaiyeda, A.; Obaje, G. Impact of cement effluent on water quality of rivers: A case study of Onyi river at Obajana, Nigeria. Cogent Environ. Sci. 2017, 3, 1319102. [Google Scholar] [CrossRef]
- Nsabimana, E.; Hirwa, H. Assessment and Determination of Selected Physical Parameters of Surface Water in Cement Factory, Western Province, Rwanda. Asian J. Sci. Technol. 2018, 9, 9131–9134. [Google Scholar]
- Aga, T.; Anyadike, C.; Mbajiorgu, C.; Ogwo, V. Assessment of the effect of cement industry effluent discharge on water quality of Ngo River in Benue, Nigeria. Niger. J. Technol. 2020, 39, 918–924. [Google Scholar] [CrossRef]
- Mbaka, J. Impact of Cement Industry on Water Quality in the Athi River, Machakos County, Kenya. East Afr. J. Environ. Nat. Resour. 2023, 6, 232–242. [Google Scholar] [CrossRef]
- Agbede, O.T.; Adeofun, C.O.; Adetunji, M.T.; Taiwo, A.M.; Arowolo, T.A. Environmental impacts of cement production in Ewekoro, Ogun State, southwestern Nigeria from 2005 to 2006 on surface water quality, vegetation, and workers’ health. J. Water Health 2024, 22, 1743–1755. [Google Scholar] [CrossRef]
- Siddique, R.; Rajor, A. Use of cement kiln dust in cement concrete and its leachate characteristics. Resour. Conserv. Recycl. 2012, 61, 59–68. [Google Scholar] [CrossRef]
- Olaleye, V.F.; Oluyemi, E.A. Effects of cement flue dusts from a Nigerian cement plant on air, water and planktonic quality. Environ. Monit. Asses. 2010, 162, 153–162. [Google Scholar] [CrossRef]
- Arimoro, F.O.; Meme, F.K.; Keke, U.N. Effects of effluent discharges from a cement factory on the ecology of macroinvertebrates in an Afrotropical River. Environ. Sci. Pollut. Res. 2021, 28, 53444–53457. [Google Scholar] [CrossRef]
- Oyinlola, I.S.; Olagunju, A.S.; Adaramoye, O.A. The Biochemical Effects of Waters from Awba Dam and Rivers Around Ewekoro Cement Factory, Ogun State, Nigeria on Selected Organs of the African Catfish (Clarias gariepinus). Niger. J. Pure Appl. Sci. 2024, 37, 4809–4826. [Google Scholar]
- Malik, N.; Biswas, A.; Qureshi, T.; Borana, K.; Virha, R. Bioaccumulation of heavy metals in fish tissues of a freshwater lake of Bhopal. Environ. Monit. Assess. 2010, 160, 267–276. [Google Scholar] [CrossRef]
- Andersen, T.H.; Tjørnhøj, R.; Wollenberger, L.; Slothuus, T.; Baun, A. Acute and chronic effects of pulse exposure of Daphnia magna to dimethoate and pirimicarb. Environ. Toxicol. Chem. 2006, 25, 1187–1195. [Google Scholar] [CrossRef] [PubMed]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Bărbulescu, A.; Hosen, K. Cement Industry Pollution and Its Impact on the Environment and Population Health: A Review. Toxics 2025, 13, 587. https://doi.org/10.3390/toxics13070587
Bărbulescu A, Hosen K. Cement Industry Pollution and Its Impact on the Environment and Population Health: A Review. Toxics. 2025; 13(7):587. https://doi.org/10.3390/toxics13070587
Chicago/Turabian StyleBărbulescu, Alina, and Kamal Hosen. 2025. "Cement Industry Pollution and Its Impact on the Environment and Population Health: A Review" Toxics 13, no. 7: 587. https://doi.org/10.3390/toxics13070587
APA StyleBărbulescu, A., & Hosen, K. (2025). Cement Industry Pollution and Its Impact on the Environment and Population Health: A Review. Toxics, 13(7), 587. https://doi.org/10.3390/toxics13070587