Editor’s Choice Articles

Editor’s Choice articles are based on recommendations by the scientific editors of MDPI journals from around the world. Editors select a small number of articles recently published in the journal that they believe will be particularly interesting to readers, or important in the respective research area. The aim is to provide a snapshot of some of the most exciting work published in the various research areas of the journal.

Order results
Result details
Results per page
Select all
Export citation of selected articles as:

Article

15 pages, 3131 KiB  
Article
Metabolomic Profiling of Citrus unshiu during Different Stages of Fruit Development
by Sang Suk Kim, Hyun-Jin Kim, Kyung Jin Park, Seok Beom Kang, YoSup Park, Seong-Gab Han, Misun Kim, Yeong Hun Song and Dong-Shin Kim
Plants 2022, 11(7), 967; https://doi.org/10.3390/plants11070967 - 01 Apr 2022
Cited by 15 | Viewed by 2782
Abstract
Citrus fruits undergo significant metabolic profile changes during their development process. However, limited information is available on the changes in the metabolites of Citrus unshiu during fruit development. Here, we analyzed the total phenolic content (TPC), total carotenoid content (TCC), antioxidant activity, and [...] Read more.
Citrus fruits undergo significant metabolic profile changes during their development process. However, limited information is available on the changes in the metabolites of Citrus unshiu during fruit development. Here, we analyzed the total phenolic content (TPC), total carotenoid content (TCC), antioxidant activity, and metabolite profiles in C. unshiu fruit flesh during different stages of fruit development and evaluated their correlations. The TPC and antioxidant activity significantly decreased during fruit development, whereas the TCC increased. The metabolite profiles, including sugars, acidic compounds, amino acids, flavonoids, limonoids, carotenoids, and volatile compounds (mono- and sesquiterpenes), in C. unshiu fruit flesh also changed significantly, and a citrus metabolomic pathway related to fruit development was proposed. Based on the data, C. unshiu fruit development was classified into three groups: Group 1 (Aug. 1), Group 2 (Aug. 31 and Sep. 14), and Group 3 (Oct. 15 and Nov. 16). Although citrus peel was not analyzed and the sensory and functional qualities during fruit development were not investigated, the results of this study will help in our understanding of the changes in chemical profile during citrus fruit development. This can provide vital information for various applications in the C. unshiu industry. Full article
(This article belongs to the Section Plant Physiology and Metabolism)
Show Figures

Figure 1

16 pages, 1620 KiB  
Article
Chemical Composition, Antioxidant, and Antimicrobial Activity of Dracocephalum moldavica L. Essential Oil and Hydrolate
by Milica Aćimović, Olja Šovljanski, Vanja Šeregelj, Lato Pezo, Valtcho D. Zheljazkov, Jovana Ljujić, Ana Tomić, Gordana Ćetković, Jasna Čanadanović-Brunet, Ana Miljković and Ljubodrag Vujisić
Plants 2022, 11(7), 941; https://doi.org/10.3390/plants11070941 - 31 Mar 2022
Cited by 22 | Viewed by 2507
Abstract
Steam distillation was used for the isolation of Dracocephalum moldavica L. (Moldavian dragonhead) essential oil (DMEO). This aromatic herbaceous plant is widespread across the Northern Hemisphere regions and has been utilized in health-improving studies and applications. In addition to the DMEO, the hydrolate [...] Read more.
Steam distillation was used for the isolation of Dracocephalum moldavica L. (Moldavian dragonhead) essential oil (DMEO). This aromatic herbaceous plant is widespread across the Northern Hemisphere regions and has been utilized in health-improving studies and applications. In addition to the DMEO, the hydrolate (DMH), a byproduct of the distillation process, was also collected. The DMEO and DMH were analyzed and compared in terms of their chemical composition, as well as their in vitro biological activities. The main component in DMEO was geranyl acetate, while geranial was dominant in DMH. The DMEO demonstrated better antioxidant and antimicrobial activities compared with the DMH against Staphylococcus aureus, Escherichia coli, Salmonella Typhimurium, and Listeria monocytogenes, which represent sources of food-borne illness at the global level. The DMEO and DMH show promise as antioxidant and antimicrobial additives to various products. Full article
Show Figures

Figure 1

17 pages, 2067 KiB  
Article
Supercritical Fluid and Conventional Extractions of High Value-Added Compounds from Pomegranate Peels Waste: Production, Quantification and Antimicrobial Activity of Bioactive Constituents
by Kaja Kupnik, Maja Leitgeb, Mateja Primožič, Vesna Postružnik, Petra Kotnik, Nika Kučuk, Željko Knez and Maša Knez Marevci
Plants 2022, 11(7), 928; https://doi.org/10.3390/plants11070928 - 30 Mar 2022
Cited by 16 | Viewed by 2588
Abstract
This study is focused on different extractions (Cold Maceration (CM), Ultrasonic Extraction (UE), Soxhlet Extraction (SE) and Supercritical Fluid Extraction (SFE)) of bioactive compounds from pomegranate (Punica Granatum L.) fruit peels using methanol, ethanol, and acetone as solvents in conventional extractions and [...] Read more.
This study is focused on different extractions (Cold Maceration (CM), Ultrasonic Extraction (UE), Soxhlet Extraction (SE) and Supercritical Fluid Extraction (SFE)) of bioactive compounds from pomegranate (Punica Granatum L.) fruit peels using methanol, ethanol, and acetone as solvents in conventional extractions and changing operating pressure (10, 15, 20, 25 MPa) in SFE, respectively. The extraction yields, total phenols (TP) and proanthocyanidins (PAC) contents, and antioxidant activity of different extracts are revealed. TP and PAC recovered by extracts ranged from 24.22 to 42.92 mg gallic acid equivalents (GAE)/g and 2.01 to 5.82 mg PAC/g, respectively. The antioxidant activity of extracts ranged from 84.70% to 94.35%. The phenolic compound identification and quantification in selective extracts was done using the LC-MS/MS method. The contents of different flavonoids and phenolic acids have been determined. SFE extract, obtained at 20 MPa, contained the highest content (11,561.84 μg/g) of analyzed total polyphenols, with predominant ellagic acid (7492.53 μg/g). For the first time, Microbial Growth Inhibition Rates (MGIRs) were determined at five different concentrations of pomegranate SFE extract against seven microorganisms. Minimal Inhibitory Concentration (MIC90) was determined as 2.7 mg/mL of SFE pomegranate peel extract in the case of five different Gram-negative and Gram-positive bacteria. Full article
(This article belongs to the Special Issue Trends in Plants Phytochemistry and Bioactivity Analysis)
Show Figures

Graphical abstract

13 pages, 3102 KiB  
Article
Hydrogen Sulfide Promotes Adventitious Root Development in Cucumber under Salt Stress by Enhancing Antioxidant Ability
by Yayu Liu, Lijuan Wei, Li Feng, Meiling Zhang, Dongliang Hu, Jianzhong Tie and Weibiao Liao
Plants 2022, 11(7), 935; https://doi.org/10.3390/plants11070935 - 30 Mar 2022
Cited by 21 | Viewed by 1924
Abstract
As a gas signal molecule, hydrogen sulfide (H2S) can enhance plant stress resistance. Here, cucumber (Cucumis sativus ‘Xinchun NO. 4’) explants were used to investigate the role of H2S in adventitious root development under salt stress. The results [...] Read more.
As a gas signal molecule, hydrogen sulfide (H2S) can enhance plant stress resistance. Here, cucumber (Cucumis sativus ‘Xinchun NO. 4’) explants were used to investigate the role of H2S in adventitious root development under salt stress. The results show that sodium chloride (NaCl) at 10 mM produced moderate salt stress. The 100 µM sodium hydrosulfide (NaHS) treatment, a H2S donor, increased root number and root length by 38.37% and 66.75%, respectively, indicating that H2S effectively promoted the occurrence of adventitious roots in cucumber explants under salt stress. The results show that under salt stress, NaHS treatment reduced free proline content and increased the soluble sugar and soluble protein content during rooting. Meanwhile, NaHS treatment enhanced the activities of antioxidant enzymes [peroxidase (POD), superoxide dismutase (SOD), ascorbate peroxidase (APX) and catalase (CAT)], increased the content of ascorbic (ASA) and glutathione (GSH), reduced the content of hydrogen peroxide (H2O2) and the rate of superoxide radical (O2−) production, and decreased relative electrical conductivity (REC) and the content of malondialdehyde (MDA). However, the NaHS scavenger hypotaurine (HT) reversed the above effects of NaHS under salt stress. In summary, H2S promoted adventitious root development under salt stress through regulating osmotic substance content and enhancing antioxidant ability in explants. Full article
(This article belongs to the Special Issue Regulation of Abiotic Stress Responses in Vegetable Crops)
Show Figures

Figure 1

32 pages, 4928 KiB  
Article
A Comprehensive Phytochemical Analysis of Terpenes, Polyphenols and Cannabinoids, and Micromorphological Characterization of 9 Commercial Varieties of Cannabis sativa L.
by Eugenia Mazzara, Jacopo Torresi, Gelsomina Fico, Alessio Papini, Nicola Kulbaka, Stefano Dall’Acqua, Stefania Sut, Stefania Garzoli, Ahmed M. Mustafa, Loredana Cappellacci, Dennis Fiorini, Filippo Maggi, Claudia Giuliani and Riccardo Petrelli
Plants 2022, 11(7), 891; https://doi.org/10.3390/plants11070891 - 27 Mar 2022
Cited by 15 | Viewed by 6327
Abstract
New hemp (Cannabis sativa L.) strains developed by crossbreeding selected varieties represent a novel research topic worthy of attention and investigation. This study focused on the phytochemical characterization of nine hemp commercial cultivars. Hydrodistillation was performed in order to collect the essential [...] Read more.
New hemp (Cannabis sativa L.) strains developed by crossbreeding selected varieties represent a novel research topic worthy of attention and investigation. This study focused on the phytochemical characterization of nine hemp commercial cultivars. Hydrodistillation was performed in order to collect the essential oils (EO), and also the residual water and deterpenated biomass. The volatile fraction was analyzed by GC-FID, GC-MS, and SPME-GC-MS, revealing three main chemotypes. The polyphenolic profile was studied in the residual water and deterpenated biomass by spectrophotometric assays, and HPLC-DAD-MSn and 1H-NMR analyses. The latter were employed for quali–quantitative determination of cannabinoids in the deterpenated material in comparison with the one not subjected to hydrodistillation. In addition, the glandular and non-glandular indumentum of the nine commercial varieties was studied by means of light microscopy and scanning electron microscopy in the attempt to find a possible correlation with the phytochemical and morphological traits. The EO and residual water were found to be rich in monoterpene and sesquiterpene hydrocarbons, and flavonol glycosides, respectively, while the deterpenated material was found to be a source of neutral cannabinoids. The micromorphological survey allowed us to partly associate the phytochemistry of these varieties with the hair morphotypes. This research sheds light on the valorization of different products from the hydrodistillation of hemp varieties, namely, essential oil, residual water, and deterpenated biomass, which proved to be worthy of exploitation in industrial and health applications. Full article
(This article belongs to the Special Issue 10th Anniversary of Plants—Recent Advances and Perspectives)
Show Figures

Figure 1

18 pages, 5375 KiB  
Article
Exogenous Melatonin Activates Antioxidant Systems to Increase the Ability of Rice Seeds to Germinate under High Temperature Conditions
by Yufeng Yu, Liyuan Deng, Lu Zhou, Guanghui Chen and Yue Wang
Plants 2022, 11(7), 886; https://doi.org/10.3390/plants11070886 - 25 Mar 2022
Cited by 24 | Viewed by 2389
Abstract
High temperatures are a major concern that limit rice germination and plant growth. Although previous studies found that melatonin can promote seed germination, the physiological regulation mechanism by which exogenous melatonin mediates high temperature tolerance during rice seed germination is still largely unknown. [...] Read more.
High temperatures are a major concern that limit rice germination and plant growth. Although previous studies found that melatonin can promote seed germination, the physiological regulation mechanism by which exogenous melatonin mediates high temperature tolerance during rice seed germination is still largely unknown. In order to overcome these challenges, the present study investigates the effects of melatonin on the characteristics of rice seed germination as well as on antioxidant properties, under different high temperature conditions. The results show that 100 μM melatonin seed-soaking treatment under high temperature conditions effectively improves the germination potential, the germination index, and the vigor index of rice seeds; increases the length of the shoot and the root; improves the activity of the antioxidant enzymes; and significantly reduces the malondialdehyde content. The gray relational grade of the shoot peroxidase activity and the melatonin soaking treatment was the highest, which was used to evaluate the effect of melatonin on the heat tolerance of rice. The subordinate function method was used to comprehensively evaluate the tolerance, and the results show that the critical concentration of melatonin is 100 μM, and the critical interactive treatment is the germination at 38 °C and followed by the recovery at 26 °C for 1 day + 100 μM. In conclusion, 100 μM of melatonin concentration improved the heat resistance of rice seeds by enhancing the activity of the antioxidant enzymes. Full article
Show Figures

Figure 1

24 pages, 5556 KiB  
Article
Antioxidant Capacity of Potentilla paradoxa Nutt. and Its Beneficial Effects Related to Anti-Aging in HaCaT and B16F10 Cells
by Hwa Pyoung Lee, Dong Seon Kim, Sang Hee Park, Chae Yun Shin, Jin Joo Woo, Ji Won Kim, Ren-Bo An, Changyoung Lee and Jae Youl Cho
Plants 2022, 11(7), 873; https://doi.org/10.3390/plants11070873 - 24 Mar 2022
Cited by 13 | Viewed by 3413
Abstract
Skin aging is a natural process influenced by intrinsic and extrinsic factors, and many skin anti-aging strategies have been developed. Plants from the genus Potentilla has been used in Europe and Asia to treat various diseases. Potentilla paradoxa Nutt. has been used as [...] Read more.
Skin aging is a natural process influenced by intrinsic and extrinsic factors, and many skin anti-aging strategies have been developed. Plants from the genus Potentilla has been used in Europe and Asia to treat various diseases. Potentilla paradoxa Nutt. has been used as a traditional medicinal herb in China and has recently been shown to have anti-inflammatory effects. Despite the biological and pharmacological potential of Potentilla paradoxa Nutt., its skin anti-aging effects remain unclear. Therefore, this study evaluated the free radical scavenging, moisturizing, anti-melanogenic, and wound-healing effects of an ethanol extract of Potentilla paradoxa Nutt. (Pp-EE). Pp-EE was found to contain phenolics and flavonoids and exhibits in vitro antioxidant activities. α-Linolenic acid was found to be a major component of Pp-EE on gas chromatography-mass spectrometry. Pp-EE promoted the expression of hyaluronic acid (HA) synthesis-related enzymes and suppressed the expression of HA degradation-related enzymes in keratinocytes, so it may increase skin hydration. Pp-EE also showed inhibitory effects on the production and secretion of melanin in melanocytes. In a scratch assay, Pp-EE improved skin wound healing. Taken together, Pp-EE has several effects that may delay skin aging, suggesting its potential benefits as a natural ingredient in cosmetic or pharmaceutical products. Full article
(This article belongs to the Special Issue Bioprospecting of Natural Products from Medicinal Plants)
Show Figures

Figure 1

18 pages, 1016 KiB  
Article
Salt Stress Differentially Affects the Primary and Secondary Metabolism of Peppers (Capsicum annuum L.) According to the Genotype, Fruit Part, and Salinity Level
by Tilen Zamljen, Aljaz Medic, Metka Hudina, Robert Veberic and Ana Slatnar
Plants 2022, 11(7), 853; https://doi.org/10.3390/plants11070853 - 23 Mar 2022
Cited by 21 | Viewed by 2591
Abstract
A total of four Capsicum annuum L. genotypes (‘Caro F1’, ‘Berenyi F1’, ‘Somborka’ and ‘Novosadka’) were exposed to two intensities of salt stress. We observed a significant decrease in the sugar content in all salt stressed treatments, except for the sucrose content of [...] Read more.
A total of four Capsicum annuum L. genotypes (‘Caro F1’, ‘Berenyi F1’, ‘Somborka’ and ‘Novosadka’) were exposed to two intensities of salt stress. We observed a significant decrease in the sugar content in all salt stressed treatments, except for the sucrose content of the pericarp of the ‘Caro F1’ cultivar. Salt stress had a largely negative effect on the total and individual organic acid content, although the effect differed among cultivars. Using high performance liquid chromatography coupled with a mass spectrometer, most phenolics were identified in the pericarp (18), followed by the placenta (7) and seeds (8). Treatment with 40 mM NaCl caused the highest increase in individual phenols, followed by treatment with 20 mM NaCl. The cultivar ‘Berenyi F1’ was less affected by salt stress treatment than the other three cultivars in terms of content of individual and total phenols. Salt stress increased the content of capsaicinoids in all the cultivars. The pericarp of the cultivar ‘Novosadka’ showed 17.5 and 50 times higher total capsaicinoid content than the control in the 20 mM and 40 mM NaCl, respectively. With the results of several metabolite groups, we confirmed that the reaction and metabolic content to salt stress within the genus Capsicum is genotype-, fruit part-, and salinity level-dependent. Full article
(This article belongs to the Special Issue Salinity Stress Tolerance in Plants)
Show Figures

Figure 1

14 pages, 2619 KiB  
Article
Inflorescence Transcriptome Sequencing and Development of New EST-SSR Markers in Common Buckwheat (Fagopyrum esculentum)
by Yang Liu, Xiaomei Fang, Tian Tang, Yudong Wang, Yinhuan Wu, Jinyu Luo, Haotian Wu, Yingqian Wang, Jian Zhang, Renwu Ruan, Meiliang Zhou, Kaixuan Zhang and Zelin Yi
Plants 2022, 11(6), 742; https://doi.org/10.3390/plants11060742 - 10 Mar 2022
Cited by 8 | Viewed by 2183
Abstract
Common buckwheat (Fagopyrum esculentum M.) is known for its adaptability, good nutrition, and medicinal and health care value. However, genetic studies of buckwheat have been hindered by limited genomic resources and genetic markers. In this study, Illumina HiSeq 4000 high-throughput sequencing technology [...] Read more.
Common buckwheat (Fagopyrum esculentum M.) is known for its adaptability, good nutrition, and medicinal and health care value. However, genetic studies of buckwheat have been hindered by limited genomic resources and genetic markers. In this study, Illumina HiSeq 4000 high-throughput sequencing technology was used to sequence the transcriptome of green-flower common buckwheat (Gr) with coarse pedicels and white-flower Ukrainian daliqiao (UD) with fine pedicels. A total of 118,448 unigenes were obtained, with an average length of 1248 bp and an N50 of 1850 bp. A total of 39,432 differentially expressed genes (DEGs) were identified, and the DEGs of the porphyrins and chlorophyll metabolic pathway had significantly upregulated expression in Gr. Then, a total of 17,579 sequences containing SSR loci were detected, and 20,756 EST-SSR loci were found. The distribution frequency of EST-SSR in the transcriptome was 17.52%, and the average distribution density was 8.21 kb. A total of 224 pairs of primers were randomly selected for synthesis; 35 varieties of common buckwheat and 13 varieties of Tartary buckwheat were verified through these primers. The clustering results well verified the previous conclusion that common buckwheat and Tartary buckwheat had a distant genetic relationship. The EST-SSR markers identified and developed in this study will be helpful to enrich the transcriptome information and marker-assisted selection breeding of buckwheat. Full article
(This article belongs to the Section Plant Molecular Biology)
Show Figures

Figure 1

18 pages, 2780 KiB  
Article
Impact of Deficit Irrigation on Grapevine cv. ‘Touriga Nacional’ during Three Seasons in Douro Region: An Agronomical and Metabolomics Approach
by Inês L. Cabral, António Teixeira, Arnaud Lanoue, Marianne Unlubayir, Thibaut Munsch, Joana Valente, Fernando Alves, Pedro Leal da Costa, Frank S. Rogerson, Susana M. P. Carvalho, Hernâni Gerós and Jorge Queiroz
Plants 2022, 11(6), 732; https://doi.org/10.3390/plants11060732 - 09 Mar 2022
Cited by 7 | Viewed by 2715
Abstract
The introduction of irrigation in vineyards of the Mediterranean basin is a matter of debate, in particular in those of the Douro Demarcated Region (DDR), due to the limited number of available studies. Here, we aimed to perform a robust analysis in three [...] Read more.
The introduction of irrigation in vineyards of the Mediterranean basin is a matter of debate, in particular in those of the Douro Demarcated Region (DDR), due to the limited number of available studies. Here, we aimed to perform a robust analysis in three consecutive vintages (2018, 2019, and 2020) on the impact of deficit irrigation on the yield, berry quality traits, and metabolome of cv. ‘Touriga Nacional’. Results showed that in the peaks of extreme drought, irrigation at 30% crop evapotranspiration (ETc) (R30) was able to prevent a decay of up to 0.4 MPa of leaf predawn water potential (ΨPd), but irrigation at 70% ETc (R70) did not translate into additional protection against drought stress. Following three seasons of irrigation, the yield was significantly improved in vines irrigated at R30, whereas irrigation at R70 positively affected the yield only in the 2020 season. Berry quality traits at harvest were not significantly changed by irrigation, except for Total Soluble Solids (TSS) in 2018. A UPLC–MS-based targeted metabolomic analysis identified eight classes of compounds, amino acids, phenolic acids, stilbenoid DP1, stilbenoid DP2, flavonols, flavan-3-ols, di-OH- and tri-OH anthocyanins, and showed that anthocyanins and phenolic acids did not change significantly with irrigation. The present study showed that deficit irrigation partially mitigated the severe summer water deficit conditions in the DDR but did not significantly change key metabolites. Full article
Show Figures

Figure 1

17 pages, 10916 KiB  
Article
Effects of Drought Stress and Rehydration on Physiological and Biochemical Properties of Four Oak Species in China
by Shifa Xiong, Yangdong Wang, Yicun Chen, Ming Gao, Yunxiao Zhao and Liwen Wu
Plants 2022, 11(5), 679; https://doi.org/10.3390/plants11050679 - 02 Mar 2022
Cited by 26 | Viewed by 2986
Abstract
Quercus fabri Hance, Quercus serrata Thunb, Quercus acutissima Carruth, and Quercus variabilis BL are four Chinese oak species commonly used for forestation. To ensure the survival of seedlings, we first need to understand the differences in drought resistance of the four oak species [...] Read more.
Quercus fabri Hance, Quercus serrata Thunb, Quercus acutissima Carruth, and Quercus variabilis BL are four Chinese oak species commonly used for forestation. To ensure the survival of seedlings, we first need to understand the differences in drought resistance of the four oak species at the seedling stage, and comprehensively evaluate their drought resistance capabilities. The four oak seedlings were divided into drought-rewatering treatment group and well watered samples (control group). For the seedlings of the drought-rewatering treatment group, drought stress lasting 31 days was used, and then re-watering for 5 days. The water parameters, osmotic solutes content, antioxidant enzyme activity and photosynthesis parameters of the seedlings in the two groups were measured every 5 days. Compared with the control group, the relative water content, water potential, net photosynthetic rate, transpiration rate, and stomatal conductance levels of the four oaks all showed a downward trend under continuous drought stress, and showed an upward trend after rehydration. The soluble protein, soluble sugar, proline, peroxidase, superoxide dismutase and catalase content of the four oaks increased first and then decreased under drought stress, and then increased after rehydration. The content of glycine betaine and malondialdehyde continued to increase, and gradually decreased after rehydration. The weight of each index was calculated by principal component analysis, and then the comprehensive evaluation of each index was carried out through the membership function method. The drought resistance levels of the four oak species were as follows: Q. serrata > Q. fabri > Q. variabilis > Q. acutissima. Full article
(This article belongs to the Section Plant Physiology and Metabolism)
Show Figures

Figure 1

21 pages, 7077 KiB  
Article
Uncovering the Gene Regulatory Network of Maize Hybrid ZD309 under Heat Stress by Transcriptomic and Metabolomic Analysis
by Jingbao Liu, Linna Zhang, Lu Huang, Tianxiao Yang, Juan Ma, Ting Yu, Weihong Zhu, Zhanhui Zhang and Jihua Tang
Plants 2022, 11(5), 677; https://doi.org/10.3390/plants11050677 - 01 Mar 2022
Cited by 12 | Viewed by 2560
Abstract
Maize is an important cereal crop but is sensitive to heat stress, which significantly restricts its grain yield. To explore the molecular mechanism of maize heat tolerance, a heat-tolerant hybrid ZD309 and its parental lines (H39_1 and M189) were subjected to heat stress, [...] Read more.
Maize is an important cereal crop but is sensitive to heat stress, which significantly restricts its grain yield. To explore the molecular mechanism of maize heat tolerance, a heat-tolerant hybrid ZD309 and its parental lines (H39_1 and M189) were subjected to heat stress, followed by transcriptomic and metabolomic analyses. After six-day-heat treatment, the growth of ZD309 and its parental lines were suppressed, showing dwarf stature and rolled leaf compared with the control plants. ZD309 exhibited vigorous growth; however, M189 displayed superior heat tolerance. By transcriptomic and metabolomic analysis, hundreds to thousands of differentially expressed genes (DEGs) and metabolites (DEMs) were identified. Notably, the female parent H39 shares more DEGs and DEMs with the hybrid ZD309, indicating more genetic gain derived from the female instead of the male. A total of 299 heat shock genes detected among three genotypes were greatly aggregated in sugar transmembrane transporter activity, plasma membrane, photosynthesis, protein processing in the endoplasmic reticulum, cysteine, and methionine metabolism. A total of 150 heat-responsive metabolites detected among three genotypes were highly accumulated, including jasmonic acid, amino acids, sugar, flavonoids, coumarin, and organic acids. Integrating transcriptomic and metabolomic assays revealed that plant hormone signal transduction, cysteine, and methionine metabolism, and α-linolenic acid metabolism play crucial roles in heat tolerance in maize. Our research will be facilitated to identify essential heat tolerance genes in maize, thereby contributing to breeding heat resistance maize varieties. Full article
(This article belongs to the Section Plant Molecular Biology)
Show Figures

Figure 1

17 pages, 8553 KiB  
Article
Genome-Wide Analysis of the Banana WRKY Transcription Factor Gene Family Closely Related to Fruit Ripening and Stress
by Caihong Jia, Zhuo Wang, Jingyi Wang, Hongxia Miao, Jianbin Zhang, Biyu Xu, Juhua Liu, Zhiqiang Jin and Jihong Liu
Plants 2022, 11(5), 662; https://doi.org/10.3390/plants11050662 - 28 Feb 2022
Cited by 16 | Viewed by 2396
Abstract
WRKY transcription factors (TFs) play an important role in plant responses to biotic and abiotic stress as well as in plant growth and development. In the present study, bioinformatics methods were used to identify members of the WRKY transcription factor family in the [...] Read more.
WRKY transcription factors (TFs) play an important role in plant responses to biotic and abiotic stress as well as in plant growth and development. In the present study, bioinformatics methods were used to identify members of the WRKY transcription factor family in the Musa acuminata (DH-Pahang) genome (version 2). A total of 164 MaWRKYs were identified and phylogenetic analysis showed that MaWRKYs could be categorized into three subfamilies. Overall, the 162 MaWRKYs were distributed on 11 chromosomes, and 2 genes were not located on the chromosome. There were 31 collinear genes from segmental duplication and 7 pairs of genes from tandem duplication. RNA-sequencing was used to analyze the expression profiles of MaWRKYs in different fruit development, ripening stages, under various abiotic and biotic stressors. Most of the MaWRKYs showed a variety of expression patterns in the banana fruit development and ripening stages. Some MaWRKYs responded to abiotic stress, such as low temperature, drought, and salt stress. Most differentially expressed MaWRKYs were downregulated during banana’s response to Foc TR4 infection, which plays an important role in physiological regulation to stress. Our findings indicate that MaWRKY21 directly binds to the W-box of the MaICS promoter to decrease MaICS transcription and then reduce the enzyme activity. These studies have improved our understanding of the molecular basis for the development and stress resistance of an important banana variety. Full article
(This article belongs to the Section Plant Molecular Biology)
Show Figures

Figure 1

13 pages, 1044 KiB  
Article
Assessment of the Fertilization Capacity of the Aquaculture Sediment for Wheat Grass as Sustainable Alternative Use
by Marian Burducea, Andrei Lobiuc, Lenuta Dirvariu, Eugen Oprea, Stefan Mihaita Olaru, Gabriel-Ciprian Teliban, Vasile Stoleru, Vlad Andrei Poghirc, Irina Gabriela Cara, Manuela Filip, Mariana Rusu, Valtcho D. Zheljazkov and Cristian-Alin Barbacariu
Plants 2022, 11(5), 634; https://doi.org/10.3390/plants11050634 - 25 Feb 2022
Cited by 10 | Viewed by 2971
Abstract
Periodic removal of sediment from aquaculture ponds is practiced to maintain their productivity and animal welfare. The recovery of sediment as a plant fertilizer could alleviate the costs of sediment removal. The objective of this study was to test the effects of a [...] Read more.
Periodic removal of sediment from aquaculture ponds is practiced to maintain their productivity and animal welfare. The recovery of sediment as a plant fertilizer could alleviate the costs of sediment removal. The objective of this study was to test the effects of a dried sediment, extracted from an aquaculture pond used for common carp cultivation, on the growth and physiology of potted wheat grass and the quality of the juice obtained from wheat grass. The results showed that sediment application did not produce significant morphological changes, although the values for plant height (16.94–19.22 cm), leaf area (19.67–139.21 mm2), and biomass (3.39–4.26 g/plant) were higher in sediment-grown plants. However, at a physiological level, the effect was negative, decreasing photosynthesis (0.82–1.66 μmol CO2 m2s−1), fluorescence ΦPSII (0.737–0.782), and chlorophyll content (1.40–1.83 CCI). The juice yield was reduced in the sediment treatments (46–58 g/100 g), while the quality was improved by increasing the content of phenols (2.55–3.39 µg/mL gallic acid equivalent), flavonoids (1.41–1.85 µg/mL quercetin equivalent), and antioxidant activity (47.99–62.7% inhibition of; 2,2-diphenyl-1-picrylhydrazyl). The positive results obtained in this study can be attributed to the moderate nutrient content of the sediment and a negligible concentration of heavy metals. Full article
(This article belongs to the Special Issue 10th Anniversary of Plants—Recent Advances and Perspectives)
Show Figures

Graphical abstract

14 pages, 12102 KiB  
Article
Soil Water Capacity, Pore Size Distribution, and CO2 Emission in Different Soil Tillage Systems and Straw Retention
by Vaida Steponavičienė, Vaclovas Bogužas, Aušra Sinkevičienė, Lina Skinulienė, Rimantas Vaisvalavičius and Alfredas Sinkevičius
Plants 2022, 11(5), 614; https://doi.org/10.3390/plants11050614 - 24 Feb 2022
Cited by 15 | Viewed by 2210
Abstract
The long-term implementation of crop rotation and tillage has an impact on the soil environment through inputs and soil disturbance, which in turn has an impact on soil quality. Tillage has a long-term impact on the agroecosystems. Since 1999, a long-term field experiment [...] Read more.
The long-term implementation of crop rotation and tillage has an impact on the soil environment through inputs and soil disturbance, which in turn has an impact on soil quality. Tillage has a long-term impact on the agroecosystems. Since 1999, a long-term field experiment has been carried out at the Experimental Station of Vytautas Magnus University. The aim of this experiment is to investigate the effects of long-term various-intensity tillage and straw retention systems on soil physical properties. The results were obtained in 2013 and 2019 (spring rape was growing). According to the latest edition of the International Soil Classification System, the soil in the experimental field was classified as Endocalcaric Stagnosol (Aric, Drainic, Ruptic, and Amphisiltic). The treatments were arranged using a split-plot design. In a two-factor field experiment, the straw was removed from one part of the experimental field, and the entire straw yield was chopped and spread at harvest in the other part of the field (Factor A). There were three different tillage systems as a subplot (conventional deep ploughing, cover cropping with following shallow termination, and no-tillage) (Factor B). There were four replications. The long-term application of reduced tillage significantly increased soil water retention and improved the pore structure and CO2 emissions. Irrespective of the incorporation of straw, it was found that as the amount of water available to plants increases, CO2 emissions from the soil increase to some extent and then start to decrease. Simplified tillage and no-tillage in uncultivated soil reduce CO2 emissions by increasing the amount of water available to plants from 0.151 to 0.233 m3·m−3. Full article
(This article belongs to the Special Issue Conservation Tillage for Sustainable Agriculture)
Show Figures

Figure 1

18 pages, 2213 KiB  
Article
The Endemic Vascular Flora of Sardinia: A Dynamic Checklist with an Overview of Biogeography and Conservation Status
by Mauro Fois, Emmanuele Farris, Giacomo Calvia, Giuliano Campus, Giuseppe Fenu, Marco Porceddu and Gianluigi Bacchetta
Plants 2022, 11(5), 601; https://doi.org/10.3390/plants11050601 - 23 Feb 2022
Cited by 34 | Viewed by 4394
Abstract
The vascular flora of Sardinia has been investigated for more than 250 years, with particular attention to the endemic component due to their phylogeographic and conservation interest. However, continuous changes in the floristic composition through natural processes, anthropogenic drivers or modified taxonomical attributions [...] Read more.
The vascular flora of Sardinia has been investigated for more than 250 years, with particular attention to the endemic component due to their phylogeographic and conservation interest. However, continuous changes in the floristic composition through natural processes, anthropogenic drivers or modified taxonomical attributions require constant updating. We checked all available literature, web sources, field, and unpublished data from the authors and acknowledged external experts to compile an updated checklist of vascular plants endemic to Sardinia. Life and chorological forms as well as the conservation status of the updated taxa list were reported. Sardinia hosts 341 taxa (15% of the total native flora) endemic to the Tyrrhenian Islands and other limited continental territories; 195 of these (8% of the total native flora) are exclusive to Sardinia. Asteraceae (50 taxa) and Plumbaginaceae (42 taxa) are the most representative families, while the most frequent life forms are hemicryptophytes (118 taxa) and chamaephytes (106 taxa). The global conservation status, available for 201 taxa, indicates that most endemics are under the ‘Critically Endangered’ (25 taxa), ‘Endangered’ (31 taxa), or ‘Least Concern’ (90 taxa) IUCN categories. This research provides an updated basis for future biosystematics, taxonomic, biogeographical, and ecological studies and in supporting more integrated and efficient policy tools. Full article
Show Figures

Figure 1

18 pages, 1359 KiB  
Article
Thermotherapy Followed by Shoot Tip Cryotherapy Eradicates Latent Viruses and Apple Hammerhead Viroid from In Vitro Apple Rootstocks
by Jean Carlos Bettoni, Gennaro Fazio, Larissa Carvalho Costa, Oscar P. Hurtado-Gonzales, Maher Al Rwahnih, Abby Nedrow and Gayle M. Volk
Plants 2022, 11(5), 582; https://doi.org/10.3390/plants11050582 - 22 Feb 2022
Cited by 13 | Viewed by 3777
Abstract
Virus and viroid-free apple rootstocks are necessary for large-scale nursery propagation of apple (Malus domestica) trees. Apple stem grooving virus (ASGV) and Apple chlorotic leaf spot virus (ACLSV) are among the most serious apple viruses that are prevalent in most apple [...] Read more.
Virus and viroid-free apple rootstocks are necessary for large-scale nursery propagation of apple (Malus domestica) trees. Apple stem grooving virus (ASGV) and Apple chlorotic leaf spot virus (ACLSV) are among the most serious apple viruses that are prevalent in most apple growing regions. In addition to these viruses, a new infectious agent named Apple hammerhead viroid (AHVd) has been identified. We investigated whether thermotherapy or cryotherapy alone or a combination of both could effectively eradicate ACLSV, ASGV, and AHVd from in vitro cultures of four apple rootstocks developed in the Cornell-Geneva apple rootstock breeding program (CG 2034, CG 4213, CG 5257, and CG 6006). For thermotherapy treatments, in vitro plants were treated for four weeks at 36 °C (day) and 32 °C (night). Plant vitrification solution 2 (PVS2) and cryotherapy treatments included a shoot tip preculture in 2 M glycerol + 0.8 M sucrose for one day followed by exposure to PVS2 for 60 or 75 min at 22 °C, either without or with liquid nitrogen (LN, cryotherapy) exposure. Combinations of thermotherapy and PVS2/cryotherapy treatments were also performed. Following treatments, shoot tips were warmed, recovered on growth medium, transferred to the greenhouse, grown, placed in dormancy inducing conditions, and then grown again prior to sampling leaves for the presence of viruses and viroids. Overall, thermotherapy combined with cryotherapy treatment resulted in the highest percentage of virus- and viroid-free plants, suggesting great potential for producing virus- and viroid-free planting materials for the apple industry. Furthermore, it could also be a valuable tool to support the global exchange of apple germplasm. Full article
(This article belongs to the Special Issue Plant Cryobiotechnology: Progress and Prospects)
Show Figures

Figure 1

14 pages, 3980 KiB  
Article
Molecular and Physiological Effects of Magnesium–Polyphenolic Compound as Biostimulant in Drought Stress Mitigation in Tomato
by Haytham Hamedeh, Shaula Antoni, Lorenzo Cocciaglia and Valentina Ciccolini
Plants 2022, 11(5), 586; https://doi.org/10.3390/plants11050586 - 22 Feb 2022
Cited by 14 | Viewed by 3100
Abstract
Plant biostimulants are being recognized as innovative tools to improve sustainable agricultural practices to mitigate the drastic effects of climate change, which is leading to a severe reduction in agricultural yields. In this work, a new biostimulant (EnNuVi® ALPAN®) was [...] Read more.
Plant biostimulants are being recognized as innovative tools to improve sustainable agricultural practices to mitigate the drastic effects of climate change, which is leading to a severe reduction in agricultural yields. In this work, a new biostimulant (EnNuVi® ALPAN®) was evaluated for its effectiveness on tomato (Solanum lycopersicum Mill. cv. Rio Grande) plants subjected to water deficit conditions. The molecular effects were elucidated through transcriptomic RNA-seq and gene expression qPCR analysis and the physiological responses were evaluated through qualitative analysis of pigments and proline content, membrane stability, and lipid peroxidation. ALPAN® was shown to adjust the transcriptional response by upregulating genes involved in source to sink carbohydrate metabolism and translocation, stomatal closure, and cell homeostasis. ALPAN® was shown to mitigate the deteriorating effects of water deficit on the physiological status of the plants by stabilizing the levels of the photosynthetic pigments, regulating the accumulation of osmo-protectants, and preserving the cell wall lipid bilayer from oxidation. In conclusion, transcriptomic and physiological analysis provided insightful information on the biostimulant effects, indicating a positive role of ALPAN® foliar application in alleviating the negative costs of water deficit. Full article
Show Figures

Figure 1

17 pages, 4508 KiB  
Article
Chemical and Biological Characterization of Melaleuca alternifolia Essential Oil
by Petra Borotová, Lucia Galovičová, Nenad L. Vukovic, Milena Vukic, Eva Tvrdá and Miroslava Kačániová
Plants 2022, 11(4), 558; https://doi.org/10.3390/plants11040558 - 20 Feb 2022
Cited by 26 | Viewed by 4765
Abstract
The essential oil of Melaleuca alternifolia, commonly known as tea tree oil, has many beneficial properties due to its bioactive compounds. The aim of this research was to characterize the tea tree essential oil (TTEO) from Slovakia and its biological properties, which [...] Read more.
The essential oil of Melaleuca alternifolia, commonly known as tea tree oil, has many beneficial properties due to its bioactive compounds. The aim of this research was to characterize the tea tree essential oil (TTEO) from Slovakia and its biological properties, which are specific to the chemical composition of essential oil. Gas chromatography/mass spectroscopy revealed that terpinen-4-ol was dominant with a content of 40.3%. γ-Terpinene, 1,8-cineole, and p-cymene were identified in contents of 11.7%, 7.0%, and 6.2%, respectively. Antioxidant activity was determined at 41.6% radical inhibition, which was equivalent to 447 μg Trolox to 1 mL sample. Antimicrobial activity was observed by the disk diffusion method against Gram-positive (G+), Gram-negative (G) bacteria and against yeasts, where the best antimicrobial activity was against Enterococcus faecalis and Candida albicans with an inhibition zone of 10.67 mm. The minimum inhibitory concentration showed better susceptibility by G+ and G planktonic cells, while yeast species and biofilm-forming bacteria strains were more resistant. Antibiofilm activity was observed against Pseudomonas fluorescens and Salmonella enterica by MALDI-TOF, where degradation of the protein spectra after the addition of essential oil was obtained. Good biological properties of tea tree essential oil allow its use in the food industry or in medicine as an antioxidant and antimicrobial agent. Full article
Show Figures

Figure 1

14 pages, 728 KiB  
Article
Dwarf Pomegranate (Punica granatum L. var. nana): Source of 5-HMF and Bioactive Compounds with Applications in the Protection of Woody Crops
by Eva Sánchez-Hernández, Laura Buzón-Durán, José A. Cuchí-Oterino, Jesús Martín-Gil, Belén Lorenzo-Vidal and Pablo Martín-Ramos
Plants 2022, 11(4), 550; https://doi.org/10.3390/plants11040550 - 18 Feb 2022
Cited by 9 | Viewed by 2441
Abstract
While the properties of edible pomegranate varieties have been widely explored, there is little information on ornamental types. In this study, possible alternatives for the valorization of dwarf pomegranate fruits have been explored. The characterization of their hydromethanolic extract by gas chromatography−mass spectrometry [...] Read more.
While the properties of edible pomegranate varieties have been widely explored, there is little information on ornamental types. In this study, possible alternatives for the valorization of dwarf pomegranate fruits have been explored. The characterization of their hydromethanolic extract by gas chromatography−mass spectrometry evidenced the presence of high contents of 5-hydroxymethylfurfural (a carbon-neutral feedstock for the production of fuels and other chemicals) and β- and γ-sitosterol stereoisomers. The microbicidal activity of the crude extract, both alone and in a conjugate complex with chitosan oligomers (COS), was investigated against three plant pathogenic microorganisms that cause significant losses in woody crops: Erwinia amylovora, E. vitivora, and Diplodia seriata. In in vitro assays, a strong synergistic behavior was found after conjugation of the bioactive constituents of the fruit extract with COS, resulting in minimum inhibitory concentration (MIC) values of 750 and 375 μg·mL−1 against E. amylovora and E. vitivora, respectively, and an EC90 value of 993 μg·mL−1 against D. seriata. Hence, extracts from the non-edible fruits of this Punicaceae may hold promise as a source of high value-added phytochemicals or as environmentally friendly agrochemicals. Full article
(This article belongs to the Special Issue Plant Extracts as Biological Protective Agents)
Show Figures

Graphical abstract

15 pages, 3350 KiB  
Article
Combined Effect of Microplastics and Cd Alters the Enzymatic Activity of Soil and the Productivity of Strawberry Plants
by Andrés Pinto-Poblete, Jorge Retamal-Salgado, María Dolores López, Nelson Zapata, Angela Sierra-Almeida and Mauricio Schoebitz
Plants 2022, 11(4), 536; https://doi.org/10.3390/plants11040536 - 17 Feb 2022
Cited by 48 | Viewed by 6039
Abstract
The synergistic effect between heavy metals and microplastics can affect soil properties as well as plant performance and yield. The objective of this study was to evaluate the combined effect of microplastics and cadmium on a soil–plant system. Specifically, we proposed to explore [...] Read more.
The synergistic effect between heavy metals and microplastics can affect soil properties as well as plant performance and yield. The objective of this study was to evaluate the combined effect of microplastics and cadmium on a soil–plant system. Specifically, we proposed to explore changes in soil microbiological activity, the growth and yield parameters of strawberry plants, and to evaluate the accumulation of these pollutants in the soil and root system. Plants were planted in clay pots under greenhouse conditions. The experiment was set up as a completely randomized design, with four treatments (Control; MPs; Cd; and Cd + MPs) and five replicates. The results showed that MPs and/or Cd affected plant growth, plant biomass, the number of fruits, root characteristics, dehydrogenase activity, acid phosphatase, and microbial biomass, and increased the accumulation of Cd in the roots and soil. The increased bioavailability of Cd, due to the presence of microplastics, could explain the observed negative effects on soil properties and the performance of strawberry plants. Full article
(This article belongs to the Section Plant–Soil Interactions)
Show Figures

Figure 1

21 pages, 5060 KiB  
Article
Metabolic Circuits in Sap Extracts Reflect the Effects of a Microbial Biostimulant on Maize Metabolism under Drought Conditions
by Kgalaletso Othibeng, Lerato Nephali, Akhona Myoli, Nombuso Buthelezi, Willem Jonker, Johan Huyser and Fidele Tugizimana
Plants 2022, 11(4), 510; https://doi.org/10.3390/plants11040510 - 14 Feb 2022
Cited by 6 | Viewed by 2549
Abstract
The use of microbial biostimulants in the agricultural sector is increasingly gaining momentum and drawing scientific attention to decode the molecular interactions between the biostimulants and plants. Although these biostimulants have been shown to improve plant health and development, the underlying molecular phenomenology [...] Read more.
The use of microbial biostimulants in the agricultural sector is increasingly gaining momentum and drawing scientific attention to decode the molecular interactions between the biostimulants and plants. Although these biostimulants have been shown to improve plant health and development, the underlying molecular phenomenology remains enigmatic. Thus, this study is a metabolomics work to unravel metabolic circuits in sap extracts from maize plants treated with a microbial biostimulant, under normal and drought conditions. The biostimulant, which was a consortium of different Bacilli strains, was applied at the planting stage, followed by drought stress application. The maize sap extracts were collected at 5 weeks after emergence, and the extracted metabolites were analyzed on liquid chromatography-mass spectrometry platforms. The acquired data were mined using chemometrics and bioinformatics tools. The results showed that under both well-watered and drought stress conditions, the application of the biostimulant led to differential changes in the profiles of amino acids, hormones, TCA intermediates, phenolics, steviol glycosides and oxylipins. These metabolic changes spanned several biological pathways and involved a high correlation of the biochemical as well as structural metabolic relationships that coordinate the maize metabolism. The hypothetical model, postulated from this study, describes metabolic events induced by the microbial biostimulant for growth promotion and enhanced defences. Such understanding of biostimulant-induced changes in maize sap pinpoints to the biochemistry and molecular mechanisms that govern the biostimulant–plant interactions, which contribute to ongoing efforts to generate actionable knowledge of the molecular and physiological mechanisms that define modes of action of biostimulants. Full article
Show Figures

Figure 1

22 pages, 2250 KiB  
Article
Impact of Single and Combined Salinity and High-Temperature Stresses on Agro-Physiological, Biochemical, and Transcriptional Responses in Rice and Stress-Release
by Lutfun Nahar, Murat Aycan, Shigeru Hanamata, Marouane Baslam and Toshiaki Mitsui
Plants 2022, 11(4), 501; https://doi.org/10.3390/plants11040501 - 12 Feb 2022
Cited by 22 | Viewed by 2915
Abstract
Here, for the first time, we aimed to identify in rice the key mechanisms and processes underlying tolerance to high-temperature (HT) or salt stress (SS) alone, the co-occurrence of both stresses, and recovery using physiological and biochemical measurements and gene expression analysis. We [...] Read more.
Here, for the first time, we aimed to identify in rice the key mechanisms and processes underlying tolerance to high-temperature (HT) or salt stress (SS) alone, the co-occurrence of both stresses, and recovery using physiological and biochemical measurements and gene expression analysis. We also investigated whether recovery from the two stressors depended on the relative intensities/relief of each stressor. Wild type (‘Yukinkomai’) rice plants were found to be more susceptible to salinity or heat applied individually. SS leads to a depletion of cellular water content, higher accumulation of Na+, and alterations in photosynthetic pigments. The stress-tolerant cultivar ‘YNU31-2-4’ (YNU) displayed a lower Na+/K+ ratio, higher water content in cells and improved photosynthetic traits, antioxidant system, and expression of defence genes. Strikingly, the SS + HT combination provided a significant level of protection to rice plants from the effects of SS alone. The expression pattern of a selected set of genes showed a specific response and dedicated pathways in plants subjected to each of the different stresses, while other genes were explicitly activated when the stresses were combined. Aquaporin genes were activated by SS, while stress-related (P5CS, MSD1, HSPs, and ions transporters) genes were shaped by HT. Hierarchical clustering and principal component analyses showed that several traits exhibited a gradually aggravating effect as plants were exposed to the combined stresses and identified heat as a mitigating factor, clearly separating heat + salt-stressed from salt-non-heat-stressed plants. Furthermore, seedling recovery was far more dependent on the relative intensities of stressors and cultivars, demonstrating the influence of one stressor over another upon stress-release. Taken together, our data show the uniqueness and complexity of the physiological and molecular network modules used by rice plants to respond to single and combined stresses and recovery. Full article
(This article belongs to the Special Issue Advances in Biosaline Agriculture)
Show Figures

Figure 1

15 pages, 1575 KiB  
Article
Aqueous Extracts of Three Herbs Allelopathically Inhibit Lettuce Germination but Promote Seedling Growth at Low Concentrations
by Kaili Wang, Ting Wang, Cheng Ren, Pengpeng Dou, Zhengzhou Miao, Xiqiang Liu, Ding Huang and Kun Wang
Plants 2022, 11(4), 486; https://doi.org/10.3390/plants11040486 - 11 Feb 2022
Cited by 17 | Viewed by 3089
Abstract
Allelopathy is an important process in plant communities. The effects of allelopathy on seed germination and seedling development have been extensively investigated. However, the influences of extract soaking time and concentration on the foregoing parameters are poorly understood. Here, we conducted a seed [...] Read more.
Allelopathy is an important process in plant communities. The effects of allelopathy on seed germination and seedling development have been extensively investigated. However, the influences of extract soaking time and concentration on the foregoing parameters are poorly understood. Here, we conducted a seed germination assay to determine the allelopathic effects of the donor herbs Achnatherum splendens (Trin.) Nevski, Artemisia frigida Willd., and Stellera chamaejasme L., from a degraded grassland ecosystem in northern China, on lettuce (Lactuca sativa L.) seed germination and early seedling growth. Extract soaking times (12 h or 24 h) did not exhibit significantly different effects on lettuce seed germination or seedling development. However, all aqueous herb extracts inhibited lettuce seed germination and root length (RI < 0) and promoted lettuce shoot length, stem length, leaf length, and leaf width (RI > 0) at both low (0.005 g mL−1) and high (0.05 g mL−1) concentrations. Moreover, A. splendens extracts increased seedling biomass (RI > 0) and synthetical allelopathic effect (SE > 0) at both concentrations. In contrast, both A. frigida and S. chamaejasme extracts had hormesis effects, which stimulate at low concentrations (RI > 0) but inhibit at high concentrations (RI < 0) on seedling biomass and synthetical allelopathic effect (SE). The results suggest that allelopathic potential may be an important mechanism driving the dominance of A. frigida and S. chamaejasme in degraded grasslands. Reseeding allelopathy-promoting species such as A. splendens may be beneficial to grassland restoration. The present study also demonstrated that seedling biomass, root and shoot length, and seed germination rate are the optimal bioindicators in allelopathy assays and could be more representative when they are combined with the results of multivariate analyses. Full article
(This article belongs to the Special Issue Plant–Plant Allelopathic Interactions)
Show Figures

Figure 1

20 pages, 3073 KiB  
Article
Characteristics of the Seed Germination and Seedlings of Six Grape Varieties (V. vinifera)
by Zhi-Lei Wang, Miao Hui, Xue-Qing Shi, Dong Wu, Ying Wang, Xing Han, Xiao Cao, Fei Yao, Hua Li and Hua Wang
Plants 2022, 11(4), 479; https://doi.org/10.3390/plants11040479 - 10 Feb 2022
Cited by 9 | Viewed by 2162
Abstract
Intraspecific recurrent selection in V. vinifera is an effective method for breeding of high quality, disease-, cold-, and drought-resistance grapes. Exploring the optimal treatment methods for grape (V. vinifera) seeds can help to accelerate the process of intraspecific recurrent selection and [...] Read more.
Intraspecific recurrent selection in V. vinifera is an effective method for breeding of high quality, disease-, cold-, and drought-resistance grapes. Exploring the optimal treatment methods for grape (V. vinifera) seeds can help to accelerate the process of intraspecific recurrent selection and improve breeding efficiency. In this study, seeds of six V. vinifera varieties were used as experimental materials, and the germination and seedling formation characteristics were studied by single factor treatment and orthogonal compound treatment, respectively. To do this, stratification, chemical substances, beak cutting, and pre-germination treatments were tested, and the optimal treatment combination was determined for each variety. The results indicated that the optimal conditions obtained in the orthogonal experiments were not completely consistent with those in the single-factor experiments. Single factor experiment results demonstrated that two stratification methods (chilling gauze-storage and chilling sand-storage) and two pre-germination methods (pre-germination in petri dishes and pre-germination in a bean sprouter) vary in effectiveness for different varieties. gibberellin acid (GA3) soaking and beak-cutting promote the germination and seedling rate of the tested varieties. Orthogonal test results demonstrate that, for Dunkelfelder and Cabernet Sauvignon, the optimal treatment combination was chilling sand-storage + GA3 soaking seed + beak cutting + pre-germination in petri dishes. For Meili, the optimal treatment combination was chilling sand-storage + acetic acid (HAc) soaking seed + beak cutting + pre-germination in petri dishes. For Ecolly, the optimal treatment combination was chilling sand-storage + GA3 soaking seed + beak cutting + pre-germination in a bean sprouter. For Garanior, the optimal treatment combination was chilling sand-storage + HAc soaking seed + no beak cutting + pre-germination in petri dishes. For Marselan, the optimal treatment combination was chilling gauze-storage + GA3 soaking seed + beak cutting + pre-germination in a bean sprouter. This study identified the optimal conditions for seed germination and seedling formation of six grape varieties, which will facilitate future work to characterize the seed germination and seedling formation of seeds obtained by intraspecific hybridization of these varieties. This work also provides a reference for addressing problems of low seed germination rate and suboptimal seedling formation for better utilization of grape germplasms. Full article
(This article belongs to the Special Issue The Transition from Seed to Seedling)
Show Figures

Figure 1

21 pages, 3276 KiB  
Article
In Vitro Technologies for American Chestnut (Castanea dentata (Marshall) Borkh) Conservation
by Zhuoya Liu, Wen-Lu Bi, Mukund R. Shukla and Praveen K. Saxena
Plants 2022, 11(3), 464; https://doi.org/10.3390/plants11030464 - 08 Feb 2022
Cited by 5 | Viewed by 3127
Abstract
American chestnut (Castanea dentata), a native species of eastern North America, is an economically important deciduous hardwood tree that has been designated as endangered in Canada. The population of American chestnut trees has dwindled significantly across Southern Ontario due to chestnut [...] Read more.
American chestnut (Castanea dentata), a native species of eastern North America, is an economically important deciduous hardwood tree that has been designated as endangered in Canada. The population of American chestnut trees has dwindled significantly across Southern Ontario due to chestnut blight and many of the surviving trees continue to show blight disease symptoms. American chestnut requires efficient strategies for propagation and preservation for species recovery. The objective of this study was to develop a long-term plant conservation program using micropropagation and cryopreservation protocols. An in vitro technology using a liquid-based temporary immersion system (TIS) was developed for micropropagation of American chestnut. The highest rate of shoot multiplication was observed in cultures grown in the DKW (Driver and Kuniyuki 1984) basal medium supplemented with 2.2 µM 6-benzylaminopurine and 1.0 µM gibberellic acid. More than 95% of proliferated microshoots, about 40–50 mm in size, developed roots after 30 days of culture within bioreactor vessels containing DKW basal medium supplemented with 15 µM 3-Indolebutyric acid. Rooted plantlets transplanted to the greenhouse had a survival efficiency of 82% after one month of growth. The cryopreservation protocol for germplasm preservation was developed through droplet vitrification of shoots. Optimal regeneration of shoot tips occurred from explants precultured on stepwise concentrations of sucrose and subsequent dehydration in PVS3 for 30 min. Cryopreserved shoot tips were regenerated to whole plants using pre-optimized conditions of micropropagation. This study confirms the potential of TIS for micropropagation in ex situ conservation and reintroduction of endangered American chestnuts and possibly other woody plant species. Full article
(This article belongs to the Special Issue In Vitro Conservation of Endangered and Value-Added Plant Species)
Show Figures

Figure 1

19 pages, 3801 KiB  
Article
Isolation of the Novel Strain Bacillus amyloliquefaciens F9 and Identification of Lipopeptide Extract Components Responsible for Activity against Xanthomonas citri subsp. citri
by Xin Wang, Liqiong Liang, Hang Shao, Xiaoxin Ye, Xiaobei Yang, Xiaoyun Chen, Yu Shi, Lianhui Zhang, Linghui Xu and Junxia Wang
Plants 2022, 11(3), 457; https://doi.org/10.3390/plants11030457 - 07 Feb 2022
Cited by 13 | Viewed by 3361
Abstract
Citrus canker, caused by Xanthomonas citri subsp. citri (Xcc), is a quarantine disease that seriously affects citrus production worldwide. The use of microorganisms and their products for biological control has been proven to be effective in controlling Xanthomonas disease. In this [...] Read more.
Citrus canker, caused by Xanthomonas citri subsp. citri (Xcc), is a quarantine disease that seriously affects citrus production worldwide. The use of microorganisms and their products for biological control has been proven to be effective in controlling Xanthomonas disease. In this study, a novel Xcc antagonistic strain was isolated and identified as Bacillus amyloliquefaciens F9 by morphological and molecular analysis. The lipopeptide extract of B. amyloliquefaciens F9 (F9LE) effectively inhibited the growth of Xcc in an agar diffusion assay and restrained the occurrence of canker lesions in a pathogenicity test under greenhouse conditions. Consistent with these findings, F9LE treatment significantly inhibited the production of extracellular enzymes in Xcc cells and induced cell wall damage, with leakage of bacterial contents revealed by scanning electron microscopy and transmission electron microscopy analyses. In addition, F9LE also showed strong antagonistic activity against a wide spectrum of plant pathogenic bacteria and fungi. Furthermore, using electrospray ionization mass spectrometry analysis, the main antimicrobial compounds of strain F9 were identified as three kinds of lipopeptides, including homologues of surfactin, fengycin, and iturin. Taken together, our results show that B. amyloliquefaciens F9 and its lipopeptide components have the potential to be used as biocontrol agents against Xcc, and other plant pathogenic bacteria and fungi. Full article
Show Figures

Figure 1

22 pages, 18232 KiB  
Article
The Photosynthetic Efficiency and Carbohydrates Responses of Six Edamame (Glycine max. L. Merrill) Cultivars under Drought Stress
by Jeremiah M. Hlahla, Mpho S. Mafa, Rouxléne van der Merwe, Orbett Alexander, Mart-Mari Duvenhage, Gabre Kemp and Makoena J. Moloi
Plants 2022, 11(3), 394; https://doi.org/10.3390/plants11030394 - 31 Jan 2022
Cited by 18 | Viewed by 3984
Abstract
Vegetable-type soybean, also known as edamame, was recently introduced to South Africa. However, there is lack of information on its responses to drought. The aim of this study was to investigate the photosynthetic efficiency and carbohydrates responses of six edamame cultivars under drought [...] Read more.
Vegetable-type soybean, also known as edamame, was recently introduced to South Africa. However, there is lack of information on its responses to drought. The aim of this study was to investigate the photosynthetic efficiency and carbohydrates responses of six edamame cultivars under drought stress. Photosynthetic efficiency parameters, including chlorophyll fluorescence and stomatal conductance, were determined using non-invasive methods, while pigments were quantified spectrophotometrically. Non-structural carbohydrates were quantified using Megazyme kits. Structural carbohydrates were determined using Fourier-transform infrared spectroscopy (FTIR) and X-ray diffraction (XRD). Drought stress significantly increased the Fv/Fm and PIabs of AGS429 and UVE17 at pod filling stage. Chlorophyll-a, which was most sensitive to drought, was significantly reduced in AGS429 and UVE17, but chlorophyll-b was relatively stable in all cultivars, except UVE17, which showed a significant decline at flowering stage. AGS354 and AGS429 also showed reduced chlorophyll-b at pod filling. UVE17 showed a significant reduction in carotenoid content and a substantial reduction in stomatal conductance during pod filling. Drought stress during pod filling resulted in a significant increase in the contents of trehalose, sucrose and starch, but glucose was decreased. Chlorophyll-a positively correlated with starch. The FTIR and XRD results suggest that the cell wall of UVE14, followed by UVE8 and AGS429, was the most intact during drought stress. It was concluded that carotenoids, stomatal conductance, starch and hemicellulose could be used as physiological/biochemical indicators of drought tolerance in edamame. This information expands our knowledge of the drought defense responses in edamame, and it is essential for the physiological and biochemical screening of drought tolerance. Full article
(This article belongs to the Special Issue Responses of Plants to Environmental Stresses Volume II)
Show Figures

Figure 1

18 pages, 3288 KiB  
Article
QTL Identification for Stem Fiber, Strength and Rot Resistance in a DH Population from an Alien Introgression of Brassica napus
by Yujiao Shao, Yusen Shen, Feifei He and Zaiyun Li
Plants 2022, 11(3), 373; https://doi.org/10.3390/plants11030373 - 29 Jan 2022
Cited by 10 | Viewed by 2112
Abstract
Stem fiber, stem strength and stem-rot resistance are important agronomic traits in Brassica napus. To understand the molecular mechanism that controls the stem-related traits, we investigated the stem lignin (ADL), cellulose (Cel), hemicellulose (Hem) content, S/G monolignol ratio (SG), stem breaking force [...] Read more.
Stem fiber, stem strength and stem-rot resistance are important agronomic traits in Brassica napus. To understand the molecular mechanism that controls the stem-related traits, we investigated the stem lignin (ADL), cellulose (Cel), hemicellulose (Hem) content, S/G monolignol ratio (SG), stem breaking force (BF), breaking strength (F) and Sclerotinia sclerotiorum resistance (SSR). Each trait was significantly positively or negatively correlated with more than three of the other six traits. QTL mapping for ADL, Cel, Hem, SG, BF, F and SSR were performed using a doubled haploid population derived from an intertribal B. napus introgression line ‘Y689′ crossed with B. napus cv. ‘Westar’. A total of 67 additive QTL were identified and integrated into 55 consensus QTL by meta-analysis. Among the 55 consensus QTL, 23 (41.8%) QTL were co-located and were integrated into 11 unique QTL. The QTL by environment (Q × E) interactions were analyzed and 22 combined QTL were identified. In addition, candidate genes within the QTL intervals were proposed based on the known function of Arabidopsis orthologs. These results provided valuable information for improving lodging resistance, S. sclerotiorum resistance and mechanized harvesting of B. napus. Full article
(This article belongs to the Collection Exploration and Application of Useful Agricultural Genes)
Show Figures

Figure 1

13 pages, 1971 KiB  
Article
SNORKEL Genes Relating to Flood Tolerance Were Pseudogenized in Normal Cultivated Rice
by Keisuke Nagai, Yusuke Kurokawa, Yoshinao Mori, Anzu Minami, Stefan Reuscher, Jianzhong Wu, Takashi Matsumoto and Motoyuki Ashikari
Plants 2022, 11(3), 376; https://doi.org/10.3390/plants11030376 - 29 Jan 2022
Cited by 12 | Viewed by 3433
Abstract
SNORKEL1 (SK1) and SNORKEL2 (SK2) are ethylene responsive factors that regulate the internode elongation of deepwater rice in response to submergence. We previously reported that normal cultivated rice lacks SK genes because the Chromosome 12 region containing SK genes [...] Read more.
SNORKEL1 (SK1) and SNORKEL2 (SK2) are ethylene responsive factors that regulate the internode elongation of deepwater rice in response to submergence. We previously reported that normal cultivated rice lacks SK genes because the Chromosome 12 region containing SK genes was deleted from its genome. However, no study has analyzed how the genome defect occurred in that region by comparing normal cultivated rice and deepwater rice. In this study, comparison of the sequence of the end of Chromosome 12, which contains SK genes, between normal and deepwater rice showed that complicated genome changes such as insertions, deletions, inversions, substitutions, and translocation occurred frequently in this region. In addition to SK1 and SK2 of deepwater rice, gene prediction analysis identified four genes containing AP2/ERF domains in normal cultivated rice and six in deepwater rice; we called these genes SK-LIKE (SKL) genes. SKs and SKLs were present in close proximity to each other, and the SKLs in normal cultivated rice were in tandem. These predicted genes belong to the same AP2/ERF subfamily and were separated into four types: SK1, SK2, SKL3, and SKL4. Sequence comparison indicated that normal cultivated rice possesses a gene with high homology to SK2, which we named SKL1. However, none of the predicted SKLs except for SKL3s were expressed during submergence. Although SKL3s were expressed in both normal and deepwater rice, normal rice does not undergo internode elongation, suggesting that its expression does not contribute to internode elongation. Plants overexpressing SKL1, which showed the most homology to SK2, underwent internode elongation similar to plants overexpressing SK1 and SK2 under normal growth conditions. A yeast one-hybrid assay showed that the C-end of SKL1 has transcription activity, as do the C-ends of SK1 and SK2. Our results suggested that SKLs were derived via gene duplication, but were not expressed and pseudogenized in normal cultivated rice during sequence evolution. Full article
(This article belongs to the Special Issue Molecular and Physiological Basis of Abiotic Stress Tolerance)
Show Figures

Figure 1

20 pages, 36605 KiB  
Article
Chemical Composition, Antioxidant, In Vitro and In Situ Antimicrobial, Antibiofilm, and Anti-Insect Activity of Cedar atlantica Essential Oil
by Miroslava Kačániová, Lucia Galovičová, Veronika Valková, Hana Ďuranová, Jana Štefániková, Natália Čmiková, Milena Vukic, Nenad L. Vukovic and Przemysław Łukasz Kowalczewski
Plants 2022, 11(3), 358; https://doi.org/10.3390/plants11030358 - 28 Jan 2022
Cited by 13 | Viewed by 3559
Abstract
The present study was designed to evaluate commercial cedar essential oil (CEO), obtained by hydrodistillation from cedar wood, in relationship to its chemical composition and antioxidant, in vitro and in situ antimicrobial, antibiofilm, and anti-insect activity. For these purposes, gas chromatography–mass spectrometry, DPPH [...] Read more.
The present study was designed to evaluate commercial cedar essential oil (CEO), obtained by hydrodistillation from cedar wood, in relationship to its chemical composition and antioxidant, in vitro and in situ antimicrobial, antibiofilm, and anti-insect activity. For these purposes, gas chromatography–mass spectrometry, DPPH radical-scavenging assay, agar and disc diffusion, and vapor phase methods were used. The results from the volatile profile determination showed that δ-cadinene (36.3%), (Z)-β-farnesene (13.8%), viridiflorol (7.3%), and himachala-2,4-diene (5.4%) were the major components of the EO chemical constitution. Based on the obtained results, a strong antioxidant effect (81.1%) of the CEO was found. CEO is characterized by diversified antimicrobial activity, and the zones of inhibition ranged from 7.33 to 21.36 mm in gram-positive and gram-negative bacteria, and from 5.44 to 13.67 mm in yeasts and fungi. The lowest values of minimal inhibition concentration (MIC) were noted against gram-positive Micrococcus luteus (7.46 µL/mL) and against yeast Candida krusei (9.46 µL/mL). It seems that the vapor phase of CEO can inhibit the growth of the microscopic filamentous fungi of the genus Penicillium according to in situ antifungal analysis on bread, carrots, and celery. This finding confirms the impact of CEO on the change in the protein structure of older biofilms of Pseudomonas fluorescens and Salmonella enterica subsp. enterica. Insecticidal activity of a vapor phase has also been demonstrated against Pyrrhocoris apterus. CEO showed various advantages on antimicrobial activity, and it is an ideal substitute for food safety. Full article
Show Figures

Figure 1

17 pages, 2361 KiB  
Article
Esmeralda Peach (Prunus persica) Fruit Yield and Quality Response to Nitrogen Fertilization
by Gilberto Nava, Carlos Reisser Júnior, Léon-Étienne Parent, Gustavo Brunetto, Jean Michel Moura-Bueno, Renan Navroski, Jorge Atílio Benati and Caroline Farias Barreto
Plants 2022, 11(3), 352; https://doi.org/10.3390/plants11030352 - 27 Jan 2022
Cited by 7 | Viewed by 3194
Abstract
‘Esmeralda’ is an orange fleshed peach cultivar primarily used for juice extraction and secondarily used for the fresh fruit market. Fruit yield and quality depend on several local environmental and managerial factors, mainly on nitrogen, which must be balanced with other nutrients. Similar [...] Read more.
‘Esmeralda’ is an orange fleshed peach cultivar primarily used for juice extraction and secondarily used for the fresh fruit market. Fruit yield and quality depend on several local environmental and managerial factors, mainly on nitrogen, which must be balanced with other nutrients. Similar to other perennial crops, peach trees show carryover effects of carbohydrates and nutrients and of nutrients stored in their tissues. The aims of the present study are (i) to identify the major sources of seasonal variability in fruit yield and qu Fruit Tree Department of Federal University of Pelotas (UFPEL), Pelotas 96010610ality; and (ii) to establish the N dose and the internal nutrient balance to reach high fruit yield and quality. The experiment was conducted from 2014 to 2017 in Southern Brazil and it followed five N treatments (0, 40, 80, 120 and 160 kg N ha−1 year−1). Foliar compositions were centered log-ratio (clr) transformed in order to account for multiple nutrient interactions and allow computing distances between compositions. Based on the feature ranking, chilling hours, degree-days and rainfall were the most influential features. Machine learning models k-nearest neighbors (KNN) and stochastic gradient decent (SGD) performed well on yield and quality indices, and reached accuracy from 0.75 to 1.00. In 2014, fruit production did not respond to added N, and it indicated the carryover effects of previously stored carbohydrates and nutrients. The plant had a quadratic response (p < 0.05) to N addition in 2015 and 2016, which reached maximum yield of 80 kg N ha−1. In 2017, harvest was a failure due to the chilling hours (198 h) and the relatively small number of fruits per tree. Fruit yield and antioxidant content increased abruptly when foliar clrCu was >−5.410. The higher foliar P linearly decreased total titratable acidity and increased pulp firmness when clrP > 0.556. Foliar N concentration range was narrow at high fruit yield and quality. The present results have emphasized the need of accounting for carryover effects, nutrient interactions and local factors in order to predict peach yield and nutrient dosage. Full article
Show Figures

Figure 1

19 pages, 2938 KiB  
Article
Branch Numbers and Crop Load Combination Effects on Production and Fruit Quality of Flat Peach Cultivars (Prunus persica (L.) Batsch) Trained as Catalonian Vase
by Luca Mazzoni, Irene Medori, Francesca Balducci, Micol Marcellini, Paolo Acciarri, Bruno Mezzetti and Franco Capocasa
Plants 2022, 11(3), 308; https://doi.org/10.3390/plants11030308 - 24 Jan 2022
Cited by 8 | Viewed by 2489
Abstract
Thinning and pruning are expensive cultural practices in peach cultivation, but essential to obtain adequate production. This study evaluated the effects of combining two pruning (four and six scaffold branches) and three thinning (low, medium, and high crop load) levels on yield and [...] Read more.
Thinning and pruning are expensive cultural practices in peach cultivation, but essential to obtain adequate production. This study evaluated the effects of combining two pruning (four and six scaffold branches) and three thinning (low, medium, and high crop load) levels on yield and fruit quality of four different flat peach cultivars, trained as Catalonian vase in 2017–2018 in Italy. Productive (average fruit weight, plant total production, and fruit circumference), qualitative (fruit firmness and overcolor, Soluble Solids Content, and Titratable Acidity), and nutritional (Total Antioxidant Capacity, and Total Phenol Content) parameters were evaluated. For productive parameters, a high crop load level led to a decrease in fruit weight and circumference, while a high crop load resulted in higher plant yield. Regarding the qualitative parameters, fruit SSC significantly increased with the diminution of the crop load level in both years of study, while TA was not influenced by crop load and number of branches. Both the total antioxidant capacity and the polyphenol content decreased with an increase in branches number. The findings derived from this study will help growers to select the most suitable combination among genotypes and plant management, to obtain the desired productive or qualitative goals. Full article
(This article belongs to the Special Issue Fruit Quality and Ripening in Prunus)
Show Figures

Figure 1

20 pages, 3592 KiB  
Article
Deciphering Molecular Mechanisms Involved in Salinity Tolerance in Guar (Cyamopsis tetragonoloba (L.) Taub.) Using Transcriptome Analyses
by Biswa R. Acharya, Devinder Sandhu, Christian Dueñas, Jorge F. S. Ferreira and Kulbhushan K. Grover
Plants 2022, 11(3), 291; https://doi.org/10.3390/plants11030291 - 22 Jan 2022
Cited by 12 | Viewed by 3135
Abstract
Guar is a commercially important legume crop known for guar gum. Guar is tolerant to various abiotic stresses, but the mechanisms involved in its salinity tolerance are not well established. This study aimed to understand molecular mechanisms of salinity tolerance in guar. RNA [...] Read more.
Guar is a commercially important legume crop known for guar gum. Guar is tolerant to various abiotic stresses, but the mechanisms involved in its salinity tolerance are not well established. This study aimed to understand molecular mechanisms of salinity tolerance in guar. RNA sequencing (RNA-Seq) was employed to study the leaf and root transcriptomes of salt-tolerant (Matador) and salt-sensitive (PI 340261) guar genotypes under control and salinity. Our analyses identified a total of 296,114 unigenes assembled from 527 million clean reads. Transcriptome analysis revealed that the gene expression differences were more pronounced between salinity treatments than between genotypes. Differentially expressed genes associated with stress-signaling pathways, transporters, chromatin remodeling, microRNA biogenesis, and translational machinery play critical roles in guar salinity tolerance. Genes associated with several transporter families that were differentially expressed during salinity included ABC, MFS, GPH, and P-ATPase. Furthermore, genes encoding transcription factors/regulators belonging to several families, including SNF2, C2H2, bHLH, C3H, and MYB were differentially expressed in response to salinity. This study revealed the importance of various biological pathways during salinity stress and identified several candidate genes that may be used to develop salt-tolerant guar genotypes that might be suitable for cultivation in marginal soils with moderate to high salinity or using degraded water. Full article
(This article belongs to the Special Issue 10th Anniversary of Plants—Recent Advances and Perspectives)
Show Figures

Figure 1

29 pages, 4379 KiB  
Article
Early Citizen Science Action in Ethnobotany: The Case of the Folk Medicine Collection of Dr. Mihkel Ostrov in the Territory of Present-Day Estonia, 1891–1893
by Raivo Kalle, Andrea Pieroni, Ingvar Svanberg and Renata Sõukand
Plants 2022, 11(3), 274; https://doi.org/10.3390/plants11030274 - 20 Jan 2022
Cited by 11 | Viewed by 3241
Abstract
Presently, collecting data through citizen science (CS) is increasingly being used in botanical, zoological and other studies. However, until now, ethnobotanical studies have underused CS data collection methods. This study analyses the results of the appeal organized by the physician Dr. Mihkel Ostrov [...] Read more.
Presently, collecting data through citizen science (CS) is increasingly being used in botanical, zoological and other studies. However, until now, ethnobotanical studies have underused CS data collection methods. This study analyses the results of the appeal organized by the physician Dr. Mihkel Ostrov (1863–1940), which can be considered the first-ever internationally known systematic example of ethnopharmacological data collection involving citizens. We aim to understand what factors enhanced or diminished the success of the collaboration between Ostrov and the citizens of that time. The reliability of Ostrov’s collection was enhanced by the herbarium specimens (now missing) used in the identification of vernacular names. The collection describes the use of 65 species from 27 genera. The timing of its collection coincided with not only a national awakening and recently obtained high level of literacy but also the activation of civil society, people’s awareness of the need to collect folklore, the voluntary willingness of newspapers to provide publishing space and later to collect data, and the use of a survey method focusing on a narrow topic. While Ostrov’s only means of communication with the public was through newspapers, today, with electronic options, social media can also be used. Full article
(This article belongs to the Special Issue Historical Ethnobotany: Interpreting the Old Records)
Show Figures

Figure 1

27 pages, 1329 KiB  
Article
Genome Editing in Crop Plant Research—Alignment of Expectations and Current Developments
by Meike Hüdig, Natalie Laibach and Anke-Christiane Hein
Plants 2022, 11(2), 212; https://doi.org/10.3390/plants11020212 - 14 Jan 2022
Cited by 5 | Viewed by 4670
Abstract
The rapid development of genome editing and other new genomic techniques (NGT) has evoked manifold expectations on purposes of the application of these techniques to crop plants. In this study, we identify and align these expectations with current scientific development. We apply a [...] Read more.
The rapid development of genome editing and other new genomic techniques (NGT) has evoked manifold expectations on purposes of the application of these techniques to crop plants. In this study, we identify and align these expectations with current scientific development. We apply a semi-quantitative text analysis approach on political, economic, and scientific opinion papers to disentangle and extract expectations towards the application of NGT-based plants. Using the sustainable development goals (SDG) of the 2030 agenda as categories, we identify contributions to food security or adaptation to climatic changes as the most frequently mentioned expectations, accompanied by the notion of sustainable agriculture and food systems. We then link SDG with relevant plant traits and review existing research and commercial field trials for genome-edited crop plants. For a detailed analysis we pick as representative traits drought tolerance and resistance against fungal pathogens. Diverse genetic setscrews for both traits have been identified, modified, and tested under laboratory conditions, although there are only a few in the field. All in all, NGT-plants that can withstand more than one stressor or different environments are not documented in advanced development states. We further conclude that developing new plants with modified traits will not be sufficient to reach food security or adaption to climatic changes in a short time frame. Further scientific development of sustainable agricultural systems will need to play an important role to tackle SDG challenges, as well. Full article
Show Figures

Figure 1

14 pages, 3149 KiB  
Article
Metabolic and Physiological Regulation of Aspartic Acid-Mediated Enhancement of Heat Stress Tolerance in Perennial Ryegrass
by Shuhan Lei, Stephanie Rossi and Bingru Huang
Plants 2022, 11(2), 199; https://doi.org/10.3390/plants11020199 - 13 Jan 2022
Cited by 24 | Viewed by 3910
Abstract
Aspartate is the most critical amino acid in the aspartate metabolic pathway, which is associated with multiple metabolic pathways, such as protein synthesis, nucleotide metabolism, TCA cycle, glycolysis, and hormone biosynthesis. Aspartate also plays an important role in plant resistance to abiotic stress, [...] Read more.
Aspartate is the most critical amino acid in the aspartate metabolic pathway, which is associated with multiple metabolic pathways, such as protein synthesis, nucleotide metabolism, TCA cycle, glycolysis, and hormone biosynthesis. Aspartate also plays an important role in plant resistance to abiotic stress, such as cold stress, drought stress, salt stress or heavy metal stress. This study found that the chlorophyll content and antioxidant active enzyme content (SOD, CAT, POD and APX) of perennial ryegrass treated with 2 mM aspartate were significantly higher than those treated with water under heat stress. The electrolyte leakage rate, MDA content and peroxide levels (O2− and H2O2) of perennial ryegrass treated with aspartate were significantly lower than those of perennial ryegrass treated with water, indicating that exogenous aspartate increases the content of chlorophyll, maintain the integrity of cell membrane system, and enhances SOD-CAT antioxidant pathway to eliminate the oxidative damage caused by ROS in perennial ryegrass under heat stress. Furthermore, exogenous aspartate could enhance the TCA cycle, the metabolism of the amino acids related to the TCA cycle, and pyrimidine metabolism to enhance the heat tolerance of perennial ryegrass. Full article
Show Figures

Figure 1

16 pages, 779 KiB  
Article
Apple Fruit Growth and Quality Depend on the Position in Tree Canopy
by Darius Kviklys, Jonas Viškelis, Mindaugas Liaudanskas, Valdimaras Janulis, Kristina Laužikė, Giedrė Samuolienė, Nobertas Uselis and Juozas Lanauskas
Plants 2022, 11(2), 196; https://doi.org/10.3390/plants11020196 - 12 Jan 2022
Cited by 19 | Viewed by 4157
Abstract
Modern apple orchard systems should guarantee homogeneity of fruit internal and external qualities and fruit maturity parameters. However, when orchards reach productive age, a variation of these parameters takes place and mostly it is related to uneven light distribution within the tree canopy. [...] Read more.
Modern apple orchard systems should guarantee homogeneity of fruit internal and external qualities and fruit maturity parameters. However, when orchards reach productive age, a variation of these parameters takes place and mostly it is related to uneven light distribution within the tree canopy. The aim of the study was to evaluate the canopy position’s effect on fruit internal and external quality parameters. This is the first study where all the main fruit quality and maturation parameters were evaluated on the same trees and were related to the light conditions and photosynthetic parameters. Four fruit positions were tested: top of the apple tree, lower inside part of the canopy, and east and west sides of the apple tree. Fruit quality variability was significant for fruit size, blush, colour indices, total sugar content, dry matter concentration, accumulation of secondary metabolites and radical scavenging activity. Fruit position in the canopy did not affect flesh firmness and fruit maturity parameters such as the starch index, Streif index and respiration rate. At the Lithuanian geographical location (55°60′ N), significantly, the highest fruit quality was achieved at the top of the apple tree. The tendency was established that apple fruits from the west side of the canopy have better fruit quality than from the east side and it could be related to better light conditions at the west side of the tree. Inside the canopy, fruits were distinguished only by the higher accumulation of triterpenic compounds and higher content of malic acid. Light is a main factor of fruit quality variation, thus all orchard management practices, including narrow two-dimensional tree canopies and reflecting ground covers which improve light penetration through the tree canopy, should be applied. Full article
(This article belongs to the Special Issue Selected Papers from Conference of CYSENI 2021)
Show Figures

Figure 1

31 pages, 4986 KiB  
Article
DNA Methylation Changes and Its Associated Genes in Mulberry (Morus alba L.) Yu-711 Response to Drought Stress Using MethylRAD Sequencing
by Michael Ackah, Liangliang Guo, Shaocong Li, Xin Jin, Charles Asakiya, Evans Tawiah Aboagye, Feng Yuan, Mengmeng Wu, Lionnelle Gyllye Essoh, Daniel Adjibolosoo, Thomas Attaribo, Qiaonan Zhang, Changyu Qiu, Qiang Lin and Weiguo Zhao
Plants 2022, 11(2), 190; https://doi.org/10.3390/plants11020190 - 12 Jan 2022
Cited by 16 | Viewed by 3032
Abstract
Drought stress remains one of the most detrimental environmental cues affecting plant growth and survival. In this work, the DNA methylome changes in mulberry leaves under drought stress (EG) and control (CK) and their impact on gene regulation were investigated by MethylRAD sequencing. [...] Read more.
Drought stress remains one of the most detrimental environmental cues affecting plant growth and survival. In this work, the DNA methylome changes in mulberry leaves under drought stress (EG) and control (CK) and their impact on gene regulation were investigated by MethylRAD sequencing. The results show 138,464 (37.37%) and 56,241 (28.81%) methylation at the CG and CWG sites (W = A or T), respectively, in the mulberry genome between drought stress and control. The distribution of the methylome was prevalent in the intergenic, exonic, intronic and downstream regions of the mulberry plant genome. In addition, we discovered 170 DMGs (129 in CG sites and 41 in CWG sites) and 581 DMS (413 in CG sites and 168 in CWG sites). Kyoto Encyclopedia of Genes and Genomes (KEGG) enrichment analysis indicates that phenylpropanoid biosynthesis, spliceosome, amino acid biosynthesis, carbon metabolism, RNA transport, plant hormone, signal transduction pathways, and quorum sensing play a crucial role in mulberry response to drought stress. Furthermore, the qRT-PCR analysis indicates that the selected 23 genes enriched in the KEGG pathways are differentially expressed, and 86.96% of the genes share downregulated methylation and 13.04% share upregulation methylation status, indicating the complex link between DNA methylation and gene regulation. This study serves as fundamentals in discovering the epigenomic status and the pathways that will significantly enhance mulberry breeding for adaptation to a wide range of environments. Full article
(This article belongs to the Special Issue Chromatin Integration and Dynamics of Environmental Cues)
Show Figures

Graphical abstract

12 pages, 12585 KiB  
Article
Effects of Elevated Temperature on Root System Development of Two Lupine Species
by Virgilija Gavelienė, Sigita Jurkonienė, Elžbieta Jankovska-Bortkevič and Danguolė Švegždienė
Plants 2022, 11(2), 192; https://doi.org/10.3390/plants11020192 - 12 Jan 2022
Cited by 11 | Viewed by 2065
Abstract
The aim of this study was to assess the effect of elevated temperature on the growth, morphology and spatial orientation of lupine roots at the initial stages of development and on the formation of lupine root architecture at later stages. Two lupine species [...] Read more.
The aim of this study was to assess the effect of elevated temperature on the growth, morphology and spatial orientation of lupine roots at the initial stages of development and on the formation of lupine root architecture at later stages. Two lupine species were studied—the invasive Lupinus polyphyllus Lindl. and the non-invasive L. luteus L. The plants were grown in climate chambers under 25 °C and simulated warming at 30 °C conditions. The angle of root curvature towards the vector of gravity was measured at the 48th hour of growth, and during a 4-h period after 90° reorientation. Root biometrical, histological measurements were carried out on 7-day-old and 30-day-old plants. The elevation of 5 °C affected root formation of the two lupine species differently. The initial roots of L. polyphyllus were characterized by worse spatial orientation, reduced growth and reduced mitotic index of root apical meristem at 30 °C compared with 25 °C. The length of primary roots of 30-day-old lupines and the number of lateral roots decreased by 14% and 16%, respectively. More intense root development and formation were observed in non-invasive L. luteus at 30 °C. Our results provide important information on the effect of elevated temperature on the formation of root architecture in two lupine species and suggest that global warming may impact the invasiveness of these species. Full article
(This article belongs to the Special Issue Crop Adaptation to Elevated CO2 and Temperature)
Show Figures

Figure 1

15 pages, 1905 KiB  
Article
Trichoderma-Induced Resistance to Botrytis cinerea in Solanum Species: A Meta-Analysis
by Samuele Risoli, Lorenzo Cotrozzi, Sabrina Sarrocco, Maria Nuzzaci, Elisa Pellegrini and Antonella Vitti
Plants 2022, 11(2), 180; https://doi.org/10.3390/plants11020180 - 11 Jan 2022
Cited by 13 | Viewed by 2713
Abstract
With the idea of summarizing the outcomes of studies focusing on the resistance induced by Trichoderma spp. against Botrytis cinerea in tomato, the present paper shows, for the first time, results of a meta-analysis performed on studies published from 2010 to 2021 concerning [...] Read more.
With the idea of summarizing the outcomes of studies focusing on the resistance induced by Trichoderma spp. against Botrytis cinerea in tomato, the present paper shows, for the first time, results of a meta-analysis performed on studies published from 2010 to 2021 concerning the cross-talk occurring in the tomato–Trichoderma-B. cinerea system. Starting from an initial set of 40 papers, the analysis was performed on 15 works and included nine parameters, as a result of a stringent selection mainly based on the availability of more than one article including the same indicator. The resulting work not only emphasizes the beneficial effects of Trichoderma in the control of grey mold in tomato leaves (reduction in disease intensity, severity and incidence and modulation of resistance genes in the host), but carefully drives the readers to reply to two questions: (i) What are the overall effects of Trichoderma on B. cinerea infection in tomato? (ii) Do the main effects of Trichoderma differ based on the tomato species, Trichoderma species, amount, type and duration of treatment? At the same time, this meta-analysis highlights some weak points of the available literature and should be seen as an invitation to improve future works to better the conceptualization and measure. Full article
(This article belongs to the Special Issue Biological Control of Plant Diseases)
Show Figures

Figure 1

55 pages, 19977 KiB  
Article
Ethnomedicinal and Ethnobotanical Survey in the Aosta Valley Side of the Gran Paradiso National Park (Western Alps, Italy)
by Cristina Danna, Laura Poggio, Antonella Smeriglio, Mauro Mariotti and Laura Cornara
Plants 2022, 11(2), 170; https://doi.org/10.3390/plants11020170 - 09 Jan 2022
Cited by 14 | Viewed by 3309
Abstract
Most of traditional knowledge about plants and their uses is fast disappearing because of socio-economic and land use changes. This trend is also occurring in bio-cultural refugia, such as mountain areas. New data on Traditional Ethnobotanical Knowledge (TEK) of Italian alpine regions were [...] Read more.
Most of traditional knowledge about plants and their uses is fast disappearing because of socio-economic and land use changes. This trend is also occurring in bio-cultural refugia, such as mountain areas. New data on Traditional Ethnobotanical Knowledge (TEK) of Italian alpine regions were collected relating to three valleys (Cogne, Valsavarenche, Rhêmes) of the Gran Paradiso National Park. Extensive dialogues and semi-structured interviews with 68 native informants (30 men, 38 women; mean age 70) were carried out between 2017 and 2019. A total of 3918 reports were collected, concerning 217 taxa (including 10 mushrooms, 1 lichen) mainly used for medicinal (42%) and food (33%) purposes. Minor uses were related to liquor making (7%), domestic (7%), veterinary (5%), forage (4%), cosmetic (1%) and other (2%). Medicinal plants were used to treat 14 ailment categories, of which the most important were respiratory (22%), digestive (19%), skin (13%), musculoskeletal (10%) and genitourinary (10%) diseases. Data were also evaluated by quantitative ethnobotanical indexes. The results show a rich and alive traditional knowledge concerning plants uses in the Gran Paradiso National Park. Plants resources may provide new opportunities from the scientific point of view, for the valorization of local products for health community and for sustainable land management. Full article
(This article belongs to the Collection Bioactive Compounds in Plants)
Show Figures

Graphical abstract

16 pages, 2339 KiB  
Article
HS-SPME-GC–MS Volatile Profile Characterization of Peach (Prunus persica L. Batsch) Varieties Grown in the Eastern Balkan Peninsula
by Dasha Mihaylova, Aneta Popova, Radka Vrancheva and Ivayla Dincheva
Plants 2022, 11(2), 166; https://doi.org/10.3390/plants11020166 - 08 Jan 2022
Cited by 16 | Viewed by 2555
Abstract
The volatile compounds of eight peach varieties (Prunus persica L.)—“Filina”, “Gergana”, “Ufo-4”, “July lady”, “Laskava”, “Flat Queen”, “Evmolpiya”, and “Morsiani 90”—growing in Bulgaria were analyzed for the first time. Gas chromatography–mass spectrometry (GC–MS) analysis and the HS-SPME technique revealed the presence of [...] Read more.
The volatile compounds of eight peach varieties (Prunus persica L.)—“Filina”, “Gergana”, “Ufo-4”, “July lady”, “Laskava”, “Flat Queen”, “Evmolpiya”, and “Morsiani 90”—growing in Bulgaria were analyzed for the first time. Gas chromatography–mass spectrometry (GC–MS) analysis and the HS-SPME technique revealed the presence of 65 volatile compounds; the main identified components were aldehydes, esters, and fatty acids. According to the provided principal component analysis (PCA) and hierarchical cluster analysis (HCA), the relative quantities of the identified volatile compounds depended on the studied peach variety. The results obtained could be successfully applied for the metabolic chemotaxonomy of peaches. Full article
Show Figures

Figure 1

19 pages, 3136 KiB  
Article
Down-Regulation of Cytokinin Receptor Gene SlHK2 Improves Plant Tolerance to Drought, Heat, and Combined Stresses in Tomato
by Naveed Mushtaq, Yong Wang, Junmiao Fan, Yi Li and Jing Ding
Plants 2022, 11(2), 154; https://doi.org/10.3390/plants11020154 - 07 Jan 2022
Cited by 17 | Viewed by 2555
Abstract
Environmental stresses negatively affect the growth and development of plants. Several previous studies have elucidated the response mechanisms of plants to drought and heat applied separately; however, these two abiotic stresses often coincide in environmental conditions. The global climate change pattern has projected [...] Read more.
Environmental stresses negatively affect the growth and development of plants. Several previous studies have elucidated the response mechanisms of plants to drought and heat applied separately; however, these two abiotic stresses often coincide in environmental conditions. The global climate change pattern has projected that combined drought and heat stresses will tend to increase in the near future. In this study, we down-regulated the expression of a cytokinin receptor gene SlHK2 using RNAi and investigated the role of this gene in regulating plant responses to individual drought, heat, and combined stresses (drought + heat) in tomato. Compared to the wild-type (WT), SlHK2 RNAi plants exhibited fewer stress symptoms in response to individual and combined stress treatments. The enhanced abiotic stress tolerance of SlHK2 RNAi plants can be associated with increased membrane stability, osmoprotectant accumulation, and antioxidant enzyme activities. Furthermore, photosynthesis machinery was also protected in SlHK2 RNAi plants. Collectively, our results show that down-regulation of the cytokinin receptor gene SlHK2, and consequently cytokinin signaling, can improve plant tolerance to drought, heat, and combined stress. Full article
Show Figures

Figure 1

15 pages, 4275 KiB  
Article
Study on the Role of Phytohormones in Resistance to Watermelon Fusarium Wilt
by Feiying Zhu, Zhiwei Wang, Yong Fang, Jianhua Tong, Jing Xiang, Kankan Yang and Ruozhong Wang
Plants 2022, 11(2), 156; https://doi.org/10.3390/plants11020156 - 07 Jan 2022
Cited by 6 | Viewed by 2923
Abstract
Fusarium wilt disease is one of the major diseases causing a decline in watermelon yield and quality. Researches have informed that phytohormones play essential roles in regulating plants growth, development, and stress defendants. However, the molecular mechanism of salicylic acid (SA), jasmonic acid [...] Read more.
Fusarium wilt disease is one of the major diseases causing a decline in watermelon yield and quality. Researches have informed that phytohormones play essential roles in regulating plants growth, development, and stress defendants. However, the molecular mechanism of salicylic acid (SA), jasmonic acid (JA), and abscisic acid (ABA) in resistance to watermelon Fusarium wilt remains unknown. In this experiment, we established the SA, JA, and ABA determination system in watermelon roots, and analyzed their roles in against watermelon Fusarium wilt compared to the resistant and susceptible varieties using transcriptome sequencing and RT-qPCR. Our results revealed that the up-regulated expression of Cla97C09G174770, Cla97C05G089520, Cla97C05G081210, Cla97C04G071000, and Cla97C10G198890 genes in resistant variety were key factors against (Fusarium oxysporum f. sp. Niveum) FON infection at 7 dpi. Additionally, there might be crosstalk between SA, JA, and ABA, caused by those differentially expressed (non-pathogen-related) NPRs, (Jasmonate-resistant) JAR, and (Pyrabactin resistance 1-like) PYLs genes, to trigger the plant immune system against FON infection. Overall, our results provide a theoretical basis for watermelon resistance breeding, in which phytohormones participate. Full article
(This article belongs to the Special Issue Ecological Processes of Root–Soil Interface)
Show Figures

Figure 1

16 pages, 1448 KiB  
Article
Impact of Harvest Time and Pruning Technique on Total CBD Concentration and Yield of Medicinal Cannabis
by Danilo Crispim Massuela, Jens Hartung, Sebastian Munz, Federico Erpenbach and Simone Graeff-Hönninger
Plants 2022, 11(1), 140; https://doi.org/10.3390/plants11010140 - 05 Jan 2022
Cited by 18 | Viewed by 15286
Abstract
The definition of optimum harvest and pruning interventions are important factors varying inflorescence yield and cannabinoid composition. This study investigated the impact of (i) harvest time (HT) and (ii) pruning techniques (PT) on plant biomass accumulation, CBD and CBDA-concentrations and total CBD yield [...] Read more.
The definition of optimum harvest and pruning interventions are important factors varying inflorescence yield and cannabinoid composition. This study investigated the impact of (i) harvest time (HT) and (ii) pruning techniques (PT) on plant biomass accumulation, CBD and CBDA-concentrations and total CBD yield of a chemotype III medical cannabis genotype under indoor cultivation. The experiment consisted of four HTs between 5 and 11 weeks of flowering and three PTs-apical cut (T); removal of side shoots (L) and control (C), not pruned plants. Results showed that inflorescence dry weight increased continuously, while the total CBD concentration did not differ significantly over time. For the studied genotype, optimum harvest time defined by highest total CBD yield was found at 9 weeks of flowering. Total CBD-concentration of inflorescences in different fractions of the plant’s height was significantly higher in the top (9.9%) in comparison with mid (8.2%) and low (7.7%) fractions. The T plants produced significantly higher dry weight of inflorescences and leaves than L and C. Total CBD yield of inflorescences for PTs were significantly different among pruned groups, but do not differ from the control group. However, a trend for higher yields was observed (T > C > L). Full article
(This article belongs to the Special Issue Studies on Cannabis sativa and Cannabinoids)
Show Figures

Graphical abstract

16 pages, 4636 KiB  
Article
Polyploidization Increases the Lipid Content and Improves the Nutritional Quality of Rice
by Wei Wang, Qiang Tu, Rongrong Chen, Pincang Lv, Yanqing Xu, Qian Xie, Zhaojian Song, Yuchi He, Detian Cai and Xianhua Zhang
Plants 2022, 11(1), 132; https://doi.org/10.3390/plants11010132 - 04 Jan 2022
Cited by 9 | Viewed by 1811
Abstract
Plant polyploidization is frequently associated with changes in nutrient contents. However, the possible contribution of metabolites to this change has not been investigated by characterizing the metabolite contents of diploid and tetraploid forms of rice (Oryza sativa L.). We compared the metabolites [...] Read more.
Plant polyploidization is frequently associated with changes in nutrient contents. However, the possible contribution of metabolites to this change has not been investigated by characterizing the metabolite contents of diploid and tetraploid forms of rice (Oryza sativa L.). We compared the metabolites of a group of diploid–tetraploid japonica brown rice and a group of diploid–tetraploid indica brown rice based on liquid chromatography–tandem mass spectrometry. In total, 401 metabolites were identified; of these, between the two diploid–tetraploid groups, 180 showed opposite expression trends, but 221 showed the same trends (147 higher abundance vs. 74 lower abundance). Hierarchical cluster analysis of differential metabolites between diploid and tetraploid species showed a clear grouping pattern, in which the expression abundance of lipids, amino acids and derivatives, and phenolic acids increased in tetraploids. Further analysis revealed that the lipids in tetraploid rice increased significantly, especially unsaturated fatty acids and phospholipids. This study provides further basis for understanding the changes in rice nutritional quality following polyploidization and may serve as a new theoretical reference for breeding eutrophic or functional rice varieties via polyploidization. Full article
Show Figures

Figure 1

16 pages, 2053 KiB  
Article
CottonGen: The Community Database for Cotton Genomics, Genetics, and Breeding Research
by Jing Yu, Sook Jung, Chun-Huai Cheng, Taein Lee, Ping Zheng, Katheryn Buble, James Crabb, Jodi Humann, Heidi Hough, Don Jones, J. Todd Campbell, Josh Udall and Dorrie Main
Plants 2021, 10(12), 2805; https://doi.org/10.3390/plants10122805 - 18 Dec 2021
Cited by 45 | Viewed by 5907
Abstract
Over the last eight years, the volume of whole genome, gene expression, SNP genotyping, and phenotype data generated by the cotton research community has exponentially increased. The efficient utilization/re-utilization of these complex and large datasets for knowledge discovery, translation, and application in crop [...] Read more.
Over the last eight years, the volume of whole genome, gene expression, SNP genotyping, and phenotype data generated by the cotton research community has exponentially increased. The efficient utilization/re-utilization of these complex and large datasets for knowledge discovery, translation, and application in crop improvement requires them to be curated, integrated with other types of data, and made available for access and analysis through efficient online search tools. Initiated in 2012, CottonGen is an online community database providing access to integrated peer-reviewed cotton genomic, genetic, and breeding data, and analysis tools. Used by cotton researchers worldwide, and managed by experts with crop-specific knowledge, it continuous to be the logical choice to integrate new data and provide necessary interfaces for information retrieval. The repository in CottonGen contains colleague, gene, genome, genotype, germplasm, map, marker, metabolite, phenotype, publication, QTL, species, transcriptome, and trait data curated by the CottonGen team. The number of data entries housed in CottonGen has increased dramatically, for example, since 2014 there has been an 18-fold increase in genes/mRNAs, a 23-fold increase in whole genomes, and a 372-fold increase in genotype data. New tools include a genetic map viewer, a genome browser, a synteny viewer, a metabolite pathways browser, sequence retrieval, BLAST, and a breeding information management system (BIMS), as well as various search pages for new data types. CottonGen serves as the home to the International Cotton Genome Initiative, managing its elections and serving as a communication and coordination hub for the community. With its extensive curation and integration of data and online tools, CottonGen will continue to facilitate utilization of its critical resources to empower research for cotton crop improvement. Full article
(This article belongs to the Special Issue Plant Genetic Resources and Their Use in Cotton Improvement)
Show Figures

Figure 1

23 pages, 4960 KiB  
Article
Characterization of Root System Architecture Traits in Diverse Soybean Genotypes Using a Semi-Hydroponic System
by Shuo Liu, Naheeda Begum, Tingting An, Tuanjie Zhao, Bingcheng Xu, Suiqi Zhang, Xiping Deng, Hon-Ming Lam, Henry T. Nguyen, Kadambot H. M. Siddique and Yinglong Chen
Plants 2021, 10(12), 2781; https://doi.org/10.3390/plants10122781 - 16 Dec 2021
Cited by 18 | Viewed by 4745
Abstract
Phenotypic variation and correlations among root traits form the basis for selecting and breeding soybean varieties with efficient access to water and nutrients and better adaptation to abiotic stresses. Therefore, it is important to develop a simple and consistent system to study root [...] Read more.
Phenotypic variation and correlations among root traits form the basis for selecting and breeding soybean varieties with efficient access to water and nutrients and better adaptation to abiotic stresses. Therefore, it is important to develop a simple and consistent system to study root traits in soybean. In this study, we adopted the semi-hydroponic system to investigate the variability in root morphological traits of 171 soybean genotypes popularized in the Yangtze and Huaihe River regions, eastern China. Highly diverse phenotypes were observed: shoot height (18.7–86.7 cm per plant with a median of 52.3 cm); total root length (208–1663 cm per plant with a median of 885 cm); and root mass (dry weight) (19.4–251 mg per plant with a median of 124 mg). Both total root length and root mass exhibited significant positive correlation with shoot mass (p ≤ 0.05), indicating their relationship with plant growth and adaptation strategies. The nine selected traits contributed to one of the two principal components (eigenvalues > 1), accounting for 78.9% of the total genotypic variation. Agglomerative hierarchical clustering analysis separated the 171 genotypes into five major groups based on these root traits. Three selected genotypes with contrasting root systems were validated in soil-filled rhizoboxes (1.5 m deep) until maturity. Consistent ranking of the genotypes in some important root traits at various growth stages between the two experiments indicates the reliability of the semi-hydroponic system in phenotyping root trait variability at the early growth stage in soybean germplasms. Full article
(This article belongs to the Special Issue Structure and Function of Roots)
Show Figures

Graphical abstract

19 pages, 743 KiB  
Article
Enough to Feed Ourselves!—Food Plants in Bulgarian Rural Home Gardens
by Teodora Ivanova, Yulia Bosseva, Mihail Chervenkov and Dessislava Dimitrova
Plants 2021, 10(11), 2520; https://doi.org/10.3390/plants10112520 - 19 Nov 2021
Cited by 19 | Viewed by 2879
Abstract
The home garden is a unique human-nature interspace that accommodates a diverse spectrum of plant species and provides multiple services to households. One of the most important roles of home gardens is to shelter the agricultural plant diversity that provides for diverse and [...] Read more.
The home garden is a unique human-nature interspace that accommodates a diverse spectrum of plant species and provides multiple services to households. One of the most important roles of home gardens is to shelter the agricultural plant diversity that provides for diverse and healthy nutrition, especially in rural communities. While tropical home gardens have received wide recognition due to their provisional function for the local communities, temperate and especially European home gardens have been discussed less frequently as a source of subsistence. The main objectives of the current study were to document plant species grown in Bulgarian rural home gardens and to explore related local knowledge and cultural practices that influence food plant diversity, its selection and preservation. Field work was focused on settlements situated in eight provinces in South and North-West Bulgaria. Participants representing 65 home gardens were approached through semi-structured interviews. Home gardens were found to harbor 145 cultivated and semi-cultivated plant taxa, used as food, medicinal and aromatic plants and as animal fodder. Members of the Rosaceae family were most numerous. The largest part of the garden area was occupied by vegetable crops of Solanaceae and Cucurbitaceae. In 63.1% of the studied households, the food growing area comprised more than 2/3 of the total size of the garden. Most preferred crops reflected the social and cultural importance of food self-provisioning, especially in the rural areas. The provisional role of the home gardens in regard to preparation of traditional foods and the driving forces for seed saving are discussed. Full article
(This article belongs to the Collection Botany of Food Plants)
Show Figures

Graphical abstract

Back to TopTop