Abiotic Stress Tolerance in Crop and Medical Plants Volume II

A special issue of Plants (ISSN 2223-7747). This special issue belongs to the section "Plant Response to Abiotic Stress and Climate Change".

Deadline for manuscript submissions: closed (10 January 2024) | Viewed by 31757

Special Issue Editor


E-Mail Website
Guest Editor
Institute of Biophysics and Biomedical Engineering, Bulgarian Academy of Sciences, 1113 Sofia, Bulgaria
Interests: abiotic stress factors; adaptation mechanisms of plants; photosynthesis; photosynthetic apparatus; plant tolerance; oxidative stress; exogenous application of phytoprotectants; chlorophyll fluorescence; electron transport; oxygen evolution; phytoremediation; heavy metals
Special Issues, Collections and Topics in MDPI journals

Special Issue Information

Dear Colleagues,

After the successful completion of Volume I of this Special Issue and the great interest in this research topic, we continue with Volume II.

In recent years, there has been an increasing interest in clarifying the mechanisms of plant adaptation and tolerance against environmental abiotic stress factors. Many researchers have focused their efforts on exploring the resistance of different crop species (including varieties, cultivars, genotypes, hybrids, and others) to different environmental stressors, alone or in combination. These include high light, UV radiation, oxidative stress, drought, salinity, extreme temperatures, heavy metal toxicity, etc. Achieving stable crop production in stressful conditions depends largely on the ability of plants to maintain their functions under environmental stress. One of the methods for improving plants’ tolerance to different abiotic stresses includes the application of exogenous phytoprotectants, which can mitigate their effects on plants.

Plant responses to abiotic stress factors are complex and involve a wide array of morphological, physiological, and biochemical processes. Photosynthesis is the primary physiological process affected by abiotic stresses in all its phases. Photosynthetic membranes are very sensitive to environmental stress, as damage of the photosynthetic apparatus occurs at different levels of its organization: chloroplast ultrastructure as well as pigment, lipid, and protein composition. Therefore, knowledge of the molecular mechanisms involved in the response and adaptation of the photosynthetic apparatus to stressful conditions is of great importance for a deeper understanding of plant tolerance under abiotic stress, which can support new strategies for the development of climate-resilient crops.

The current Special Issue also draws attention to medicinal plants (herbs) and the effects of drought, salt, light, temperature, and heavy metals on their adaptation mechanisms and secondary metabolite production.

Scientists from all over the world are invited to submit original research and review articles on topics related to crop and medicinal plants’ tolerance to adverse environmental conditions.

Prof. Dr. Anelia Dobrikova
Guest Editor

Manuscript Submission Information

Manuscripts should be submitted online at www.mdpi.com by registering and logging in to this website. Once you are registered, click here to go to the submission form. Manuscripts can be submitted until the deadline. All submissions that pass pre-check are peer-reviewed. Accepted papers will be published continuously in the journal (as soon as accepted) and will be listed together on the special issue website. Research articles, review articles as well as short communications are invited. For planned papers, a title and short abstract (about 100 words) can be sent to the Editorial Office for announcement on this website.

Submitted manuscripts should not have been published previously, nor be under consideration for publication elsewhere (except conference proceedings papers). All manuscripts are thoroughly refereed through a single-blind peer-review process. A guide for authors and other relevant information for submission of manuscripts is available on the Instructions for Authors page. Plants is an international peer-reviewed open access semimonthly journal published by MDPI.

Please visit the Instructions for Authors page before submitting a manuscript. The Article Processing Charge (APC) for publication in this open access journal is 2700 CHF (Swiss Francs). Submitted papers should be well formatted and use good English. Authors may use MDPI's English editing service prior to publication or during author revisions.

Keywords

  • abiotic stress
  • adaptation mechanisms
  • environmental pollution
  • exogenous phytoprotectants
  • medicinal plants tolerance
  • oxidative stress
  • photodamage
  • photosynthesis
  • photosynthetic apparatus
  • phytoprotectants
  • plants responses
  • reactive oxygen species
  • signaling molecules

Published Papers (17 papers)

Order results
Result details
Select all
Export citation of selected articles as:

Editorial

Jump to: Research, Review

6 pages, 219 KiB  
Editorial
Abiotic Stress Tolerance in Crop and Medicinal Plants
by Anelia G. Dobrikova
Plants 2023, 12(24), 4167; https://doi.org/10.3390/plants12244167 - 15 Dec 2023
Cited by 1 | Viewed by 908
Abstract
Climate change and the increased need for crop production highlight the urgent importance of introducing crops with increased tolerance to adverse environmental conditions [...] Full article
(This article belongs to the Special Issue Abiotic Stress Tolerance in Crop and Medical Plants Volume II)

Research

Jump to: Editorial, Review

13 pages, 3775 KiB  
Article
Polyethylene Glycol Priming Enhances the Seed Germination and Seedling Growth of Scutellaria baicalensis Georgi under Salt Stress
by Renjie Wang, Chenxuan Li, Li Zeng, Ligong Liu, Jiayi Xi and Jun Li
Plants 2024, 13(5), 565; https://doi.org/10.3390/plants13050565 - 20 Feb 2024
Cited by 1 | Viewed by 724
Abstract
Seed priming has become a practical pre-sowing strategy to deal with abiotic stresses. This study aims to explore the effects of polyethylene glycol (PEG) priming on seed germination and seedling growth of Scutellaria baicalensis Georgi under salt stress. Regardless of seed priming, salt [...] Read more.
Seed priming has become a practical pre-sowing strategy to deal with abiotic stresses. This study aims to explore the effects of polyethylene glycol (PEG) priming on seed germination and seedling growth of Scutellaria baicalensis Georgi under salt stress. Regardless of seed priming, salt stress significantly inhibited the seed germination and seedling growth of S. baicalensis. PEG priming significantly alleviates the inhibitory effects of salt stress on seed germination and seedling growth when compared to non-priming and water priming. Among all treatments, PEG priming exhibited the highest germination rate, germination potential, seed vigor index, fresh weight, dry weight, and plant length; the highest contents of proline, soluble sugar, and soluble protein; the highest K+/Na+ ratio and relative water content; the highest antioxidant activities and contents; but the lowest H2O2, malondialdehyde (MDA) content, and relative electrical conductivity in response to salt stress. In addition, PEG priming had the highest transcript levels of antioxidant-related genes among all treatments under NaCl stress. Taken together, the results demonstrated that seed priming with PEG could be recommended as an effective practice to enhance the germination and early seedling growth of S. baicalensis under saline conditions. Full article
(This article belongs to the Special Issue Abiotic Stress Tolerance in Crop and Medical Plants Volume II)
Show Figures

Figure 1

22 pages, 8765 KiB  
Article
Influence of the Abiotic Elicitors Ag Salts of Aspartic Acid Derivatives, Self-Organized in Nanofibers with Monomeric and Dimeric Molecular Structures, on the Antioxidant Activity and Stevioside Content in Micropropagated Stevia rebaudiana Bert.
by Mariana Sichanova, Maria Geneva, Maria Petrova, Kamelia Miladinova-Georgieva, Elisaveta Kirova, Trendafil Nedev, Daniela Tsekova, Viktoria Ivanova and Antoaneta Trendafilova
Plants 2023, 12(20), 3574; https://doi.org/10.3390/plants12203574 - 14 Oct 2023
Cited by 1 | Viewed by 838
Abstract
The use of nanomaterials in biotechnology for the in vitro propagation of medical plants and the accumulation of certain biologically active metabolites is becoming an efficient strategy. This study aimed to evaluate the influence of the concentration (0, 1, 10, 50, and 100 [...] Read more.
The use of nanomaterials in biotechnology for the in vitro propagation of medical plants and the accumulation of certain biologically active metabolites is becoming an efficient strategy. This study aimed to evaluate the influence of the concentration (0, 1, 10, 50, and 100 mg L−1) of two types of nanofibers on the growth characteristics, the antioxidant status, and the production of steviol glycosides in micropropagated Stevia rebaudiana Bert. plantlets. The nanofibers were synthesized by aspartic acid derivatives (L-Asp) Ag salts self-organized into nanofibers with two different molecular structures: monomeric, containing one residue of L-Asp with one hydrophilic head which bonds one Ag ion (NF1-Ag salt); and dimeric, containing two residues of L-Asp with two hydrophilic heads which bond two Ag ions (NF2-Ag salt). An increase in the shoots from the explants’ number and length, biomass accumulation, and micropropagation rate was achieved in the plants treated with the NF1-Ag salt in concentrations from 1 to 50 mg L−1 after 30 days of in vitro proliferation compared to the NF2-Ag salt. In contrast, the plants grown on MS media supplemented with NF2-Ag salt exhibited an increase in the level of stevioside, rebaudioside A, and mono- (CQA) and dicaffeoylquinic (DCQA) acids as compared to the NF1-Ag salt. Full article
(This article belongs to the Special Issue Abiotic Stress Tolerance in Crop and Medical Plants Volume II)
Show Figures

Figure 1

16 pages, 1270 KiB  
Article
Response of Flavor Substances in Tomato Fruit to Light Spectrum and Daily Light Integral
by Xiaoxue Fan, Na Lu, Wenshuo Xu, Yunfei Zhuang, Jing Jin, Xiaojuan Mao and Ni Ren
Plants 2023, 12(15), 2832; https://doi.org/10.3390/plants12152832 - 31 Jul 2023
Cited by 3 | Viewed by 937
Abstract
Light-emitting diodes (LEDs) have been widely used as light sources for plant production in plant factories with artificial lighting (PFALs), and light spectrum and light amount have great impacts on plant growth and development. With the expansion of the product list of PFALs, [...] Read more.
Light-emitting diodes (LEDs) have been widely used as light sources for plant production in plant factories with artificial lighting (PFALs), and light spectrum and light amount have great impacts on plant growth and development. With the expansion of the product list of PFALs, tomato production in PFALs has received attention, but studies on fruit quality influenced by artificial light are lacking. In this study, precisely modulated LED light sources based on white light combined with additional red, blue, and green lights were used to investigate the effects of light spectrum and daily light integral (DLI) on the main quality indicators and flavor substances of “Micro-Tom” tomato fruits. The highest sugar–acid ratio was obtained under the white light with addition of red light with high DLI and blue light with low DLI. The contents of β-carotene, lycopene, and lutein were significantly increased by higher DLI conditions except for under the blue light treatment, and the cross-interactions between the light spectrum and DLI were observed. The accumulation of the main flavor substances in tomato fruits was decreased by addition of green light with a high DLI and red light with a low DLI; notably, the percentage of 2-isobutylthiazole, which is associated with fresh tomato aroma, was decreased by green light. This study provides insights for improving tomato fruit quality and flavor by regulating light conditions in PFALs. Full article
(This article belongs to the Special Issue Abiotic Stress Tolerance in Crop and Medical Plants Volume II)
Show Figures

Figure 1

24 pages, 2461 KiB  
Article
Different Responses to Water Deficit of Two Common Winter Wheat Varieties: Physiological and Biochemical Characteristics
by Antoaneta V. Popova, Gergana Mihailova, Maria Geneva, Violeta Peeva, Elisaveta Kirova, Mariyana Sichanova, Anelia Dobrikova and Katya Georgieva
Plants 2023, 12(12), 2239; https://doi.org/10.3390/plants12122239 - 07 Jun 2023
Viewed by 1355
Abstract
Since water scarcity is one of the main risks for the future of agriculture, studying the ability of different wheat genotypes to tolerate a water deficit is fundamental. This study examined the responses of two hybrid wheat varieties (Gizda and Fermer) with different [...] Read more.
Since water scarcity is one of the main risks for the future of agriculture, studying the ability of different wheat genotypes to tolerate a water deficit is fundamental. This study examined the responses of two hybrid wheat varieties (Gizda and Fermer) with different drought resistance to moderate (3 days) and severe (7 days) drought stress, as well as their post-stress recovery to understand their underlying defense strategies and adaptive mechanisms in more detail. To this end, the dehydration-induced alterations in the electrolyte leakage, photosynthetic pigment content, membrane fluidity, energy interaction between pigment–protein complexes, primary photosynthetic reactions, photosynthetic and stress-induced proteins, and antioxidant responses were analyzed in order to unravel the different physiological and biochemical strategies of both wheat varieties. The results demonstrated that Gizda plants are more tolerant to severe dehydration compared to Fermer, as evidenced by the lower decrease in leaf water and pigment content, lower inhibition of photosystem II (PSII) photochemistry and dissipation of thermal energy, as well as lower dehydrins’ content. Some of defense mechanisms by which Gizda variety can tolerate drought stress involve the maintenance of decreased chlorophyll content in leaves, increased fluidity of the thylakoid membranes causing structural alterations in the photosynthetic apparatus, as well as dehydration-induced accumulation of early light-induced proteins (ELIPs), an increased capacity for PSI cyclic electron transport and enhanced antioxidant enzyme activity (SOD and APX), thus alleviating oxidative damage. Furthermore, the leaf content of total phenols, flavonoids, and lipid-soluble antioxidant metabolites was higher in Gizda than in Fermer. Full article
(This article belongs to the Special Issue Abiotic Stress Tolerance in Crop and Medical Plants Volume II)
Show Figures

Figure 1

21 pages, 3479 KiB  
Article
Protective Effects of Sodium Nitroprusside on Photosynthetic Performance of Sorghum bicolor L. under Salt Stress
by Martin A. Stefanov, Georgi D. Rashkov, Ekaterina K. Yotsova, Preslava B. Borisova, Anelia G. Dobrikova and Emilia L. Apostolova
Plants 2023, 12(4), 832; https://doi.org/10.3390/plants12040832 - 13 Feb 2023
Cited by 6 | Viewed by 1606
Abstract
In this study, the impacts of the foliar application of different sodium nitroprusside (SNP, as a donor of nitric oxide) concentrations (0–300 µM) on two sorghum varieties (Sorghum bicolor L. Albanus and Sorghum bicolor L. Shamal) under salt stress (150 mM NaCl) [...] Read more.
In this study, the impacts of the foliar application of different sodium nitroprusside (SNP, as a donor of nitric oxide) concentrations (0–300 µM) on two sorghum varieties (Sorghum bicolor L. Albanus and Sorghum bicolor L. Shamal) under salt stress (150 mM NaCl) were investigated. The data revealed that salinity leads to an increase in oxidative stress markers and damage of the membrane integrity, accompanied by a decrease in the chlorophyll content, the open photosystem II (PSII) centers, and the performance indexes (PI ABS and PI total), as well as having an influence on the electron flux reducing photosystem I (PSI) end acceptors (REo/RC). Spraying with SNP alleviated the NaCl toxicity on the photosynthetic functions; the protection was concentration-dependent, and greater in Shamal than in Albanus, i.e., variety specific. Furthermore, the experimental results revealed that the degree of SNP protection under salt stress also depends on the endogenous nitric oxide (NO) amount in leaves, the number of active reaction centers per PSII antenna chlorophylls, the enhanced electron flux reducing end acceptors at the acceptor side of PSI, as well as the stimulation of the cyclic electron transport around PSI. The results showed better protection in both varieties of sorghum for SNP concentrations up to 150 µM, which corresponds to about a 50% increase in the endogenous NO leaf content in comparison to the control plants. Our study provides valuable insight into the molecular mechanisms underlying SNP-induced salt tolerance in sorghum varieties and might be a practical approach to correcting salt intolerance. Full article
(This article belongs to the Special Issue Abiotic Stress Tolerance in Crop and Medical Plants Volume II)
Show Figures

Figure 1

15 pages, 2729 KiB  
Article
Light-Induced Flavonoid Biosynthesis in Sinopodophyllum hexandrum with High-Altitude Adaptation
by Qiaozhu Zhao, Miaoyin Dong, Mengfei Li, Ling Jin and Paul W. Paré
Plants 2023, 12(3), 575; https://doi.org/10.3390/plants12030575 - 28 Jan 2023
Cited by 4 | Viewed by 1615
Abstract
Sinopodophyllum hexandrum is a perennial alpine herb producing the anti-cancer metabolite podophyllotoxin (PPT). Although the adaptation of S. hexandrum to high altitudes has been demonstrated and the effects of temperature, precipitation, and UV-B light on plant growth and metabolite accumulation have been studied, [...] Read more.
Sinopodophyllum hexandrum is a perennial alpine herb producing the anti-cancer metabolite podophyllotoxin (PPT). Although the adaptation of S. hexandrum to high altitudes has been demonstrated and the effects of temperature, precipitation, and UV-B light on plant growth and metabolite accumulation have been studied, knowledge on the role of flavonoid biosynthesis in adapting to high altitudes is limited. In this study, light intensity, amount and type of flavonoids, and differentially expressed proteins (DEPs) and genes (DEGs) at 2300 and 3300 m were analyzed by HPLC, proteomic, transcriptomic, and qRT-PCR analysis. We found that higher light intensity correlated with greater flavonoid, flavonol, and anthocyanin content as well as higher anthocyanin to total flavonoid and flavonol ratios observed at the higher altitude. Based on proteomic and transcriptomic analyses, nine DEPs and 41 DEGs were identified to be involved in flavonoid biosynthesis and light response at 3300 m. The relative expression of nine genes (PAL, CHS1, IFRL, ANS, MYB4, BHLH137, CYP6, PPO1, and ABCB19) involved in flavonoid biosynthesis and seven genes (HSP18.1, HSP70, UBC4, ERF5, ERF9, APX3, and EX2) involved in light stress were observed to be up-regulated at 3300 m compared with 2300 m. These findings indicate that light intensity may play a regulatory role in enhancing flavonoid accumulation that allows S. hexandrum to adapt to elevated-altitude coupled with high light intensity. Full article
(This article belongs to the Special Issue Abiotic Stress Tolerance in Crop and Medical Plants Volume II)
Show Figures

Figure 1

18 pages, 1431 KiB  
Article
Response of Pea Plants (Pisum sativum cv. Ran 1) to NaCl Treatment in Regard to Membrane Stability and Photosynthetic Activity
by Antoaneta V. Popova, Preslava Borisova and Dimitar Vasilev
Plants 2023, 12(2), 324; https://doi.org/10.3390/plants12020324 - 10 Jan 2023
Cited by 3 | Viewed by 1429
Abstract
Salinity is one of the most extreme abiotic stress factors that negatively affect the development and productivity of plants. The salt-induced injuries depend on the salt tolerance of the plant species, salt concentration, time of exposure and developmental stage. Here, we report on [...] Read more.
Salinity is one of the most extreme abiotic stress factors that negatively affect the development and productivity of plants. The salt-induced injuries depend on the salt tolerance of the plant species, salt concentration, time of exposure and developmental stage. Here, we report on the response of pea plants (Pisum sativum L. cv Ran 1) to exposure to increasing salt concentrations (100, 150 and 200 mM NaCl) for a short time period (5 days) and the ability of the plants to recover after the removal of salt. The water content, membrane integrity, lipid peroxidation, pigment content and net photosynthetic rate were determined for the pea leaves of the control, treated and recovered plants. Salt-induced alterations in the primary photosynthetic reactions and energy transfer between the main pigment–protein complexes in isolated thylakoid membranes were evaluated. The pea plants were able to recover from the treatment with 100 mM NaCl, while at higher concentrations, concentration-dependent water loss, the disturbance of the membrane integrity, lipid peroxidation and an increase in the pigment content were detected. The net photosynthetic rate, electron transport through the reaction centers of PSII and PSII, activity of PSIIα centers and energy transfer between the pigment–protein complexes were negatively affected and were not restored after the removal of NaCl. Full article
(This article belongs to the Special Issue Abiotic Stress Tolerance in Crop and Medical Plants Volume II)
Show Figures

Graphical abstract

16 pages, 3586 KiB  
Article
Screening Bambara Groundnut (Vigna subterranea L. Verdc) Genotypes for Drought Tolerance at the Germination Stage under Simulated Drought Conditions
by Sithembile Kunene, Alfred Oduor Odindo, Abe Shegro Gerrano and Takudzwa Mandizvo
Plants 2022, 11(24), 3562; https://doi.org/10.3390/plants11243562 - 16 Dec 2022
Cited by 2 | Viewed by 1513
Abstract
Bambara groundnut (Vigna subterranea L. Verdc) is grown by smallholders and subsistence farmers in the marginal parts of sub-Saharan Africa. This legume is native to Africa and is cultivated throughout semi-arid sub-Saharan Africa. It is hardy and has been recognized as a [...] Read more.
Bambara groundnut (Vigna subterranea L. Verdc) is grown by smallholders and subsistence farmers in the marginal parts of sub-Saharan Africa. This legume is native to Africa and is cultivated throughout semi-arid sub-Saharan Africa. It is hardy and has been recognized as a nutritious food source in times of scarcity. Drought can negatively affect the germination or establishment of seedlings in the early stages of crop growth. Drought can limit the growing season of certain crops and create conditions that encourage the invasion of insects and diseases. Drought can also lead to a lack of crop yield, leading to rising food prices, shortages, and possibly malnutrition in vulnerable populations. A drought-tolerant genotype can be identified at the germination stage of Bambara groundnut by screening for drought-tolerance traits, and this knowledge can be applied to Bambara crop improvement programs to identify drought-tolerant traits during early growth phases. As an osmolyte, polyethylene glycol (PEG 6000) reduced water potential and simulated drought stress in Bambara groundnut seeds of different genotypes. Osmolytes are low-molecular-weight organic compounds that influence biological fluid properties. In this study, 24 Bambara groundnut genotypes were used. Data were collected on seed germination percentage (G%), germination velocity index (GVI), mean germination time (MGT), root dry mass (RDM), root fresh mass (RFM), and seven drought tolerance indices: mean productivity (MP), tolerance index (TOL), geometric mean productivity (GMP), stress susceptibility index (SSI), yield index (YI), yield stability index (YSI), stress tolerance index (STI) as well as seed coat color measurements. The data were applied to the mean observation of genotypes under simulated drought conditions (Ys) and the mean observation of genotypes under controlled conditions (Yp). Germination%, germination velocity index (GVI), mass germination time (MGT), and root fresh mass (RFM) differed significantly (p < 0.001) between the two stress conditions. Bambara genotypes Acc 82 and Acc 96 were found to be the most drought-tolerant. Full article
(This article belongs to the Special Issue Abiotic Stress Tolerance in Crop and Medical Plants Volume II)
Show Figures

Figure 1

13 pages, 890 KiB  
Article
Dry Matter Yield Stability Analysis of Maize Genotypes Grown in Al Toxic and Optimum Controlled Environments
by Rutendo M. Zishiri, Charles S. Mutengwa and Aleck Kondwakwenda
Plants 2022, 11(21), 2939; https://doi.org/10.3390/plants11212939 - 01 Nov 2022
Viewed by 1093
Abstract
Breeding for Al tolerance is the most sustainable strategy to reduce yield losses caused by Al toxicity in plants. The use of rapid, cheap and reliable testing methods and environments enables breeders to make quick selection decisions. The objectives of this study were [...] Read more.
Breeding for Al tolerance is the most sustainable strategy to reduce yield losses caused by Al toxicity in plants. The use of rapid, cheap and reliable testing methods and environments enables breeders to make quick selection decisions. The objectives of this study were to (i) identify high dry matter yielding and stable quality protein maize (QPM) lines grown under Al toxic and optimum conditions and (ii) compare the discriminating power of laboratory- and greenhouse-based testing environments. A total of 75 tropical QPM inbred lines were tested at seedling stage for dry matter yield and stability under optimum and Al toxic growing conditions across six laboratory- and greenhouse-based environments. The nutrient solution method was used for the laboratory trials, while the soil bioassay method was used for the greenhouse trials. A yield loss of 55% due to Al toxicity was observed, confirming the adverse effects of Al toxicity on maize productivity. The ANOVA revealed the presence of genetic variation among the set of genotypes used in this study, which can be exploited through plant breeding. Seventeen stable and high-yielding lines were identified and recommended. Greenhouse-based environments were more discriminating than laboratory environments. Therefore, we concluded that greenhouse environments are more informative than laboratory environments when testing genotypes for Al tolerance. Full article
(This article belongs to the Special Issue Abiotic Stress Tolerance in Crop and Medical Plants Volume II)
Show Figures

Figure 1

19 pages, 2985 KiB  
Article
The Role of Alternative Electron Pathways for Effectiveness of Photosynthetic Performance of Arabidopsis thaliana, Wt and Lut2, under Low Temperature and High Light Intensity
by Antoaneta V. Popova, Martin Stefanov, Alexander G. Ivanov and Maya Velitchkova
Plants 2022, 11(17), 2318; https://doi.org/10.3390/plants11172318 - 04 Sep 2022
Cited by 2 | Viewed by 1571
Abstract
A recent investigation has suggested that the enhanced capacity for PSI-dependent cyclic electron flow (CEF) and PSI-dependent energy quenching that is related to chloroplast structural changes may explain the lower susceptibility of lut2 to combined stresses—a low temperature and a high light intensity. [...] Read more.
A recent investigation has suggested that the enhanced capacity for PSI-dependent cyclic electron flow (CEF) and PSI-dependent energy quenching that is related to chloroplast structural changes may explain the lower susceptibility of lut2 to combined stresses—a low temperature and a high light intensity. The possible involvement of alternative electron transport pathways, proton gradient regulator 5 (PGR5)-dependent CEF and plastid terminal oxidase (PTOX)-mediated electron transfer to oxygen in the response of Arabidopsis plants—wild type (wt) and lut2—to treatment with these two stressors was assessed by using specific electron transport inhibitors. Re-reduction kinetics of P700+ indicated that the capacity for CEF was higher in lut2 when this was compared to wt. Exposure of wt plants to the stress conditions caused increased CEF and was accompanied by a substantial raise in PGR5 and PTOX quantities. In contrast, both PGR5 and PTOX levels decreased under the same stress conditions in lut2, and inhibiting PGR5-dependent pathway by AntA did not exhibit any significant effects on CEF during the stress treatment and recovery period. Electron microscopy observations demonstrated that under control conditions the degree of grana stacking was much lower in lut2, and it almost disappeared under the combined stresses, compared to wt. The role of differential responses of alternative electron transport pathways in the acclimation to the stress conditions that are studied is discussed. Full article
(This article belongs to the Special Issue Abiotic Stress Tolerance in Crop and Medical Plants Volume II)
Show Figures

Figure 1

17 pages, 2598 KiB  
Article
Exogenously Applied Trehalose Augments Cadmium Stress Tolerance and Yield of Mung Bean (Vigna radiata L.) Grown in Soil and Hydroponic Systems through Reducing Cd Uptake and Enhancing Photosynthetic Efficiency and Antioxidant Defense Systems
by Sadia Rehman, Muhammad Umer Chattha, Imran Khan, Athar Mahmood, Muhammad Umair Hassan, Asma A. Al-Huqail, Mohamed Z. M. Salem, Hayssam M. Ali, Christophe Hano and Mohamed A. El-Esawi
Plants 2022, 11(6), 822; https://doi.org/10.3390/plants11060822 - 19 Mar 2022
Cited by 28 | Viewed by 3423
Abstract
Cadmium (Cd) toxicity is a serious environmental issue causing a significant reduction in crop growth and productivity globally. Trehalose (Tre) has emerged as an important reducing sugar that can reduce the adverse impacts of different abiotic stresses. Therefore, the present investigation was performed [...] Read more.
Cadmium (Cd) toxicity is a serious environmental issue causing a significant reduction in crop growth and productivity globally. Trehalose (Tre) has emerged as an important reducing sugar that can reduce the adverse impacts of different abiotic stresses. Therefore, the present investigation was performed to determine the key role of Tre in alleviating Cd stress in the mung bean (Vigna radiata L.) crop. The study was comprised of different treatments of cadmium (0, 10, 20 mg kg−1 soil) and Tre (0, 15 and 30 mM). Cd stress significantly restricted the growth and yield of mung bean. However, Tre supplementation markedly improved growth and yield due to pronounced reductions in Cd uptake and Cd-induced oxidative stress as shown by the lower production of hydrogen peroxide (H2O2), electrolyte leakage (EL) and malondialdehyde (MDA) in Cd-stressed plants as well as by the enhanced activities of antioxidant enzymes (CAT, POD, APX and AsA). Moreover, the ameliorative role of Tre to Cd toxicity was also demonstrated by its ability to enhance chlorophyll contents, total soluble protein (TSP) and free amino acids (FAA). Taken together, Tre supplementation played a key beneficial role in improving Cd stress tolerance and yield traits of mung bean through restricting Cd uptake and enhancing photosynthetic capacity, osmolytes biosynthesis and antioxidant activities. Full article
(This article belongs to the Special Issue Abiotic Stress Tolerance in Crop and Medical Plants Volume II)
Show Figures

Figure 1

16 pages, 2481 KiB  
Article
Water Shortage Affects Vegetative and Reproductive Stages of Common Bean (Phaseolus vulgaris) Chilean Landraces, Differentially Impacting Grain Yield Components
by Gerardo Tapia, José Méndez, Luis Inostroza and Camila Lozano
Plants 2022, 11(6), 749; https://doi.org/10.3390/plants11060749 - 11 Mar 2022
Cited by 3 | Viewed by 2293
Abstract
Water availability for agricultural use is currently a global problem that worsens with climate change in several regions of the world. Among grain legumes, common bean (Phaseolus vulgaris) is the most cultivated in the worldwide. The Chilean germplasm of common bean [...] Read more.
Water availability for agricultural use is currently a global problem that worsens with climate change in several regions of the world. Among grain legumes, common bean (Phaseolus vulgaris) is the most cultivated in the worldwide. The Chilean germplasm of common bean is characterized by tolerance to water stress. Here, we analyzed a selection of nine ancient Chilean landraces in regard to their drought tolerance, simulating optimal (OW) and restricted watering (RW) in a Mediterranean environment. Phenological, growth, and yield traits were recorded, and correlation analysis was performed. Accordingly, leaf temperature and osmotic potential were higher under RW, while the leaf chlorophyll content decreased in all landraces. Physiological maturity days and seed-filling days were lower in RW than in OW. This similarly occurred with the grain yield. The % yield reduction was negatively correlated with the % pod reduction and the relative rate of leaf expansion (RLAE) reduction. However, the 100-seed weight value was not significantly modified by water treatment (p > 0.05). For instance, landraces that preferred to fill the grain with a lower rate of leaf expansion showed a lower loss in grain yield under drought conditions. These results suggest that the resource partitioning between growing leaves, flowers, and developing pods in Chilean landraces is variable, affecting the common bean drought tolerance. Full article
(This article belongs to the Special Issue Abiotic Stress Tolerance in Crop and Medical Plants Volume II)
Show Figures

Figure 1

20 pages, 3874 KiB  
Article
Characterization of Maize Hybrids (Zea mays L.) for Detecting Salt Tolerance Based on Morpho-Physiological Characteristics, Ion Accumulation and Genetic Variability at Early Vegetative Stage
by Md Al Samsul Huqe, Md Sabibul Haque, Ashaduzzaman Sagar, Md Nesar Uddin, Md Alamgir Hossain, AKM Zakir Hossain, Md Mustafizur Rahman, Xiukang Wang, Ibrahim Al-Ashkar, Akihiro Ueda and Ayman EL Sabagh
Plants 2021, 10(11), 2549; https://doi.org/10.3390/plants10112549 - 22 Nov 2021
Cited by 17 | Viewed by 3296
Abstract
Increasing soil salinity due to global warming severely restricts crop growth and yield. To select and recommend salt-tolerant cultivars, extensive genotypic screening and examination of plants’ morpho-physiological responses to salt stress are required. In this study, 18 prescreened maize hybrid cultivars were examined [...] Read more.
Increasing soil salinity due to global warming severely restricts crop growth and yield. To select and recommend salt-tolerant cultivars, extensive genotypic screening and examination of plants’ morpho-physiological responses to salt stress are required. In this study, 18 prescreened maize hybrid cultivars were examined at the early growth stage under a hydroponic system using multivariate analysis to demonstrate the genotypic and phenotypic variations of the selected cultivars under salt stress. The seedlings of all maize cultivars were evaluated with two salt levels: control (without NaCl) and salt stress (12 dS m−1 simulated with NaCl) for 28 d. A total of 18 morpho-physiological and ion accumulation traits were dissected using multivariate analysis, and salt tolerance index (STI) values of the examined traits were evaluated for grouping of cultivars into salt-tolerant and -sensitive groups. Salt stress significantly declined all measured traits except root–shoot ratio (RSR), while the cultivars responded differently. The cultivars were grouped into three clusters and the cultivars in Cluster-1 such as Prabhat, UniGreen NK41, Bisco 51, UniGreen UB100, Bharati 981 and Star Beej 7Star exhibited salt tolerance to a greater extent, accounting for higher STI in comparison to other cultivars grouped in Cluster-2 and Cluster-3. The high heritability (h2bs, >60%) and genetic advance (GAM, >20%) were recorded in 13 measured traits, indicating considerable genetic variations present in these traits. Therefore, using multivariate analysis based on the measured traits, six hybrid maize cultivars were selected as salt-tolerant and some traits such as Total Fresh Weight (TFW), Total Dry Weight (TDW), Total Na+, Total K+ contents and K+–Na+ Ratio could be effectively used for the selection criteria evaluating salt-tolerant maize genotypes at the early seedling stage. Full article
(This article belongs to the Special Issue Abiotic Stress Tolerance in Crop and Medical Plants Volume II)
Show Figures

Figure 1

13 pages, 1697 KiB  
Article
Alleviation of Lead Stress on Sage Plant by 5-Aminolevulinic Acid (ALA)
by Hamed M. El-Shora, Gehan F. Massoud, Ghada A. El-Sherbeny, Salma Saleh Alrdahe and Doaa B. Darwish
Plants 2021, 10(9), 1969; https://doi.org/10.3390/plants10091969 - 21 Sep 2021
Cited by 8 | Viewed by 2222
Abstract
Oxidative stress is imparted by a varying range of environmental factors involving heavy metal stress. Thus, the mechanisms of antioxidant resistance may advance a policy to improve metal tolerance. Lead as a toxic heavy metal negatively affects the metabolic activities and growth of [...] Read more.
Oxidative stress is imparted by a varying range of environmental factors involving heavy metal stress. Thus, the mechanisms of antioxidant resistance may advance a policy to improve metal tolerance. Lead as a toxic heavy metal negatively affects the metabolic activities and growth of medicinal and aromatic plants. This investigation aimed to assess the function of 5-aminolevulinic acid (ALA) in the alleviation of Pb stress in sage plants (Salvia officinalis L.) grown either hydroponically or in pots. Various concentrations of Pb (0, 100, 200, and 400 µM) and different concentrations of ALA (0, 10, and 20 mg L−1) were tested. This investigation showed that Pb altered the physiological parameters. Pb stress differentially reduced germination percentage and protein content compared to control plants. However, lead stress promoted malondialdehyde (MDA) and H2O2 contents in the treated plants. Also, lead stress enhanced the anti-oxidative enzyme activities; ascorbate peroxidase superoxide, dismutase, glutathione peroxidase, and glutathione reductase in Salvia plants. ALA application enhanced the germination percentage and protein content compared to their corresponding controls. Whereas, under ALA application MDA and H2O2 contents, as well as the activities of SOD, APX, GPX, and GR, were lowered. These findings suggest that ALA at the 20 mgL−1 level protects the Salvia plant from Pb stress. Therefore, the results recommend ALA application to alleviate Pb stress. Full article
(This article belongs to the Special Issue Abiotic Stress Tolerance in Crop and Medical Plants Volume II)
Show Figures

Figure 1

Review

Jump to: Editorial, Research

20 pages, 2152 KiB  
Review
The Potential of Rhizobacteria to Mitigate Abiotic Stress in Lessertia frutescens
by Mokgadi M. Hlongwane, Mustapha Mohammed, Ntebogeng S. Mokgalaka and Felix D. Dakora
Plants 2023, 12(1), 196; https://doi.org/10.3390/plants12010196 - 03 Jan 2023
Cited by 3 | Viewed by 1775
Abstract
Lessertia frutescens is a multipurpose medicinal plant indigenous to South Africa. The curative ability of the medicinal plant is attributed to its rich phytochemical composition, including amino acids, triterpenoids, and flavonoids. A literature review of some of the phytochemical compounds, particularly amino acids, [...] Read more.
Lessertia frutescens is a multipurpose medicinal plant indigenous to South Africa. The curative ability of the medicinal plant is attributed to its rich phytochemical composition, including amino acids, triterpenoids, and flavonoids. A literature review of some of the phytochemical compounds, particularly amino acids, in L. frutescens shows a steady decrease in concentration over the years. The reduction of the phytochemical compounds and diminishing biological activities may be attributed to drought and salt stress, which South Africa has been grappling with over the years. Canavanine, a phytochemical which is associated with the anticancer activity of L. frutescens, reduced slightly when the plant was subjected to salt stress. Like other legumes, L. frutescens forms a symbiotic relationship with plant-growth-promoting rhizobacteria, which facilitate plant growth and development. Studies employing commercial plant-growth-promoting rhizobacteria to enhance growth and biological activities in L. frutescens have been successfully carried out. Furthermore, alleviation of drought and salt stress in medicinal plants through inoculation with plant growth-promoting-rhizobacteria is well documented and effective. Therefore, this review seeks to highlight the potential of plant-growth-promoting rhizobacteria to alleviate the effect of salt and drought in Lessertia frutescens. Full article
(This article belongs to the Special Issue Abiotic Stress Tolerance in Crop and Medical Plants Volume II)
Show Figures

Figure 1

10 pages, 778 KiB  
Review
Melatonin as a Possible Natural Safener in Crops
by Manuela Giraldo Acosta, Antonio Cano, Josefa Hernández-Ruiz and Marino Bañón Arnao
Plants 2022, 11(7), 890; https://doi.org/10.3390/plants11070890 - 27 Mar 2022
Cited by 20 | Viewed by 2982
Abstract
Melatonin is a well-known animal hormone with relevant and multiple cellular and hormonal roles. Its discovery in plants in 1995 has led to a great diversity of molecular and physiological studies that have been showing its multiple actions also in plants. Its roles [...] Read more.
Melatonin is a well-known animal hormone with relevant and multiple cellular and hormonal roles. Its discovery in plants in 1995 has led to a great diversity of molecular and physiological studies that have been showing its multiple actions also in plants. Its roles as a biostimulator and modulator agent of responses to abiotic and biotic stresses have been widely studied. This review raises the possible use of melatonin as a natural safener in herbicide treatments. Existing studies have shown excellent co-acting qualities between both the following agents: herbicide and melatonin. The presence of melatonin reduces the damage caused by the herbicide in the crop and enhances the stress antioxidant response of plants. In this area, a similar role is suggested in the co-action between fungicides and melatonin, where a synergistic response has been demonstrated in some cases. The possible reduction in the fungicide doses is proposed as an eco-friendly advance in the use of these pesticides in certain crops. Finally, future research and applied actions of melatonin on these pest control agents are suggested. Full article
(This article belongs to the Special Issue Abiotic Stress Tolerance in Crop and Medical Plants Volume II)
Show Figures

Figure 1

Back to TopTop