Exploring Heavy Metals Exposure in Urban Green Zones of Thessaloniki (Northern Greece): Risks to Soil and People’s Health
Abstract
1. Introduction
2. Materials and Methods
2.1. Study Area and Sampling
2.2. Soil Physicochemical Analyses
2.3. Contamination Indices
2.3.1. Geoaccumulation Index (Igeo)
2.3.2. Contamination Factor (Cf) and Pollution Load Index (PLI)
2.3.3. Potential Ecological Risk Index (RI)
2.4. Health Risk Assessment
2.5. Statistics
3. Results and Discussion
3.1. Physicochemical Properties of Urban Soils
3.2. Concentrations of Heavy Metal Contents in Urban Soils
3.3. Seasonal Variation in Heavy Metals in Urban Soils
pH | EC | Cd | Co | Cr | Cu | Mn | Ni | Pb | Zn | |||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Sampling Period | S | W | S | W | S | W | S | W | S | W | S | W | S | W | S | W | ||
Min | 7.5 | 95.6 | 0.5 | 0.5 | 7.7 | 6.6 | 21.7 | 19.5 | 18.1 | 17.5 | 199.1 | 183.6 | 20 | 17.4 | 9.4 | 9.5 | 33.2 | 29 |
Max | 9.0 | 1431.5 | 1.8 | 1.6 | 33.5 | 27.4 | 112.4 | 100.7 | 93.6 | 84.9 | 985.6 | 949.7 | 71.1 | 62 | 61.7 | 55.6 | 302.6 | 266.3 |
Mean | 8.2 | 481.6 | 1.0 | 0.9 | 15.5 | 13.3 | 59.7 | 53.1 | 49.7 | 45.6 | 545.9 | 501.3 | 39.3 | 33.8 | 34.4 | 30.7 | 132.3 | 116.5 |
Total mean content (n = 104) | 8.2 | 481.6 | 0.9 | 14.4 | 56.4 | 47.7 | 523.6 | 36.6 | 32.6 | 124.4 | ||||||||
Median | 8.2 | 349.7 | 0.9 | 13.3 | 51.3 | 43.5 | 482.7 | 33.8 | 31.8 | 98.4 | ||||||||
SD | 0.4 | 361.6 | 0.4 | 0.3 | 6.6 | 5.5 | 28.8 | 25.5 | 24.0 | 21.5 | 262.0 | 240.8 | 15.7 | 13.5 | 16.5 | 14.6 | 90.1 | 79.2 |
CV | 39.7 | 37.4 | 42.5 | 41.8 | 48.3 | 48.0 | 48.3 | 47.1 | 48.0 | 48.0 | 39.8 | 40.1 | 48.0 | 47.7 | 68.1 | 68.0 | ||
Total CV | 39.3 | 42.9 | 48.3 | 47.7 | 48.0 | 40.6 | 48.1 | 68.2 | ||||||||||
Earth’s crust a | 0.09 | 17.3 | 92 | 28 | 1000 | 47 | 17 | 67 | ||||||||||
Earth’s soils b | 0.5 | 8 | 200 | 20 | 850 | 40 | 10 | 50 | ||||||||||
Urban soils abundances b | 0.9 | 14.1 | 80 | 39 | 729 | 33 | 54.5 | 158 | ||||||||||
EU limits | 3 | 140 | 300 | 300 | ||||||||||||||
Athens, Greece 1 | 0.3 | 16 | 141 | 39 | 554 | 102 | 45 | 98 | ||||||||||
Lamia, Greece 2 | 0.22 | 37.8 | 258 | 59.4 | 1081 | 409 | 15.1 | 77 | ||||||||||
Larissa, Greece 3 | 0.09 | 47.00 | 43.24 | 84.60 | ||||||||||||||
Volos, Greece 4 | 0.27 | 15.7 | 71 | 42.6 | 607 | 68.9 | 29.5 | 99.0 | ||||||||||
Drama, Greece 5 | 0.28 | 18.0 | 63.9 | 19.5 | 578 | 41.3 | 27.6 | 59.7 | ||||||||||
Shanghai, China 6 | 0.61 | 55.8 | 89.9 | 42.4 | 77.4 | |||||||||||||
Lisbon, Portugal 7 | 6.8 | 16 | 29 | 218 | 20 | 62 | 88 | |||||||||||
Bristol, UK 8 | 1.1 | 23.1 | 60.1 | 21 | 210.1 | 272.6 | ||||||||||||
Napoli, Italy 9 | 0.37 | 6.3 | 11.2 | 74 | 635 | 8.9 | 141 | 158 |
3.4. Pollution Assessment
3.4.1. Geoaccumulation Index (Igeo)
3.4.2. Contamination Factor (Cf)
3.4.3. Potential Ecological Risk Index (RI)
3.5. Source Identification
3.6. Health Risk Assessment
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Awewomom, J.; Dzeble, F.; Takyi, Y.D.; Ashie, W.B.; Ettey, E.N.Y.O.; Afua, P.E.; Sackey, L.N.A.; Opoku, F.; Akoto, O. Addressing global environmental pollution using environmental control techniques: A focus on environmental policy and preventive environmental management. Discov. Environ. 2024, 2, 8. [Google Scholar] [CrossRef]
- Xu, X.; Zhong, Y.; Cai, S.; Lei, L.; Peng, J. Does Air Pollution Aggravate Health Problems in Low-Income Countries? Verification from Countries Along the Belt and Road. Sustainability 2025, 17, 1796. [Google Scholar] [CrossRef]
- Meravi, N.; Singh, P.K.; Prajapati, S.K. Seasonal variation of dust deposition on plant leaves and its impact on various photochemical yields of plants. Environ. Chall. 2021, 4, 100166. [Google Scholar] [CrossRef]
- Arshad, K.; Hussain, N.; Ashraf, M.H.; Saleem, M.Z. Air pollution and climate change as grand challenges to sustainability. Sci. Total Environ. 2024, 928, 172370. [Google Scholar] [CrossRef]
- Dawam, M.; Gobara, M.; Oraby, H.; Zorainy, M.Y.; Nabil, I.M. Advances in Membrane Technologies for Heavy Metal Removal from Polluted Water: A Comprehensive Review. Water Air Soil Pollut. 2025, 236, 461. [Google Scholar] [CrossRef]
- Ondrasek, G.; Shepherd, J.; Rathod, S.; Dharavath, R.; Rashid, M.I.; Brtnicky, M.; Shahid, M.S.; Horvatinec, J.; Rengel, Z. Metal contamination—A global environmental issue: Sources, implications & advances in mitigation. RSC Adv. 2025, 15, 3904–3927. [Google Scholar] [CrossRef]
- Tang, S.; Wang, C.; Song, J.; Ihenetu, S.C.; Li, G. Advances in Studies on Heavy Metals in Urban Soil: A Bibliometric Analysis. Sustainability 2024, 16, 860. [Google Scholar] [CrossRef]
- Bonilla-Bedoya, S.; López-Ulloa, M.; Mora-Garcés, A.; Macedo-Pezzopane, J.E.; Salazar, L.; Herrera, M.Á. Urban soils as a spatial indicator of quality for urban socio-ecological systems. J. Environ. Manag. 2021, 300, 113556. [Google Scholar] [CrossRef]
- Rodríguez-Espinosa, T.; Pérez-Gimeno, A.; Almendro-Candel, M.B.; Navarro-Pedreño, J. Constructing Soils to Mitigate Land Occupation by Urban Expansion and Metabolism to Improve Healthy Cities. Land 2024, 13, 1383. [Google Scholar] [CrossRef]
- Veitch, J.; Flowers, E.; Ball, K.; Deforche, B.; Timperio, A. Exploring Children’s Views on Important Park Features: A Qualitative Study Using Walk-Along Interviews. Int. J. Environ. Res. Public Health 2020, 17, 4625. [Google Scholar] [CrossRef]
- Schaffer, C.L.; White, M.; Brown, C.M. A Tale of Three Cities: Defining Urban Schools Within the Context of Varied Geographic Areas. Educ. Urban. Soc. 2018, 50, 507–523. [Google Scholar] [CrossRef]
- Ribeiro, H.; de Santana, K.V.; Oliver, S.L. Natural Environments in University Campuses and Students’ Well-Being. Int. J. Environ. Res. Public Health 2024, 21, 413. [Google Scholar] [CrossRef]
- Gkoltsou, V.S.; Papadimou, S.G.; Bourliva, A.; Skilodimou, H.D.; Golia, E.E. Heavy Metal Levels in Green Areas of the Urban Soil Environment of Larissa City (Central Greece): Health and Sustainable Living Risk Assessment for Adults and Children. Sustainability 2025, 17, 4421. [Google Scholar] [CrossRef]
- Massas, I.; Kairis, O.; Gasparatos, D.; Ioannou, D.; Vatougios, D.; Zafeiriou, I. Impaired Soil Health in Agricultural Areas Close to Fe-Ni Mines on Euboea Island, Greece, Caused by Increased Concentrations of Potentially Toxic Elements, and the Associated Impacts on Human Health. Environments 2023, 10, 150. [Google Scholar] [CrossRef]
- Argyraki, A.; Kelepertzis, E.; Botsou, F.; Paraskevopoulou, V.; Katsikis, I.; Trigoni, M. Environmental availability of trace elements (Pb, Cd, Zn, Cu) in soil from urban, suburban, rural and mining areas of Attica, Hellas. J. Geochem. Explor. 2018, 187, 201–213. [Google Scholar] [CrossRef]
- Bourliva, A.; Kantiranis, N.; Papadopoulou, L.; Aidona, E.; Christophoridis, C.; Kollias, P.; Evgenakis, M.; Fytianos, K. Seasonal and spatial variations of magnetic susceptibility and potentially toxic elements (PTEs) in road dusts of Thessaloniki city, Greece: A one-year monitoring period. Sci. Total Environ. 2018, 639, 417–427. [Google Scholar] [CrossRef]
- Golia, E.E.; Emmanouil, C.; Charizani, A.; Koropouli, A.; Kungolos, A. Assessment of Cu and Zn contamination and associated human health risks in urban soils from public green spaces in the city of Thessaloniki, Northern Greece. Euro-Mediterr. J. Environ. Integr. 2023, 8, 517–525. [Google Scholar] [CrossRef]
- Philandras, C.M.; Nastos, P.T.; Paliatsos, A.G.; Repapis, C.C. Study of the rain intensity in Athens and Thessaloniki, Greece. Adv. Geosci. 2010, 23, 37–45. Available online: www.adv-geosci.net/23/37/2010/ (accessed on 20 June 2025). [CrossRef]
- Sfetsas, T.; Ghoghoberidze, S.; Karnoutsos, P.; Tziakas, V.; Karagiovanidis, M.; Katsantonis, D. Spatial and Temporal Patterns of Trace Element Deposition in Urban Thessaloniki: A Syntrichia Moss Biomonitoring Study. Atmosphere 2024, 15, 1378. [Google Scholar] [CrossRef]
- Svigkas, N.; Loupasakis, C.; Papoutsis, I.; Kontoes, C.; Alatza, S.; Tzampoglou, P.; Tolomei, C.; Spachos, T. InSAR Campaign Reveals Ongoing Displacement Trends at High Impact Sites of Thessaloniki and Chalkidiki, Greece. Remote Sens. 2020, 12, 2396. [Google Scholar] [CrossRef]
- Amistadi, L.; Bradecki, T.; Uherek-Bradecka, B. Resilient university campus in the city in COVID and post-COVID era—Recommendations, guidelines, and evidence from research in Italy and Poland. Urban Des. Int. 2023, 28, 141–151. [Google Scholar] [CrossRef]
- Page, A.L. (Ed.) Front Matter. In Methods of Soil Analysis: Part 2 Chemical and Microbiological Properties; American Society of Agronomy, Crop Science Society of America, and Soil Science Society of America: Madison, WI, USA, 1982. [Google Scholar] [CrossRef]
- ISO 10390 Second Edition. 2005. Available online: www.iso.org (accessed on 20 June 2025).
- Bouyoucos, G.J. Hydrometer Method Improved for Making Particle Size Analyses of Soils. Agron. J. 1962, 54, 464–465. [Google Scholar] [CrossRef]
- Müller, G. Schwermetalle in den sedimenten des Rheins-Veranderungen seit. Umschav 1979, 79, 133–149. [Google Scholar]
- Hakanson, L. An ecological risk index for aquatic pollution control.a sedimentological approach. Water Res. 1980, 14, 975–1001. [Google Scholar] [CrossRef]
- Tomlinson, D.L.; Wilson, J.G.; Harris, C.R.; Jeffrey, D.W. Problems in the assessment of heavy-metal levels in estuaries and the formation of a pollution index. Helgoländer Meeresunters. 1980, 33, 566–575. [Google Scholar] [CrossRef]
- Goncharov, G.; Soktoev, B.; Farkhutdinov, I.; Matveenko, I. Heavy metals in urban soil: Contamination levels, spatial distribution and human health risk assessment (the case of Ufa city, Russia). Environ. Res. 2024, 257, 119216. [Google Scholar] [CrossRef]
- El-Sharkawy, G.; Alotaibi, M.O.; Zuhair, R.; Mahmoud, E.; El Baroudy, A.; Omara, A.E.-D.; El-Sharkawy, M. Ecological Assessment of Polluted Soils: Linking Ecological Risks, Soil Quality, and Biota Diversity in Contaminated Soils. Sustainability 2025, 17, 1524. [Google Scholar] [CrossRef]
- USEPA. Child-Specific Exposure Factors Handbook; EPA-600-P-00-002B; National Center for Environmental Assessment: Washington, DC, USA; United States Environmental Protection Agency: Washington, DC, USA, 2002.
- USEPA. Risk Assessment Guidance for Super Fund. In Volume I: Human Health Evaluation Manual; United States Environmental Protection Agency: Washington, DC, USA, 1989. [Google Scholar]
- Liu, X.; Song, Q.; Tang, Y.; Li, W.; Xu, J.; Wu, J.; Wang, F.; Brookes, P.C. Human health risk assessment of heavy metals in soil-vegetable system: A multi-medium analysis. Sci. Total Environ. 2013, 463–464, 530–540. [Google Scholar] [CrossRef]
- USEPA. Guidance for Evaluating the Oral Bioavailability of Metals in Soils for Use in Human Health Risk Assessment; United States Environmental Protection Agency: Washington, DC, USA, 2007.
- Ferreira-Baptista, L.; De Miguel, E. Geochemistry and risk assessment of street dust in Luanda, Angola: A tropical urban environment. Atmos. Environ. 2005, 39, 4501–4512. [Google Scholar] [CrossRef]
- USEPA. Regional Screening Lavels (RSLs) – Generic Tables; United States Environmental Protection Agency: Washington, DC, USA, 2016.
- Sager, M. Urban Soils and Road Dust—Civilization Effects and Metal Pollution—A Review. Environments 2020, 7, 98. [Google Scholar] [CrossRef]
- Ismayilov, A.I.; Mamedov, A.I.; Fujimaki, H.; Tsunekawa, A.; Levy, G.J. Soil salinity type effects on the relationship between the electrical conductivity and salt content for 1:5 soil-to-water extract. Sustainability 2021, 13, 3395. [Google Scholar] [CrossRef]
- Heng, T.; Ma, Y.; Ai, P.; Liu, Z.; Wu, M.; Liu, C. The Effects of Soil Salt Stress on the Nitrogen Uptake, Yield Response and Nitrogen Use Efficiency of Cotton in Arid Areas. Agronomy 2024, 14, 3395. [Google Scholar] [CrossRef]
- Purdy, K.; Reynolds, J.K.; Wright, I.A. The Influence of Contamination from Concrete Materials on the Growth and Accumulation of Metals within an Invasive Weed (Salix spp.). Water Air Soil Pollut. 2024, 235, 647. [Google Scholar] [CrossRef]
- Polovina, S.; Radić, B.; Ristić, R.; Kovačević, J.; Milčanović, V.; Živanović, N. Soil erosion assessment and prediction in urban landscapes: A new G2 model approach. Appl. Sci. 2021, 11, 4154. [Google Scholar] [CrossRef]
- Rudnick, R.L.; Gao, S. Composition of the Continental Crust. In Treatise on Geochemistry; Elsevier: Amsterdam, The Netherlands, 2003; Volume 3–9, pp. 1–64. [Google Scholar] [CrossRef]
- Wang, C.; Hu, J.; Zhang, Y.; Di, Y.; Wu, X. Spatial distribution characteristic, source apportionment, and risk assessment of heavy metals in the soil of an urban riparian zone. Ecotoxicol. Environ. Saf. 2025, 298, 118271. [Google Scholar] [CrossRef]
- Li, R.; Cai, G.; Wang, J.; Ouyang, W.; Cheng, H.; Lin, C. Contents and chemical forms of heavy metals in school and roadside topsoils and road-surface dust of Beijing. J. Soils Sediments 2014, 14, 1806–1817. [Google Scholar] [CrossRef]
- Tassiou, S.; Kaminari, M. Geochemical Environmental Study of the Urban-Peri urban Area of Volos (Volume A); IGME, espa 2007–2013/Operational Program “Competitiveness and Enterpreneurship”/Project Geological Multithematic Mapping at Startegic and Operational Scale for Developmental, Environmental, and Cultural Objectives; Athens, Greece, 2016; 257p. (In Greek) [Google Scholar]
- Gerouki, F.; Liakopoulos, A. Geochemical Environmental Study of the Urban Peri-urban Area of Igoumenitsa (Volume A); IGME, espa 2007-2013/Operational Program “Competitiveness and Entepreneurship”/Project Geological Multithematic Mapping at Strategic and Operational Scale for Selection of Developmental, Environmental, and Cultural Objectives; Athens, Greece, 2016; 162p. (In Greek) [Google Scholar]
- Argyraki, A.; Kelepertzis, E. Urban soil geochemistry in Athens, Greece: The importance of local geology in controlling the distribution of potentially harmful trace elements. Sci. Total Environ. 2014, 482–483, 366–377. [Google Scholar] [CrossRef]
- Papazotos, P.; Liakopoulos, A.; Kontodimos, K.; Koukoulis, A. Integrated geochemical analysis of urban and peri-urban soils: A case study of Lamia City, Greece. Environ. Monit. Assess. 2024, 196, 1052. [Google Scholar] [CrossRef]
- Cicchella, D.; De Vivo, B.; Lima, A.; Albanese, S.; McGill, R.A.R.; Parrish, R.R. Heavy metal pollution and Pb isotopes in urban soils of Napoli, Italy. In Geochemistry: Exploration, Environment, Analysis; Geological Society of London: London, UK, 2008; pp. 103–112. [Google Scholar] [CrossRef]
- Giusti, L. Heavy metals in urban soils of Bristol (UK). Initial screening for contaminated land. J. Soils Sediments 2011, 11, 1385–1398. [Google Scholar] [CrossRef]
- Cachada, A.; Dias, A.C.; Pato, P.; Mieiro, C.; Rocha-Santos, T.; Pereira, M.E.; Da Silva, E.F.; Duarte, A.C. Major inputs and mobility of potentially toxic elements contamination in urban areas. Environ. Monit. Assess. 2013, 185, 279–294. [Google Scholar] [CrossRef]
- Alekseenko, V.; Alekseenko, A. The abundances of chemical elements in urban soils. J. Geochem. Explor. 2014, 147, 245–249. [Google Scholar] [CrossRef]
- Tanner, P.A.; Ma, H.-L.; Yu, P.K.N. Fingerprinting Metals in Urban Street Dust of Beijing, Shanghai, and Hong Kong. Environ. Sci. Technol. 2008, 42, 7111–7117. [Google Scholar] [CrossRef]
- Wang, M.; Zhang, H. Accumulation of heavy metals in roadside soil in urban area and the related impacting factors. Int. J. Environ. Res. Public Health 2018, 15, 1064. [Google Scholar] [CrossRef]
- Mostafa, M.T.; El-Nady, H.; Gomaa, R.M.; Abdelgawad, H.F.; Abdelhafiz, M.A.; Salman, S.A.E.; Khalifa, I.H. Urban geochemistry of heavy metals in road dust from Cairo megacity, Egypt: Enrichment, sources, contamination, and health risks. Environ. Earth Sci. 2024, 83, 37. [Google Scholar] [CrossRef]
- Siddig, M.M.S.; Asabere, S.B.; Al-Farraj, A.S.; Brevik, E.C.; Sauer, D. Pollution and ecological risk assessment of heavy metals in anthropogenically-affected soils of Sudan: A systematic review and meta-analysis. J. Hazard. Mater. Adv. 2025, 17, 100601. [Google Scholar] [CrossRef]
- Shen, C.; Huang, S.; Wang, M.; Wu, J.; Su, J.; Lin, K.; Chen, X.; He, T.; Li, Y.; Sha, C.; et al. Source-oriented health risk assessment and priority control factor analysis of heavy metals in urban soil of Shanghai. J. Hazard. Mater. 2024, 480, 135859. [Google Scholar] [CrossRef]
- Li, Y.-M.; Ma, J.-H.; Liu, D.-X.; Sun, Y.-L.; Chen, Y.-F. [Assessment of heavy metal pollution and potential ecological risks of urban soils in Kaifeng City, China]. Huan Jing Ke Xue 2015, 36, 1037–1044. [Google Scholar]
- Aslanidis, P.S.C.; Golia, E.E. Urban Sustainability at Risk Due to Soil Pollution by Heavy Metals—Case Study: Volos, Greece. Land 2022, 11, 1016. [Google Scholar] [CrossRef]
- Soltani-Gerdefaramarzi, S.; Ghasemi, M.; Ghanbarian, B. Geogenic and anthropogenic sources identification and ecological risk assessment of heavy metals in the urban soil of Yazd, central Iran. PLoS ONE 2021, 16, e0260418. [Google Scholar] [CrossRef]
- McKenzie, E.R.; Money, J.E.; Green, P.G.; Young, T.M. Metals associated with stormwater-relevant brake and tire samples. Sci. Total Environ. 2009, 407, 5855–5860. [Google Scholar] [CrossRef]
- Kelepertzis, E.; Stathopoulou, E. Availability of geogenic heavy metals in soils of Thiva town (central Greece). Environ. Monit. Assess. 2013, 185, 9603–9618. [Google Scholar] [CrossRef]
- Baran, A.; Wieczorek, J.; Mazurek, R.; Urbański, K.; Klimkowicz-Pawlas, A. Potential ecological risk assessment and predicting zinc accumulation in soils. Environ. Geochem. Health 2018, 40, 435–450. [Google Scholar] [CrossRef]
- Baltas, H.; Sirin, M.; Gökbayrak, E.; Ozcelik, A.E. A case study on pollution and a human health risk assessment of heavy metals in agricultural soils around Sinop province, Turkey. Chemosphere 2020, 241, 125015. [Google Scholar] [CrossRef]
- Gopal, V.; Krishnamurthy, R.R.; Indhumathi, A.; Sharon, B.T.X.; Priya, T.S.D.; Rathinavel, K.; Bharath, K.M.; Magesh, N.S.; Ayyamperumal, R. Geochemical evaluation, ecological and human health risk assessment of potentially toxic elements in urban soil, Southern India. Environ. Res. 2024, 248, 118413. [Google Scholar] [CrossRef]
- Pan, L.; Wang, Y.; Ma, J.; Hu, Y.; Su, B.; Fang, G.; Wang, L.; Xiang, B. A review of heavy metal pollution levels and health risk assessment of urban soils in Chinese cities. Environ. Sci. Pollut. Res. 2018, 25, 1055–1069. [Google Scholar] [CrossRef]
- Wise, S.S.; Aboueissa, A.E.-M.; Martino, J.; Wise, J.P. Hexavalent Chromium–Induced Chromosome Instability Drives Permanent and Heritable Numerical and Structural Changes and a DNA Repair–Deficient Phenotype. Cancer Res. 2018, 78, 4203–4214. [Google Scholar] [CrossRef]
- Thompson, C.M.; Suh, M.; Proctor, D.M.; Harris, M.A. Letter to the Editor Regarding Banu et al. (2018). Chromium Accumulation on Human Placental Oxidative Stress and Apoptosis. Toxicol. Sci. 2018, 165, 269–271. [Google Scholar] [CrossRef]
Elements | Component | |
---|---|---|
1 | 2 | |
Cd | 0.644 | −0.117 |
Co | 0.877 | 0.334 |
Cr | 0.466 | 0.322 |
Cu | 0.143 | 0.958 |
Mn | 0.147 | 0.958 |
Ni | 0.889 | 0.359 |
Pb | 0.826 | 0.371 |
Zn | 0.228 | 0.494 |
Eigenvalue | 4.17 | 1.373 |
% variance explained | 52.126 | 17.161 |
Cumulative % variance | 52.126 | 69.287 |
Elements | RfDing | RfDderm | SFo | HQing | HQderm | HQing | HQderm | CR | |||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Cd | 1.00 × 10−3 | 1.00 × 10−5 | 6.10 × 100 | Min | Adults | 6.85 × 10−4 | 2.73 × 10−4 | Children | 6.39 × 10−3 | 1.79 × 10−3 | Cdcarc | Min | 1.43 × 10−6 |
Max | 2.44 × 10−3 | 9.73 × 10−4 | 2.28 × 10−2 | 6.37 × 10−3 | Max | 5.1 × 10−6 | |||||||
Mean | 1.35 × 10−3 | 5.37 × 10−4 | 1.87 × 10−2 | 3.52 × 10−3 | Mean | 2.82 × 10−6 | |||||||
Co | 2.00 × 10−2 | 1.60 × 10−2 | Min | 2.63 × 10−4 | 3.53 × 10−6 | 2.45 × 10−3 | 2.31 × 10−5 | ||||||
Max | 1.15 × 10−3 | 9.67 × 10−6 | 1.07 × 10−2 | 6.33 × 10−5 | |||||||||
Mean | 5.32 × 10−4 | 5.91 × 10−6 | 7.37 × 10−3 | 3.87 × 10−5 | |||||||||
Cr | 3.00 × 10−3 | 6.00 × 10−5 | 4.20 × 101 | Min | 9.92 × 10−3 | 1.98 × 10−3 | 9.26 × 10−2 | 1.30 × 10−2 | Crcarc | Min | 4.28 × 10−4 | ||
Max | 5.13 × 10−2 | 1.02 × 10−2 | 4.79 × 10−1 | 6.70 × 10−2 | Max | 2.22 × 10−3 | |||||||
Mean | 2.72 × 10−2 | 5.44 × 10−3 | 3.78 × 10−1 | 3.56 × 10−2 | Mean | 1.18 × 10−3 | |||||||
Cu | 4.00 × 10−2 | 1.20 × 10−2 | Min | 6.20 × 10−4 | 8.24 × 10−6 | 5.79 × 10−3 | 5.40 × 10−5 | ||||||
Max | 3.21 × 10−3 | 4.27 × 10−5 | 2.99 × 10−2 | 2.79 × 10−4 | |||||||||
Mean | 1.70 × 10−3 | 2.27 × 10−5 | 2.36 × 10−2 | 1.48 × 10−4 | |||||||||
Mn | 1.40 × 10−1 | Min | 1.95 × 10−3 | 7.77 × 10−6 | Min | 5.09 × 10−5 | |||||||
Max | 9.64 × 10−3 | 3.85 × 10−5 | Max | 2.52 × 10−4 | |||||||||
Mean | 5.34 × 10−3 | 2.13 × 10−5 | Mean | 1.40 × 10−4 | |||||||||
Ni | 2.00 × 10−2 | 5.40 × 10−3 | Min | 1.37 × 10−3 | 2.02 × 10−5 | 1.28 × 10−2 | 1.32 × 10−4 | ||||||
Max | 4.87 × 10−3 | 7.20 × 10−5 | 4.55 × 10−2 | 4.72 × 10−4 | |||||||||
Mean | 2.69 × 10−3 | 3.98 × 10−5 | 3.74 × 10−2 | 2.61 × 10−4 | |||||||||
Pb | 3.50 × 10−3 | 5.25 × 10−4 | 8.50 × 10−3 | Min | 3.68 × 10−3 | 9.80 × 10−5 | 3.44 × 10−2 | 6.42 × 10−4 | Pbcarc | Min | 3.76 × 10−8 | ||
Max | 2.42 × 10−2 | 6.43 × 10−4 | 2.25 × 10−1 | 4.21 × 10−3 | Max | 2.46 × 10−7 | |||||||
Mean | 1.35 × 10−2 | 3.59 × 10−4 | 1.87 × 10−1 | 2.35 × 10−3 | Mean | 1.37 × 10−7 | |||||||
Zn | 3.00 × 10−1 | 6.00 × 10−2 | Min | 1.52 × 10−4 | 3.02 × 10−6 | 1.41 × 10−3 | 1.98 × 10−5 | ||||||
Max | 1.38 × 10−3 | 2.76 × 10−5 | 1.29 × 10−2 | 1.81 × 10−4 | |||||||||
Mean | 6.04 × 10−4 | 1.21 × 10−5 | 8.38 × 10−3 | 7.89 × 10−5 | |||||||||
HQtot | Min | 2.10 × 10−2 | 2.55 × 10−3 | 1.96 × 10−1 | 1.67 × 10−2 | ||||||||
Max | 9.35 × 10−2 | 1.15 × 10−2 | 8.73 × 10−1 | 7.55 × 10−2 | |||||||||
Mean | 5.29 × 10−2 | 6.43 × 10−3 | 4.94 × 10−1 | 4.21 × 10−2 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Papadopoulos, I.; Golia, E.E.; Kantzou, O.-D.; Papadimou, S.G.; Bourliva, A. Exploring Heavy Metals Exposure in Urban Green Zones of Thessaloniki (Northern Greece): Risks to Soil and People’s Health. Toxics 2025, 13, 632. https://doi.org/10.3390/toxics13080632
Papadopoulos I, Golia EE, Kantzou O-D, Papadimou SG, Bourliva A. Exploring Heavy Metals Exposure in Urban Green Zones of Thessaloniki (Northern Greece): Risks to Soil and People’s Health. Toxics. 2025; 13(8):632. https://doi.org/10.3390/toxics13080632
Chicago/Turabian StylePapadopoulos, Ioannis, Evangelia E. Golia, Ourania-Despoina Kantzou, Sotiria G. Papadimou, and Anna Bourliva. 2025. "Exploring Heavy Metals Exposure in Urban Green Zones of Thessaloniki (Northern Greece): Risks to Soil and People’s Health" Toxics 13, no. 8: 632. https://doi.org/10.3390/toxics13080632
APA StylePapadopoulos, I., Golia, E. E., Kantzou, O.-D., Papadimou, S. G., & Bourliva, A. (2025). Exploring Heavy Metals Exposure in Urban Green Zones of Thessaloniki (Northern Greece): Risks to Soil and People’s Health. Toxics, 13(8), 632. https://doi.org/10.3390/toxics13080632