Developmental Exposures to Three Mammalian Teratogens Produce Dysmorphic Phenotypes in Adult Caenorhabditis elegans
Abstract
1. Introduction
2. Materials and Methods
2.1. C. elegans Culture Maintenance and Chemical Exposures
2.2. Imaging and Gross Phenotype Analysis
2.3. Statistical Analysis
3. Results
3.1. Morphometry Methods and Control Findings
3.2. Effects of 5-Fluorouracil
3.3. Effects of Hydroxyurea
3.4. Effects of Ribavirin
4. Discussion
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
Abbreviations
>1 V | more than one vulva |
>2eA | a C. elegans adult with three or more internal fertilized eggs |
1–2eA | a C. elegans adult with one or two internal fertilized eggs |
5FU | 5-fluorouracil |
abn.A | adult-sized C. elegans with visible gonadal malformation |
abn.J | juvenile-sized C. elegans with visible gonadal malformation |
abn.V | abnormal vulva |
CeHM | C. elegans Habitation Medium |
F/M | C. elegans with an oocyte and a male tail |
HU | hydroxyurea |
L1 | first larval stage |
L2 | second larval stage |
L3 | third larval stage |
L4 | fourth larval stage |
NGA | no gonad arms |
NGA&PV | no gonad arms and a protruding vulva |
RV | ribavirin |
References
- Schardein, J.L.; Schwetz, B.A.; Kenel, M.F. Species sensitivities and prediction of teratogenic potential. Environ. Health Perspect. 1985, 61, 55–67. [Google Scholar] [CrossRef]
- Calado, A.M.; Seixas, F.; Pires, M.D.A. Updating an Overview of Teratology. Methods Mol. Biol. 2024, 2753, 1–38. [Google Scholar] [CrossRef] [PubMed]
- Nau, H. Species differences in pharmacokinetics and drug teratogenesis. Environ. Health Perspect. 1986, 70, 113–129. [Google Scholar] [CrossRef] [PubMed]
- Carney, E.W.; Scialli, A.R.; Watson, R.E.; DeSesso, J.M. Mechanisms regulating toxicant disposition to the embryo during early pregnancy: An interspecies comparison. Birth Defects Res. C Embryo Today 2004, 72, 345–360. [Google Scholar] [CrossRef] [PubMed]
- Ferm, V.H.; Willhite, C.; Kilham, L. Teratogenic effects of ribavirin on hamster and rat embryos. Teratology 1978, 17, 93–101. [Google Scholar] [CrossRef]
- Lilienblum, W.; Dekant, W.; Foth, H.; Gebel, T.; Hengstler, J.G.; Kahl, R.; Kramer, P.-J.; Schweinfurth, H.; Wollin, K.-M. Alternative methods to safety studies in experimental animals: Role in the risk assessment of chemicals under the new European Chemicals Legislation (REACH). Arch. Toxicol. 2008, 82, 211–236. [Google Scholar] [CrossRef]
- United States Congress. Frank R. Lautenberg Chemical Safety for the 21st Century Act to Modernize the Toxic Substances Control Act (TSCA); H.R. 2576; Public Law No: 114–182; United States Congress: Washington, DC, USA, 2016.
- Alves-Pimenta, S.; Colaco, B.; Oliveira, P.A.; Venancio, C. Development Features on the Selection of Animal Models for Teratogenic Testing. Methods Mol. Biol. 2024, 2753, 67–104. [Google Scholar] [CrossRef]
- Hunt, P.R.; Camacho, J.A.; Sprando, R.L. Caenorhabditis elegans for predictive toxicology. Curr. Opin. Toxicol. 2020, 23–24, 23–28. [Google Scholar] [CrossRef]
- Goldstein, B.; Nance, J. Caenorhabditis elegans Gastrulation: A Model for Understanding How Cells Polarize, Change Shape, and Journey Toward the Center of an Embryo. Genetics 2020, 214, 265–277. [Google Scholar] [CrossRef]
- Sulston, J.E.; Horvitz, H.R. Post-embryonic cell lineages of the nematode, Caenorhabditis elegans. Dev. Biol. 1977, 56, 110–156. [Google Scholar] [CrossRef]
- Shiraki, K.; Mishima, M.; Sato, N.; Imoto, Y.; Nishiwaki, K. Convenient screening of the reproductive toxicity of favipiravir and antiviral drugs in Caenorhabditis elegans. Heliyon 2024, 10, e35331. [Google Scholar] [CrossRef] [PubMed]
- Li, W.H.; Hsu, F.L.; Liu, J.T.; Liao, V.H. The ameliorative and toxic effects of selenite on Caenorhabditis elegans. Food Chem. Toxicol. 2011, 49, 812–819. [Google Scholar] [CrossRef]
- Killeen, A.; de Evsikova, C.M. Effects of sub-lethal teratogen exposure during larval development on egg laying and egg quality in adult Caenorhabditis elegans. F1000Research 2016, 5, 2925. [Google Scholar] [CrossRef] [PubMed]
- Davis, J.R.; Li, Y.; Rankin, C.H. Effects of developmental exposure to ethanol on Caenorhabditis elegans. Alcohol. Clin. Exp. Res. 2008, 32, 853–867. [Google Scholar] [CrossRef]
- Cui, Y.; McBride, S.J.; Boyd, W.A.; Alper, S.; Freedman, J.H. Toxicogenomic analysis of Caenorhabditis elegans reveals novel genes and pathways involved in the resistance to cadmium toxicity. Genome Biol. 2007, 8, R122. [Google Scholar] [CrossRef] [PubMed]
- Wu, Q.; He, K.; Liu, P.; Li, Y.; Wang, D. Association of oxidative stress with the formation of reproductive toxicity from mercury exposure on hermaphrodite nematode Caenorhabditis elegans. Environ. Toxicol. Pharmacol. 2011, 32, 175–184. [Google Scholar] [CrossRef]
- Wang, Z.; Xu, Z.; Li, X. Impacts of methamphetamine and ketamine on C. elegans’s physiological functions at environmentally relevant concentrations and eco-risk assessment in surface waters. J. Hazard. Mater. 2019, 363, 268–276. [Google Scholar] [CrossRef]
- Hunt, P.R.; Welch, B.; Camacho, J.; Salazar, J.K.; Fay, M.L.; Hamm, J.; Ceger, P.; Allen, D.; Fitzpatrick, S.C.; Yourick, J.; et al. Strengths and limitations of the worm development and activity test (wDAT) as a chemical screening tool for developmental hazards. Toxicol. Appl. Pharmacol. 2024, 492, 117108. [Google Scholar] [CrossRef]
- Hunt, P.R.; Welch, B.; Camacho, J.; Bushana, P.N.; Rand, H.; Sprando, R.L.; Ferguson, M. The worm Adult Activity Test (wAAT): A de novo mathematical model for detecting acute chemical effects in Caenorhabditis elegans. J. Appl. Toxicol. 2023, 43, 1899–1915. [Google Scholar] [CrossRef]
- Sprando, R.L.; Olejnik, N.; Cinar, H.N.; Ferguson, M. A method to rank order water soluble compounds according to their toxicity using Caenorhabditis elegans, a Complex Object Parametric Analyzer and Sorter, and axenic liquid media. Food Chem. Toxicol. 2009, 47, 722–728. [Google Scholar] [CrossRef]
- Hunt, P.R.; Olejnik, N.; Bailey, K.D.; Vaught, C.A.; Sprando, R.L. C. elegans Development and Activity Test detects mammalian developmental neurotoxins. Food Chem. Toxicol. 2018, 121, 583–592. [Google Scholar] [CrossRef]
- Bürkner, P.-C. brms: An R Package for Bayesian Multilevel Models Using Stan. J. Stat. Softw. 2017, 80, 1–28. [Google Scholar] [CrossRef]
- Lenth, R.V.; Banfai, B.; Bolker, B.; Buerkner, P.; Singmann, H. Emmeans: Estimated Marginal Means, aka Least-Squares Means. 2024. Available online: https://CRAN.R-project.org/package=emmeans (accessed on 15 May 2025).
- Seydoux, G.; Savage, C.; Greenwald, I. Isolation and characterization of mutations causing abnormal eversion of the vulva in Caenorhabditis elegans. Dev. Biol. 1993, 157, 423–436. [Google Scholar] [CrossRef]
- Brenner, S. The genetics of Caenorhabditis elegans. Genetics 1974, 77, 71–94. [Google Scholar] [CrossRef] [PubMed]
- Hodgkin, J.; Horvitz, H.R.; Brenner, S. Nondisjunction Mutants of the Nematode Caenorhabditis elegans. Genetics 1979, 91, 67–94. [Google Scholar] [CrossRef]
- Allard, P.; Kleinstreuer, N.C.; Knudsen, T.B.; Colaiacovo, M.P. A C. elegans screening platform for the rapid assessment of chemical disruption of germline function. Environ. Health Perspect. 2013, 121, 717–724. [Google Scholar] [CrossRef] [PubMed]
- Anderson, J.L.; Morran, L.T.; Phillips, P.C. Outcrossing and the maintenance of males within C. elegans populations. J. Hered. 2010, 101 (Suppl. S1), S62–S74. [Google Scholar] [CrossRef]
- Ludewig, A.H.; Izrayelit, Y.; Park, D.; Malik, R.U.; Schroeder, F.C. Pheromone sensing regulates Caenorhabditis elegans lifespan and stress resistance via the deacetylase SIR-2.1. Proc. Natl. Acad. Sci. USA 2013, 110, 5522–5527. [Google Scholar] [CrossRef] [PubMed]
- Gallo, M.; Riddle, D.L. Effects of a Caenorhabditis elegans dauer pheromone ascaroside on physiology and signal transduction pathways. J. Chem. Ecol. 2009, 35, 272–279. [Google Scholar] [CrossRef]
- Hunt, P.R.; Olejnik, N.; Sprando, R.L. Toxicity ranking of heavy metals with screening method using adult Caenorhabditis elegans and propidium iodide replicates toxicity ranking in rat. Food Chem. Toxicol. 2012, 50, 3280–3290. [Google Scholar] [CrossRef]
- Shuey, D.L.; Setzer, R.W.; Lau, C.; Zucker, R.M.; Rogers, J.M. Biological modeling of 5-fluorouracil developmental toxicity. Toxicology 1995, 102, 207–213. [Google Scholar] [CrossRef]
- Lau, C.; Mole, M.L.; Copeland, M.F.; Rogers, J.M.; Setzer, R.W. Toward a biologically based dose-response model for developmental toxicity of 5-fluorouracil in the rat: Acquisition of experimental data. Toxicol. Sci. 2001, 59, 37–48. [Google Scholar] [CrossRef]
- Dragojevic, T.; Zivkovic, E.; Diklic, M.; Ajtic, O.M.; Vukotic, M. Hydroxyurea inhibits proliferation and stimulates apoptosis through inducible nitric oxide synthase in erythroid cells. Biomed. Pharmacother. 2024, 181, 117723. [Google Scholar] [CrossRef] [PubMed]
- Nyström, K.; Waldenström, J.; Tang, K.W.; Lagging, M. Ribavirin: Pharmacology, Multiple Modes of Action and Possible Future Perspectives. Future Virol. 2019, 14, 153–160. [Google Scholar] [CrossRef]
- Noda, A. Morphogenesis-coupled DNA repair—In mammalian embryogenesis, morphogenesis and DNA double strand break (DSB) repair are carried out simultaneously to ensure normal development. J. Radiat. Res. 2024, 65, 416–419. [Google Scholar] [CrossRef]
- Vinson, R.K.; Hales, B.F. DNA repair during organogenesis. Mutat. Res. 2002, 509, 79–91. [Google Scholar] [CrossRef]
- Honnen, S. Caenorhabditis elegans as a powerful alternative model organism to promote research in genetic toxicology and biomedicine. Arch. Toxicol. 2017, 91, 2029–2044. [Google Scholar] [CrossRef] [PubMed]
- Blackwell, T.K.; Walker, A.K. Transcription mechanisms. In WormBook: The Online Review of C. elegans Biology; WormBook: Pasadena, CA, USA, 2006; pp. 1–16. Available online: https://pubmed.ncbi.nlm.nih.gov/18050436/ (accessed on 7 July 2025).
- Srinivasan, P.; Piano, F.; Shatkin, A.J. mRNA capping enzyme requirement for Caenorhabditis elegans viability. J. Biol. Chem. 2003, 278, 14168–14173. [Google Scholar] [CrossRef] [PubMed]
- Zakeri, Z.F.; Ahuja, H.S. Cell death/apoptosis: Normal, chemically induced, and teratogenic effect. Mutat. Res. 1997, 396, 149–161. [Google Scholar] [CrossRef]
- Lettre, G.; Hengartner, M.O. Developmental apoptosis in C. elegans: A complex CEDnario. Nat. Rev. Mol. Cell Biol. 2006, 7, 97–108. [Google Scholar] [CrossRef]
- van Gelder, M.M.; van Rooij, I.A.; Miller, R.K.; Zielhuis, G.A.; de Jong-van den Berg, L.T.; Roeleveld, N. Teratogenic mechanisms of medical drugs. Hum. Reprod. Update 2010, 16, 378–394. [Google Scholar] [CrossRef]
- Kleemann, G.A.; Murphy, C.T. The endocrine regulation of aging in Caenorhabditis elegans. Mol. Cell Endocrinol. 2009, 299, 51–57. [Google Scholar] [CrossRef] [PubMed]
- Kenis, S.; Istiban, M.N.; Van Damme, S.; Vandewyer, E.; Watteyne, J.; Schoofs, L.; Beets, I. Ancestral glycoprotein hormone-receptor pathway controls growth in C. elegans. Front. Endocrinol. 2023, 14, 1200407. [Google Scholar] [CrossRef] [PubMed]
- Jeong, J.; Kim, H.; Choi, J. In Silico Molecular Docking and In Vivo Validation with Caenorhabditis elegans to Discover Molecular Initiating Events in Adverse Outcome Pathway Framework: Case Study on Endocrine-Disrupting Chemicals with Estrogen and Androgen Receptors. Int. J. Mol. Sci. 2019, 20, 1209. [Google Scholar] [CrossRef] [PubMed]
- Custodia, N.; Won, S.J.; Novillo, A.; Wieland, M.; Li, C.; Callard, I.P. Caenorhabditis elegans as an environmental monitor using DNA microarray analysis. Ann. N.Y. Acad. Sci. 2001, 948, 32–42. [Google Scholar] [CrossRef]
- Allard, P.; Colaiacovo, M.P. Bisphenol A impairs the double-strand break repair machinery in the germline and causes chromosome abnormalities. Proc. Natl. Acad. Sci. USA 2010, 107, 20405–20410. [Google Scholar] [CrossRef]
- Camacho, J.; Truong, L.; Kurt, Z.; Chen, Y.W.; Allard, P. The Memory of Environmental Chemical Exposure in C. elegans Is Dependent on the Jumonji Demethylases jmjd-2 and jmjd-3/utx-1. Cell Rep. 2018, 23, 2392–2404. [Google Scholar] [CrossRef]
- Hoshi, H.; Kamata, Y.; Uemura, T. Effects of 17beta-estradiol, bisphenol A and tributyltin chloride on germ cells of Caenorhabditis elegans. J. Vet. Med. Sci. 2003, 65, 881–885. [Google Scholar] [CrossRef]
- Cheng, Z.; Tian, H.; Chu, H.; Wu, J.; Li, Y.; Wang, Y. The effect of tributyltin chloride on Caenorhabditis elegans germline is mediated by a conserved DNA damage checkpoint pathway. Toxicol. Lett. 2014, 225, 413–421. [Google Scholar] [CrossRef]
- Cao, X.; Wang, X.; Chen, H.; Li, H.; Liu, Y. Neurotoxicity of nonylphenol exposure on Caenorhabditis elegans induced by reactive oxidative species and disturbance synthesis of serotonin. Environ. Pollut. 2019, 244, 947–957. [Google Scholar] [CrossRef]
- Hartman, J.H.; Widmayer, S.J.; Bergemann, C.M.; King, D.E.; Meyer, J.N. Xenobiotic metabolism and transport in Caenorhabditis elegans. J. Toxicol. Environ. Health B Crit. Rev. 2021, 24, 51–94. [Google Scholar] [CrossRef]
- Czeizel, A.E.; Dudas, I.; Vereczkey, A.; Banhidy, F. Folate deficiency and folic acid supplementation: The prevention of neural-tube defects and congenital heart defects. Nutrients 2013, 5, 4760–4775. [Google Scholar] [CrossRef]
- Ortbauer, M.; Ripper, D.; Fuhrmann, T.; Lassi, M.; Auernigg-Haselmaier, S.; Stiegler, C.; Konig, J. Folate deficiency and over-supplementation causes impaired folate metabolism: Regulation and adaptation mechanisms in Caenorhabditis elegans. Mol. Nutr. Food Res. 2016, 60, 949–956. [Google Scholar] [CrossRef] [PubMed]
- Balamurugan, K.; Ashokkumar, B.; Moussaif, M.; Sze, J.Y.; Said, H.M. Cloning and functional characterization of a folate transporter from the nematode Caenorhabditis elegans. Am. J. Physiol. Cell Physiol. 2007, 293, C670–C681. [Google Scholar] [CrossRef] [PubMed]
- WormBase Version: WS295. 2025. Available online: http://www.wormbase.org (accessed on 3 March 2025).
- Sullivan-Brown, J.L.; Tandon, P.; Bird, K.E.; Dickinson, D.J.; Goldstein, B. Identifying Regulators of Morphogenesis Common to Vertebrate Neural Tube Closure and Caenorhabditis elegans Gastrulation. Genetics 2016, 202, 123–139. [Google Scholar] [CrossRef] [PubMed]
- Dsilva, P.; Pai, P.; Shetty, M.G.; Babitha, K.S. The role of histone deacetylases in embryonic development. Mol. Reprod. Dev. 2023, 90, 14–26. [Google Scholar] [CrossRef]
- Samson, M.; Jow, M.M.; Wong, C.C.; Fitzpatrick, C.; Chu, D.S. The specification and global reprogramming of histone epigenetic marks during gamete formation and early embryo development in C. elegans. PLoS Genet. 2014, 10, e1004588. [Google Scholar] [CrossRef]
- Milazzo, G.; Mercatelli, D.; Di Muzio, G.; Triboli, L.; De Rosa, P.; Perini, G.; Giorgi, F.M. Histone Deacetylases (HDACs): Evolution, Specificity, Role in Transcriptional Complexes, and Pharmacological Actionability. Genes 2020, 11, 556. [Google Scholar] [CrossRef]
- Dufourcq, P.; Victor, M.; Gay, F.; Calvo, D.; Hodgkin, J.; Shi, Y. Functional requirement for histone deacetylase 1 in Caenorhabditis elegans gonadogenesis. Mol. Cell Biol. 2002, 22, 3024–3034. [Google Scholar] [CrossRef]
- Zinovyeva, A.Y.; Graham, S.M.; Cloud, V.J.; Forrester, W.C. The C. elegans histone deacetylase HDA-1 is required for cell migration and axon pathfinding. Dev. Biol. 2006, 289, 229–242. [Google Scholar] [CrossRef]
- Unno, T.; Takatsuka, H.; Ohnishi, Y.; Ito, M.; Kubota, Y. A class I histone deacetylase HDA-2 is essential for embryonic development and size regulation of fertilized eggs in Caenorhabditis elegans. Genes Genom. 2022, 44, 343–357. [Google Scholar] [CrossRef] [PubMed]
- Cimmino, I.; Fiory, F.; Perruolo, G.; Miele, C.; Beguinot, F.; Formisano, P.; Oriente, F. Potential Mechanisms of Bisphenol A (BPA) Contributing to Human Disease. Int. J. Mol. Sci. 2020, 21, 5761. [Google Scholar] [CrossRef]
- Goodman, F.R. Limb malformations and the human HOX genes. Am. J. Med. Genet. 2002, 112, 256–265. [Google Scholar] [CrossRef]
- Kratsios, P.; Hobert, O. Almost 40 years of studying homeobox genes in C. elegans. Development 2024, 151, 1–8. [Google Scholar] [CrossRef]
- Smith, J.J.; Kratsios, P. Hox gene functions in the C. elegans nervous system: From early patterning to maintenance of neuronal identity. Semin. Cell Dev. Biol. 2024, 152–153, 58–69. [Google Scholar] [CrossRef]
- Shakhova, O.; Sommer, L. Neural crest-derived stem cells. In StemBook [Internet]; Harvard Stem Cell Institute: Cambridge, MA, USA, 2010. [Google Scholar] [CrossRef]
- Sauka-Spengler, T.; Meulemans, D.; Jones, M.; Bronner-Fraser, M. Ancient evolutionary origin of the neural crest gene regulatory network. Dev. Cell 2007, 13, 405–420. [Google Scholar] [CrossRef] [PubMed]
- DeGroot, M.S.; Shi, H.; Eastman, A.; McKillop, A.N.; Liu, J. The Caenorhabditis elegans SMOC-1 Protein Acts Cell Nonautonomously To Promote Bone Morphogenetic Protein Signaling. Genetics 2019, 211, 683–702. [Google Scholar] [CrossRef]
- Clark, J.F.; Ciccarelli, E.J.; Kayastha, P.; Ranepura, G.; Savage-Dunn, C. BMP pathway regulation of insulin signaling components promotes lipid storage in Caenorhabditis elegans. PLoS Genet. 2021, 17, e1009836. [Google Scholar] [CrossRef]
- Gibney, T.V.; Pani, A.M. FGF diffusion is required for directed migration of postembryonic muscle progenitors in C. elegans. bioRxiv 2025, 1–28. [Google Scholar] [CrossRef]
- Recouvreux, P.; Pai, P.; Dunsing, V.; Torro, R.; Lenne, P.F. Transfer of polarity information via diffusion of Wnt ligands in C. elegans embryos. Curr. Biol. 2024, 34, 1853–1865 e6. [Google Scholar] [CrossRef]
- So, S.; Asakawa, M.; Sawa, H. Distinct functions of three Wnt proteins control mirror-symmetric organogenesis in the C. elegans gonad. eLife 2024, 13, 1–19. [Google Scholar] [CrossRef]
- Zinovyeva, A.Y.; Yamamoto, Y.; Sawa, H.; Forrester, W.C. Complex network of Wnt signaling regulates neuronal migrations during Caenorhabditis elegans development. Genetics 2008, 179, 1357–1371. [Google Scholar] [CrossRef]
- Kano, T.; Brockie, P.J.; Sassa, T.; Fujimoto, H.; Maricq, A.V. Memory in Caenorhabditis elegans is mediated by NMDA-type ionotropic glutamate receptors. Curr. Biol. 2008, 18, 1010–1015. [Google Scholar] [CrossRef] [PubMed]
- Nagele, P.; Metz, L.B.; Crowder, C.M. Nitrous oxide (N(2)O) requires the N-methyl-D-aspartate receptor for its action in Caenorhabditis elegans. Proc. Natl. Acad. Sci. USA 2004, 101, 8791–8796. [Google Scholar] [CrossRef] [PubMed]
- Brockie, P.J.; Mellem, J.E.; Hills, T.; Madsen, D.M.; Maricq, A.V. The C. elegans glutamate receptor subunit NMR-1 is required for slow NMDA-activated currents that regulate reversal frequency during locomotion. Neuron 2001, 31, 617–630. [Google Scholar] [CrossRef] [PubMed]
- Gazave, E.; Lapebie, P.; Richards, G.S.; Brunet, F.; Renard, E. Origin and evolution of the Notch signalling pathway: An overview from eukaryotic genomes. BMC Evol. Biol. 2009, 9, 249. [Google Scholar] [CrossRef]
- Sachan, N.; Sharma, V.; Mutsuddi, M.; Mukherjee, A. Notch signalling: Multifaceted role in development and disease. FEBS J. 2024, 291, 3030–3059. [Google Scholar] [CrossRef]
- Pushpa, K.; Dagar, S.; Kumar, H.; Pathak, D.; Mylavarapu, S.V.S. The exocyst complex regulates C. elegans germline stem cell proliferation by controlling membrane Notch levels. Development 2021, 148, 1–17. [Google Scholar] [CrossRef]
- Jarriault, S.; Schwab, Y.; Greenwald, I. A Caenorhabditis elegans model for epithelial-neuronal transdifferentiation. Proc. Natl. Acad. Sci. USA 2008, 105, 3790–3795. [Google Scholar] [CrossRef]
- Rashid, A.; Tevlin, M.; Lu, Y.; Shaham, S. A developmental pathway for epithelial-to-motoneuron transformation in C. elegans. Cell Rep. 2022, 40, 111414. [Google Scholar] [CrossRef]
- Kimble, J.; Crittenden, S.; Lambie, E.; Kodoyianni, V.; Mango, S.; Troemel, E. Regulation of induction by GLP1, and localized cell surface receptor in Caenorhabditis elegans. Cold Spring Harb. Symp. Quant. Biol. 1992, 57, 401–407. [Google Scholar] [CrossRef] [PubMed]
- Wells, P.G.; Bhuller, Y.; Chen, C.S.; Jeng, W.; Wong, A.W. Molecular and biochemical mechanisms in teratogenesis involving reactive oxygen species. Toxicol. Appl. Pharmacol. 2005, 207 (Suppl. S2), 354–366. [Google Scholar] [CrossRef]
- Zeitoun-Ghandour, S.; Leszczyszyn, O.I.; Blindauer, C.A.; Geier, F.M.; Bundy, J.G.; Sturzenbaum, S.R. C. elegans metallothioneins: Response to and defence against ROS toxicity. Mol. Biosyst. 2011, 7, 2397–2406. [Google Scholar] [CrossRef] [PubMed]
- Johnston, J.; Iser, W.B.; Chow, D.K.; Goldberg, I.G.; Wolkow, C.A. Quantitative image analysis reveals distinct structural transitions during aging in Caenorhabditis elegans tissues. PLoS ONE 2008, 3, e2821. [Google Scholar] [CrossRef] [PubMed]
- Oliveira, R.P.; Porter Abate, J.; Dilks, K.; Landis, J.; Ashraf, J.; Murphy, C.T.; Blackwell, T.K. Condition-adapted stress and longevity gene regulation by Caenorhabditis elegans SKN-1/Nrf. Aging Cell 2009, 8, 524–541. [Google Scholar] [CrossRef]
- Hoogewijs, D.; Houthoofd, K.; Matthijssens, F.; Vandesompele, J.; Vanfleteren, J.R. Selection and validation of a set of reliable reference genes for quantitative sod gene expression analysis in C. elegans. BMC Mol. Biol. 2008, 9, 9. [Google Scholar] [CrossRef]
- Sese, B.T.; Grant, A.; Reid, B.J. Toxicity of polycyclic aromatic hydrocarbons to the nematode Caenorhabditis elegans. J. Toxicol. Environ. Health A 2009, 72, 1168–1180. [Google Scholar] [CrossRef]
- Bukowska, B.; Mokra, K.; Michalowicz, J. Benzo[a]pyrene-Environmental Occurrence, Human Exposure, and Mechanisms of Toxicity. Int. J. Mol. Sci. 2022, 23, 6348. [Google Scholar] [CrossRef]
- Schutz, S.; Le Moullec, J.M.; Corvol, P.; Gasc, J.M. Early expression of all the components of the renin-angiotensin-system in human development. Am. J. Pathol. 1996, 149, 2067–2079. [Google Scholar]
- Egan, B.M.; Scharf, A.; Pohl, F.; Kornfeld, K. Control of aging by the renin-angiotensin system: A review of C. elegans, Drosophila, and mammals. Front. Pharmacol. 2022, 13, 938650. [Google Scholar] [CrossRef]
- Brooks, D.R.; Appleford, P.J.; Murray, L.; Isaac, R.E. An essential role in molting and morphogenesis of Caenorhabditis elegans for ACN-1, a novel member of the angiotensin-converting enzyme family that lacks a metallopeptidase active site. J. Biol. Chem. 2003, 278, 52340–52346. [Google Scholar] [CrossRef]
- Egan, B.M.; Pohl, F.; Anderson, X.; Williams, S.C.; Kornfeld, K. The ACE inhibitor captopril inhibits ACN-1 to control dauer formation and aging. Development 2024, 151, 1–16. [Google Scholar] [CrossRef] [PubMed]
- Kumar, S.; Dietrich, N.; Kornfeld, K. Angiotensin Converting Enzyme (ACE) Inhibitor Extends Caenorhabditis elegans Life Span. PLoS Genet. 2016, 12, e1005866. [Google Scholar] [CrossRef]
- Knudsen, T.B.; Kleinstreuer, N.C. Disruption of embryonic vascular development in predictive toxicology. Birth Defects Res. C Embryo Today 2011, 93, 312–323. [Google Scholar] [CrossRef]
- Vimalraj, S.; Sumantran, V.N.; Chatterjee, S. MicroRNAs: Impaired vasculogenesis in metal induced teratogenicity. Reprod. Toxicol. 2017, 70, 30–48. [Google Scholar] [CrossRef]
- Wolf, A.K.; Adams-Phillips, L.C.; Adams, A.N.D.; Erives, A.J.; Phillips, B.T. Nuclear localization and transactivation of SYS-1/beta-catenin is the result of serial gene duplications and subfunctionalizations. Cells Dev. 2025, 182, 204013. [Google Scholar] [CrossRef] [PubMed]
- Gumienny, T.L.; Savage-Dunn, C. TGF-beta signaling in C. elegans. WormBook 2013, 10, 1–34. [Google Scholar] [CrossRef]
- Dineen, A.; Gaudet, J. TGF-beta signaling can act from multiple tissues to regulate C. elegans Body size. BMC Dev. Biol. 2014, 14, 43. [Google Scholar] [CrossRef]
- Tarsitano, M.; De Falco, S.; Colonna, V.; McGhee, J.D.; Persico, M.G. The C. elegans pvf-1 gene encodes a PDGF/VEGF-like factor able to bind mammalian VEGF receptors and to induce angiogenesis. FASEB J. 2006, 20, 227–233. [Google Scholar] [CrossRef]
- Saharinen, P.; Jeltsch, M.; Santoyo, M.M.; Leppänen, V.-M.; Alitalo, K. The TIE Receptor Family. In Receptor Tyrosine Kinases: Family and Subfamilies; Wheeler, D.L., Yarden, Y., Eds.; Humana Press: Totowa, NJ, USA, 2015; pp. 743–775. [Google Scholar] [CrossRef]
- Srinivasan, S.; Ghosh, C.; Das, S.; Thakare, A.; Subramani, S. Identification of a TNF-TNFR-like system in malaria vectors (Anopheles stephensi) likely to influence Plasmodium resistance. Sci. Rep. 2022, 12, 19079. [Google Scholar] [CrossRef]
- Kim, S.; Park, D.H.; Shim, J. Thymidylate synthase and dihydropyrimidine dehydrogenase levels are associated with response to 5-fluorouracil in Caenorhabditis elegans. Mol. Cells 2008, 26, 344–349. [Google Scholar] [CrossRef]
- Kumar, S.; Aninat, C.; Michaux, G.; Morel, F. Anticancer drug 5-fluorouracil induces reproductive and developmental defects in Caenorhabditis elegans. Reprod. Toxicol. 2010, 29, 415–420. [Google Scholar] [CrossRef] [PubMed]
- Almeida, J.Z.; Lima, L.F.; Vieira, L.A.; Maside, C.; Oria, R.B. 5-Fluorouracil disrupts ovarian preantral follicles in young C57BL6J mice. Cancer Chemother. Pharmacol. 2021, 87, 567–578. [Google Scholar] [CrossRef] [PubMed]
- Naren, G.; Wang, L.; Zhang, X.; Cheng, L.; Nashun, B. The reversible reproductive toxicity of 5-fluorouracil in mice. Reprod. Toxicol. 2021, 101, 1–8. [Google Scholar] [CrossRef]
- Lambouras, M.; Liew, S.H.; Horvay, K.; Abud, H.E.; Stringer, J.M.; Hutt, K.J. Examination of the ovotoxicity of 5-fluorouracil in mice. J. Assist. Reprod. Genet. 2018, 35, 1053–1060. [Google Scholar] [CrossRef]
- Stringer, J.M.; Swindells, E.O.K.; Zerafa, N.; Liew, S.H.; Hutt, K.J. Multidose 5-Fluorouracil is Highly Toxic to Growing Ovarian Follicles in Mice. Toxicol. Sci. 2018, 166, 97–107. [Google Scholar] [CrossRef] [PubMed]
- Naren, G.; Guo, J.; Bai, Q.; Fan, N.; Nashun, B. Reproductive and developmental toxicities of 5-fluorouracil in model organisms and humans. Expert. Rev. Mol. Med. 2022, 24, e9. [Google Scholar] [CrossRef]
- Pirzaman, A.T.; Ebrahimi, P.; Doostmohamadian, S.; Karim, B.; Kazemi, S. 5-Flourouracil-induced toxicity in both male and female reproductive systems: A narrative review. Hum. Exp. Toxicol. 2023, 42, 9603271231217988. [Google Scholar] [CrossRef]
- Kuwagata, M.; Takashima, H.; Nagao, T. A comparison of the in vivo and in vitro response of rat embryos to 5-fluorouracil. J. Vet. Med. Sci. 1998, 60, 93–99. [Google Scholar] [CrossRef]
- Dagg, C.P.; Doerr, A.; Offutt, C. Incorporation of 5-fluorouracil-2-C-14 by mouse embryos. Biol. Neonat. 1966, 10, 32–46. [Google Scholar] [CrossRef]
- Tsujii, K.; Hattori, T.; Imaoka, A.; Akiyoshi, T.; Ohtani, H. 5-Fluororacil-Induced Gastrointestinal Damage Impairs the Absorption and Anticoagulant Effects of Dabigatran Etexilate. J. Pharm. Sci. 2018, 107, 1430–1433. [Google Scholar] [CrossRef] [PubMed]
- Zhang, S.; Liu, Y.; Xiang, D.; Yang, J.; Liu, D.; Ren, X.; Zhang, C. Assessment of dose-response relationship of 5-fluorouracil to murine intestinal injury. Biomed. Pharmacother. 2018, 106, 910–916. [Google Scholar] [CrossRef] [PubMed]
- Chen, H.; Xu, C.; Zhang, F.; Liu, Y.; Guo, Y.; Yao, Q. The gut microbiota attenuates muscle wasting by regulating energy metabolism in chemotherapy-induced malnutrition rats. Cancer Chemother. Pharmacol. 2020, 85, 1049–1062. [Google Scholar] [CrossRef]
- Liebelt, E.L.; Balk, S.J.; Faber, W.; Fisher, J.W.; Stanek, E.J. NTP-CERHR expert panel report on the reproductive and developmental toxicity of hydroxyurea. Birth Defects Res. B Dev. Reprod. Toxicol. 2007, 80, 259–366. [Google Scholar] [CrossRef]
- Diesch-Furlanetto, T.; Sanchez, C.; Atkinson, A.; Pondarre, C.; Poirot, C. Impact of hydroxyurea on follicle density in patients with sickle cell disease. Blood Adv. 2024, 8, 5227–5235. [Google Scholar] [CrossRef]
- Morton, D.; Reed, L.; Huang, W.; Marcek, J.M.; Tomlinson, L. Toxicity of hydroxyurea in rats and dogs. Toxicol. Pathol. 2015, 43, 498–512. [Google Scholar] [CrossRef] [PubMed]
- Butcher, R.E.; Scott, W.J.; Kazmaier, K.; Ritter, E.J. Postnatal effects in rats of prenatal treatment with hydroxyurea. Teratology 1973, 7, 161–165. [Google Scholar] [CrossRef]
- Vorhees, C.V.; Butcher, R.E.; Brunner, R.L.; Sobotka, T.J. A developmental test battery for neurobehavioral toxicity in rats: A preliminary analysis using monosodium glutamate calcium carrageenan, and hydroxyurea. Toxicol. Appl. Pharmacol. 1979, 50, 267–282. [Google Scholar] [CrossRef]
- Johnson, E.M. The Effects of Ribavirin on Development and Reproduction: A Critical Review of Published and Unpublished Studies in Experimental Animals. J. Am. Coll. Toxicol. 1990, 9, 551–561. [Google Scholar] [CrossRef]
- Narayana, K.; D’Souza, U.J.; Seetharama Rao, K.P. Ribavirin-induced sperm shape abnormalities in Wistar rat. Mutat. Res. 2002, 513, 193–196. [Google Scholar] [CrossRef]
- Moeen-Ud-Din, H.; Shahbaz, S.; Shaheen, S. Histological effects of ribavirin on adult ovary of albino rat. Pak. J. Med. Health Sci. 2016, 10, 855–858. Available online: https://pjmhsonline.com/2016/july_sep/pdf/856.pdf (accessed on 7 July 2025).
- Kochhar, D.M.; Penner, J.D.; Knudsen, T.B. Embryotoxic, teratogenic, and metabolic effects of ribavirin in mice. Toxicol. Appl. Pharmacol. 1980, 52, 99–112. [Google Scholar] [CrossRef] [PubMed]
- Hoffmann, S.H.; Staffa, J.A.; Smith, R.A.; Craig, D.K.; Parker, G. Inhalation toxicity of ribavirin in suckling ferrets. J. Appl. Toxicol. 1987, 7, 343–351. [Google Scholar] [CrossRef] [PubMed]
- Narayana, K.; D’Souza, U.J.A.; Narayan, P.; Kumar, G. The antiviral drug ribavirin reversibly affects the reproductive parameters in the male Wistar rat. Folia Morphol. 2005, 64, 65–71, ISSN 0015–5659. [Google Scholar]
- Hrushesky, W.J.; Vyzula, R.; Wood, P.A. Fertility maintenance and 5-fluorouracil timing within the mammalian fertility cycle. Reprod. Toxicol. 1999, 13, 413–420. [Google Scholar] [CrossRef]
All Controls | Continuous Exposures | Early-Only Exposures | |||||||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
5FU | HU | RV | 5FU | HU | RV | ||||||||||||||
µg/mL | 0 | 3 | 4 | 5 | 60 | 70 | 80 | 5 | 10 | 20 | 3 | 4 | 5 | 60 | 70 | 80 | 5 | 10 | 20 |
# assessed | 9150 | 1379 | 1314 | 1334 | 1557 | 1500 | 1566 | 1640 | 1247 | 1305 | 1357 | 1819 | 1692 | 1749 | 1604 | 1620 | 1779 | 1247 | 1305 |
% norm. | 0.9835 | 0.782 * | 0.524 * @ | 0.343 * @ | 0.746 * | 0.430 * @ | 0.152 * @ | 0.069 * | 0 * | 0.010 * | 0.846 | 0.695 * # | 0.650 * @ # | 0.903 * # | 0.802 * # | 0.672 * @ # | 0.966 # | 0.942 * # | 0.756 * @ # |
>2eA | 0.6149 | 0.624 | 0.414 * | 0.254 * @ | 0.385 * | 0.149 * @ | 0.029 * @ | 0.005 * | 0 * | 0 * | 0.623 | 0.544 | 0.440 * | 0.568 # | 0.532 # | 0.423 * @ # | 0.543 # | 0.520 # | 0.388 * # |
1-2eA | 0.3499 | 0.096 * | 0.062 * | 0.064 * | 0.305 | 0.226 * @ | 0.079 * @ | 0.051 * | 0 * | 0 * | 0.215 # | 0.136 | 0.171 # | 0.297 | 0.248 | 0.214 * # | 0.382 # | 0.341 # | 0.295 # |
yA | 0.0163 | 0.014 | 0.005 | 0.005 | 0.049 | 0.041 | 0.023 | 0.009 | 0 | 0 | 0.006 | 0.002 | 0.013 | 0.020 | 0.015 | 0.025 | 0.037 | 0.078 | 0.055 |
L4 | 0.0021 | 0.043 | 0.037 | 0.017 | 0.006 | 0.011 | 0.018 | 0.004 | 0 | 0.010 | 0.002 | 0.011 | 0.021 | 0.011 | 0.005 | 0.009 | 0.003 | 0.003 | 0.016 * @ # |
L3 | 0.0003 | 0.005 | 0.005 | 0.003 | 0 | 0.002 | 0.003 | 0 | 0 | 0 | 0 | 0.001 | 0.005 | 0.006 | 0.002 | 0.002 | 0.001 | 0 | 0.002 |
male | 0.0009 | 0.002 | 0 | 0 | 0 | 0.001 | 0 | 0 | 0.001 | 0 | 0.001 | 0.001 | 0.001 | 0 | 0.001 | 0.001 | 0 | 0.001 | 0.002 |
abn.A | 0.0061 | 0.045 | 0.123 * @ | 0.107 * | 0.207 * | 0.491 * @ | 0.681 * @ | 0.386 * | 0.324 * | 0.328 * | 0.062 | 0.113 | 0.133 * @ | 0.059 # | 0.124 * # | 0.185 * @ # | 0.017 # | 0.032 # | 0.154 * @ # |
abn.J | 0.0015 | 0.127 * | 0.314 * @ | 0.530 * @ | 0.019 * | 0.031 * | 0.082 * | 0.021 | 0.034 | 0.173 * @ | 0.022 | 0.038 # | 0.060 # | 0.006 | 0.012 | 0.027 # | 0.003 | 0.002 | 0.015 # |
NGA | 0.0001 | 0 | 0 | 0 | 0.003 | 0.005 | 0.012 | 0.495 * | 0.515 * | 0.346 * @ | 0 | 0 | 0 | 0.004 | 0.009 | 0.017 | 0.001 # | 0.009 # | 0.035 # |
NGA&PV | 0.0000 | 0 | 0 | 0 | 0.001 | 0 | 0 | 0.007 | 0.078 * @ | 0.074 * | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 # | 0.002 # |
prolapse | 0.0023 | 0.037 | 0.034 | 0.015 | 0.006 | 0.017 | 0.043 * @ | 0.003 | 0.005 | 0.001 | 0.054 * | 0.118 * @ # | 0.126 * # | 0.012 | 0.027 * @ # | 0.074 * @ # | 0.003 | 0.005 | 0.004 |
sick | 0.0026 | 0.001 * | 0.001 * | 0 * | 0.006 | 0.004 | 0.004 | 0.001 | 0.001 | 0.001 | 0.002 | 0.008 * @ # | 0.004 * # | 0.009 | 0.011 | 0.008 | 0.007 # | 0.004 @ | 0.001 @ |
abn.V | 0.0009 | 0.004 | 0.003 | 0.003 | 0.008 * | 0.017 * @ | 0.022 * | 0.002 | 0.005 | 0.005 | 0.013 * | 0.021 * # | 0.024 * @ # | 0.005 | 0.011 * @ | 0.014 * | 0.001 | 0.003 | 0.015 * @ # |
>1 V | 0.0001 | 0 | 0 | 0 | 0 | 0 | 0 | 0.005 | 0.024 * @ | 0.044 * @ | 0 | 0 | 0 | 0.001 | 0 | 0 | 0 | 0 # | 0.009 # |
dauer | 0.0014 | 0.001 | 0 | 0 | 0.001 | 0.002 | 0 * | 0.007 | 0.012 * @ | 0.013 * @ | 0 | 0.001 | 0 | 0.001 | 0 | 0 | 0.001 | 0.002 # | 0.004 # |
short | 0.0003 | 0.001 | 0 | 0.001 | 0.003 | 0 | 0.001 | 0.002 | 0.001 | 0.002 | 0.002 | 0.005 | 0 | 0.001 | 0.002 | 0.001 | 0.001 | 0 | 0.001 |
truncated | 0.0001 | 0.000 | 0.001 | 0.001 | 0.001 | 0 | 0.001 | 0 | 0.001 | 0 | 0 | 0 | 0 | 0.001 | 0 | 0.001 | 0 | 0 | 0 |
lumpy | 0.0001 | 0 | 0 | 0 | 0 | 0.001 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0.001 |
abn.Head | 0.0000 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0.001 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0.001 | 0 |
abn.Tail | 0.0000 | 0.001 | 0.001 | 0 | 0 | 0.001 | 0.001 | 0.001 | 0 | 0.001 | 0 | 0.002 | 0.001 | 0 | 0.001 | 0.001 | 0 | 0 | 0 |
F/M | 0.0000 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0.001 |
Pathway | Function | Conserved/Concordant/Analogous | Not Conserved |
---|---|---|---|
Endocrine Signaling | - Endocrine hormones act as chemical messengers to control development, growth, metabolism, and reproduction. | - Molecular features of signaling by IGF-1, gonadotropin-releasing hormone, thyrotropin-releasing hormone, and thyrostimulin are conserved and regulate growth in mammals and C. elegans [45,46]; - Mammalian endocrine disruptors 4-cumylphenol and bisphenol A (BPA) reduce C. elegans brood size [47]; - Human and C. elegans homologs of estrogen receptor alpha (ERα/NHR-14) and androgen receptor (AR/NHR-69) utilize similar molecular docking configurations and bind to 4-cumylphenol and BPA [47]; - Exogenous estrogen, progesterone, and testosterone alter C. elegans expression of genes for nutrient storage, oxidative stress, and P450 metabolism [48]; - BPA increases C. elegans’ sterility and embryonic lethality via impaired chromosome synapsis, disruption of meiotic DNA repair, and alteration of germline histone modification [49,50]; - C. elegans adult germ cell number is increased by developmental exposure to estradiol and BPA but decreased by endocrine disruptor tributyltin [51]; - Tributyltin damages DNA, inhibits germ cell proliferation, and activates conserved apoptotic mediators in C. elegans [52]; - Endocrine disruptor nonylphenol induces C. elegans behavior changes, oxidative damage, and suppressed expression of genes involved in serotonin synthesis [53]. | - Nematodes do not have pituitary, thyroid, or adrenal glands; - Some nuclear hormone receptor gene groups with mammalian endocrine function do not have C. elegans homologs, including NR1A thyroid hormone receptors, NR3A estrogen receptors, NR3C 3-ketosteroid receptors, and the progesterone receptor [54]. |
Folate and Neural Tube Formation | - Folate deficiency in humans is associated with neural tube and heart defects [55]; - Folate is an essential nutrient for all eucaryotes, used in DNA synthesis and biomolecule methylation [56]. | - The intestinal folate uptake system in C. elegans and humans is similar, with the C. elegans genome coding for homologs of human folate hydrolase 1 (FOLH1) and multiple human folate transporters and carriers [57,58]; - Expression of the C. elegans ortholog of human reduced folate carrier SLC19A1 (RFC1) is higher in C. elegans juveniles than adults and responsive to folate levels in the diet [57]; - Developmental dietary folate deficiency in C. elegans results in protruding vulva, underdeveloped gonad arms, and DNA fragmentation and aneuploidy in meiotic cells [56]; - Vertebrate neural tube closure and C. elegans gastrulation are regulated by conserved genes that control tissue-specific internalization of surface cells, actomyosin-driven constriction of specific regions, and the establishment and maintenance of adhesions between specific cells [10,59]. | - C. elegans do not form a neural tube. |
Histone Deacetylation | - Histone modification regulates transcriptional activity and thereby plays important roles in embryogenesis [60]. | - Humans and C. elegans use conserved histone deacetylases (HDACs) to reprogram epigenetic information in gametes [61,62]; - C. elegans histone deacetylases 1 and 2 (hda-1 and hda-2) are essential for embryonic viability, and different mutations in hda-1 can result in specific defects in gonadogenesis and neuronal migration [63,64,65]; - BPA exerts adverse effects on reproductive function in mammals and C. elegans via histone modification [50,66]. | - The C. elegans genome does not code for a homolog of human HDAC11, a Class IV HDAC [62]. |
HOX Gene Cluster Expression, Spatial and Temporal | - In vertebrates, HOX genes control development of the central nervous system, skeleton, gastrointestinal tract, reproductive organs, and limbs [67]. | - Conserved Hox gene clusters control embryonic body patterning via controlled spatial and temporal expression in vertebrates and nematodes [68]. - C. elegans Hox gene expression controls progenitor cell tissue specification, neuronal cell survival, neuronal migration, and synapse formation consistent with their neural patterning roles in mammals [69]; - NOTE: some aspects of C. elegans Hox gene controlled developmental body patterning, e.g., gonadogenesis, occur after hatching [11,69]. | - C. elegans lack a skeletal system. - Only four of the seven core Hox orthology groups have C. elegans homologs [68]. |
Neural Crest Formation | - The neural crest is a transient structure in vertebrate development, comprising migratory, multipotent cells that give rise to a variety of cell and tissue types, and plays a crucial role in brain development [70]. | - The vertebrate embryonic neural crest is induced and controlled by signaling pathways, including BMP (Bone Morphogenetic Protein), FGFs (Fibroblast Growth Factors), Notch, and Wnt [71]; - Conserved C. elegans BMP pathway components regulate developmental processes, including body size, male tail development, and mesoderm patterning, as well as lipid homeostasis via conserved insulin-like growth factor 1 (IGF-1) signaling [72,73]; - Developmental migration of M, the C. elegans mesoblast progenitor cell, and its descendants relies on the function of FGF and FGF receptor homologs [74]; - C. elegans Wnt signaling controls embryonic cell polarity for anteroposterior axis formation, neuronal cell development and migration, and gonadal progenitor cell migration and symmetry [75,76,77]; - Homologs of Hox genes initially identified from studies of C. elegans genes essential for neuronal migration were later found to also be necessary for the migration of neural crest cells in vertebrates [69]. | - C. elegans has a simple neural ring around the pharynx rather than a complex brain with lobes and a blood–brain barrier; - C. elegans does not form a neural crest during development. |
NMDAR Signaling | - NMDAR signaling in mammals regulates neuronal migration, maturation, and synaptogenesis [44]. | - C. elegans NMDAR subunit homologues NMR-1 and NMR-2 regulate memory retention, forward and backward movement, and foraging behavior [58,78]; - NMDAR antagonist N2O alters C. elegans locomotion in an nmr-1-dependent manner [79]. | - C. elegans nmr-1 mutants are viable and exhibit no gross developmental defects [80]. |
Notch Signaling | - Notch signaling controls many aspects of metazoan morphogenesis by controlling cell identity determination, proliferation, differentiation, and apoptosis [81]. | - In metazoans, the heterodimeric Notch receptor interacts with Delta ligands (Jagged in mammals, LAG-2 in C. elegans) at the plasma membrane [82]; - Conserved elements of Notch signaling control C. elegans embryonic tissue specification and germline stem cell proliferation, as well as motor neuron transdifferentiation and migration [83,84,85,86]; - In the mammalian ovary and the C. elegans germline, Notch signaling plays important roles in stem cell maintenance [82,83]; - The exocyst complex, which regulates vesicle fusion to the plasma membrane, biochemically interacts with Par5 and Notch in C. elegans and human cells [83]. | - In vertebrates, Notch signaling controls the morphogenesis of tissues and structures that are not present in C. elegans. |
Oxidative Stress | - Reactive oxygen species (ROS) can play a role in teratogenesis via altered signal transduction and damage to DNA and other macromolecules [87]. | - Antioxidant enzymes are highly conserved between humans and C. elegans, and exogenous ROS reduce C. elegans growth [88,89]; - Adult C. elegans’ ROS exposure induces robust antioxidant gene expression controlled by conserved transcription factors [90]; - The gene expression response to oxidizers is not as robust in C. elegans juveniles as it is in adults [91], suggesting possible greater ROS sensitivity during development; - Mercury-induced malformations of C. elegans reproductive structures are ameliorated by pre-treatment with vitamin E and exacerbated by pre-treatment with paraquat [17]; - Ketamine and methamphetamine are ROS inducers associated with developmental malformations in both mammals and C. elegans [18,87]; - ROS inducer benzo[a]pyrene adversely affects growth and reproductive endpoints in C. elegans and mammals [92,93]. | |
Renin–Angiotensin System | - The mammalian renin–angiotensin system regulates vascular resistance and electrolyte balance and plays important roles in human embryonic growth, differentiation, and organogenesis [94]. | - In worms and humans, angiotensin-converting enzyme (ACE) plays multiple roles in embryonic growth, differentiation, and organogenesis, as well as adult longevity [95]; - C. elegans’ ACE homolog acn-1 function is required for juvenile developmental stage progression and adult morphogenesis [96]; - Captopril is an ACE inhibitor, and C. elegans’ developmental exposure to captopril induces larval arrest [97]; - C. elegans acn-1 function is required for captopril-induced increases in C. elegans healthspan and lifespan [98]. | - While major portions of the ACE gene and its functions in organismal development are conserved, angiotensin biosynthesis and signaling are not present in nematodes [95]. |
Vasculogenesis and Angiogenesis | - In mammalian embryos, endothelial cells (ECs) assemble into blood vessel networks via vasculogenesis followed by angiogenesis [99]. | - Signals for mammalian vascular development and angiogenesis include angiopoietins, β-catenin, and matrix metalloproteases including MMP2 and MMP9, TGF-β, TNF-α, Notch, and vascular endothelial growth factor VEGF-A [99,100]; - The roles of β-catenins in mediating cell adhesion via E-cadherin and in activating canonical Wnt signaling are conserved in mammals and C. elegans [101]; - C. elegans genes zmp-4, K03B8.6, W01F3.2, and Y50D7A.13 are homologs of human MMP2 and MMP9 and are predicted to have metalloendopeptidase activity [58]; - TGF-β signaling pathways are highly conserved at the molecular and functional level, playing critical roles in determining body size and germline maintenance in C. elegans and embryonic body patterning and cell specification in mammals [102,103]; - The C. elegans PVF-1 is a VEGF homolog that can bind to human VEGF receptors and induce angiogenesis in vertebrate in vitro models [104]. | - C. elegans do not have a vascular system or heart; - While there are C. elegans angiopoietin-like genes, no angiopoietin receptors are found in the C. elegans genome [105]; - The C. elegans genome contains TNF-like molecules but does not code for a TNF-α homolog [106]. |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Hunt, P.R.; Ferguson, M.; Olejnik, N.; Yourick, J.; Sprando, R.L. Developmental Exposures to Three Mammalian Teratogens Produce Dysmorphic Phenotypes in Adult Caenorhabditis elegans. Toxics 2025, 13, 589. https://doi.org/10.3390/toxics13070589
Hunt PR, Ferguson M, Olejnik N, Yourick J, Sprando RL. Developmental Exposures to Three Mammalian Teratogens Produce Dysmorphic Phenotypes in Adult Caenorhabditis elegans. Toxics. 2025; 13(7):589. https://doi.org/10.3390/toxics13070589
Chicago/Turabian StyleHunt, Piper Reid, Martine Ferguson, Nicholas Olejnik, Jeffrey Yourick, and Robert L. Sprando. 2025. "Developmental Exposures to Three Mammalian Teratogens Produce Dysmorphic Phenotypes in Adult Caenorhabditis elegans" Toxics 13, no. 7: 589. https://doi.org/10.3390/toxics13070589
APA StyleHunt, P. R., Ferguson, M., Olejnik, N., Yourick, J., & Sprando, R. L. (2025). Developmental Exposures to Three Mammalian Teratogens Produce Dysmorphic Phenotypes in Adult Caenorhabditis elegans. Toxics, 13(7), 589. https://doi.org/10.3390/toxics13070589