Editor’s Choice Articles

Editor’s Choice articles are based on recommendations by the scientific editors of MDPI journals from around the world. Editors select a small number of articles recently published in the journal that they believe will be particularly interesting to readers, or important in the respective research area. The aim is to provide a snapshot of some of the most exciting work published in the various research areas of the journal.

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
18 pages, 7581 KB  
Article
Prediction of Potential Habitat Distributions and Climate Change Impacts on the Rare Species Woonyoungia septentrionalis (Magnoliaceae) in China Based on MaxEnt
by Weihao Yao, Zenghui Wang, Yu Fan, Danyang Liu, Zeyang Ding, Yumei Zhou, Shuyue Hu, Wei Zhang and Jing Ou
Plants 2025, 14(1), 86; https://doi.org/10.3390/plants14010086 - 30 Dec 2024
Cited by 6 | Viewed by 1267
Abstract
Changes in species’ habitats provide important insights into the effects of climate change. Woonyoungia septentrionalis, a critically endangered species endemic to karst ecosystems, has a highly restricted distribution and is a key biological resource. Despite its ecological importance, the factors influencing its [...] Read more.
Changes in species’ habitats provide important insights into the effects of climate change. Woonyoungia septentrionalis, a critically endangered species endemic to karst ecosystems, has a highly restricted distribution and is a key biological resource. Despite its ecological importance, the factors influencing its habitat suitability and distribution remain poorly understood. This study employed ecological niche modeling to predict the potential distribution of Woonyoungia septentrionalis across China and analyzed shifts in centroid location to explore migration pathways under current and future climate scenarios. The model exhibited high predictive accuracy (AUC = 0.988), indicating its robustness in assessing habitat suitability. Under current climatic conditions, Woonyoungia septentrionalis is predominantly found in the Guizhou–Guangxi border region, southeastern Yunnan, eastern Sichuan, southeastern Tibet, and parts of Chongqing, Hunan, and Hubei. Among these, the Guizhou-Guangxi border represents the primary suitable habitat. Temperature factors, particularly bio6 (minimum temperature of the coldest month) and bio7 (annual temperature range), were the most significant determinants of habitat suitability, contributing 43.29% and 12.65%, respectively. Soil cation exchange capacity (CEC) accounted for 15.82%, while precipitation had a relatively minor impact. Under future climate scenarios, suitable habitats for Woonyoungia septentrionalis are projected to shrink and shift toward higher altitudes and latitudes, increasing the risk of extinction due to the “mountain trap” effect, where migration is constrained by limited habitat at higher elevations. Stable habitats, particularly in Libo (Guizhou) and Huanjiang (Guangxi), are identified as critical refugia. We recommend prioritizing shrinking and stable habitats in Guizhou, Guangxi, and Yunnan for in situ conservation. Ex situ conservation efforts should focus on areas identified based on key environmental factors and predicted migration pathways to ensure the species’ long-term survival. This study provides both theoretical and practical guidance for the conservation of this species and its vulnerable habitat. Full article
Show Figures

Figure 1

28 pages, 30715 KB  
Article
Comparative Analysis of Mechanistic and Correlative Models for Global and Bhutan-Specific Suitability of Parthenium Weed and Vulnerability of Agriculture in Bhutan
by Sangay Dorji, Stephen Stewart, Asad Shabbir, Ali Bajwa, Ammar Aziz and Steve Adkins
Plants 2025, 14(1), 83; https://doi.org/10.3390/plants14010083 - 30 Dec 2024
Viewed by 1839
Abstract
Parthenium weed (Parthenium hysterophorus L.) is one of the most noxious and fast-spreading invasive alien species, posing a major threat to ecosystems, agriculture, and public health worldwide. Mechanistic and correlative species distribution models are commonly employed to determine the potential habitat suitability [...] Read more.
Parthenium weed (Parthenium hysterophorus L.) is one of the most noxious and fast-spreading invasive alien species, posing a major threat to ecosystems, agriculture, and public health worldwide. Mechanistic and correlative species distribution models are commonly employed to determine the potential habitat suitability of parthenium weed. However, a comparative analysis of these two approaches for parthenium weed is lacking, leaving a gap in understanding their relative effectiveness and ability to describe habitat suitability of parthenium weed. This study compared the mechanistic model CLIMEX with random forest (RF), the best-performing of a suite of correlative models. When compared against occurrence records and pseudo-absences, measured by area under the receiver operating characteristic curve, true skill statistic, sensitivity, and specificity, the results revealed higher performance of RF compared to CLIMEX. Globally, RF predicted 7 million km2 (2% of the total land mass) as suitable for parthenium weed, while CLIMEX predicted 20 million km2 (13%). Based on binary maps, RF and CLIMEX identified 67 and 20 countries as suitable, respectively. For Bhutan, globally trained RF predicted 8919 km2 (23% of the country’s total 38,394 km2) as currently suitable, with high suitability in the southern, west–central, central, and eastern districts, particularly along major highways. For the future, the 10 general circulation models downscaled to Bhutan showed a decrease in suitability across four scenarios (SSP126, SSP245, SSP370, SSP585) and three periods (2021–2050, 2051–2080, 2071–2100), with a northward shift in suitable habitats ranging from 2 to 76 km. Additionally, 2049 (23%) km2 of agricultural land is currently at risk of being invaded by parthenium weed. Correlative and mechanistic models are based on different niche concepts (i.e., realized and fundamental, respectively), and therefore combining them can provide a better understanding of actual and potential species distributions. Given the high suitability of parthenium weed under the current climate and its potential negative impacts in Bhutan, early action such as early detection and control of infested areas, regular survey and monitoring, and creating public awareness are proposed as risk mitigation strategies. Full article
(This article belongs to the Special Issue Plant Invasions across Scales)
Show Figures

Figure 1

19 pages, 16034 KB  
Article
Comprehensive Analysis of β-1,3-Glucanase Genes in Wolfberry and Their Implications in Pollen Development
by Xin Zhang, Pinjie Zheng, Xurui Wen and Zhanlin Bei
Plants 2025, 14(1), 52; https://doi.org/10.3390/plants14010052 - 27 Dec 2024
Cited by 4 | Viewed by 956
Abstract
β-1,3-Glucanases (Glu) are key enzymes involved in plant defense and physiological processes through the hydrolysis of β-1,3-glucans. This study provides a comprehensive analysis of the β-1,3-glucanase gene family in wolfberry (Lycium barbarum), including their chromosomal distribution, evolutionary relationships, and expression profiles. [...] Read more.
β-1,3-Glucanases (Glu) are key enzymes involved in plant defense and physiological processes through the hydrolysis of β-1,3-glucans. This study provides a comprehensive analysis of the β-1,3-glucanase gene family in wolfberry (Lycium barbarum), including their chromosomal distribution, evolutionary relationships, and expression profiles. A total of 58 Glu genes were identified, distributed across all 12 chromosomes. Evolutionary analysis revealed six distinct branches within wolfberry and nine distinct branches when compared with Arabidopsis thaliana. Expression analysis showed that 45 Glu genes were expressed in berries, with specific genes also being expressed in flowers and leaves. Notably, LbaGlu28 exhibited significant expression during the tetrad stage of pollen development and was localized in the cell wall. These findings provide valuable insights into the functional significance of Glu genes in wolfberry, highlighting their roles in development and their potential involvement in reproductive processes, particularly in pollen development. Full article
(This article belongs to the Special Issue Bioinformatics and Functional Genomics in Modern Plant Science)
Show Figures

Figure 1

16 pages, 2476 KB  
Article
A Proposed Saffron Soilless Cultivation System for a Quality Spice as Certified by Genetic Traceability
by Alessandro Mariani, Gianpiero Marconi, Nicoletta Ferradini, Marika Bocchini, Silvia Lorenzetti, Massimo Chiorri, Luigi Russi and Emidio Albertini
Plants 2025, 14(1), 51; https://doi.org/10.3390/plants14010051 - 27 Dec 2024
Viewed by 2466
Abstract
Saffron (Crocus sativus L.) is one of the most expensive spices in the world due to its strong market demand combined with its labor-intensive production process, which needs a lot of labor and has significant costs. New cultivation methods and traceability systems [...] Read more.
Saffron (Crocus sativus L.) is one of the most expensive spices in the world due to its strong market demand combined with its labor-intensive production process, which needs a lot of labor and has significant costs. New cultivation methods and traceability systems are required to improve and valorize local Italian saffron production. In this study, we conducted a three-year trial in Umbria (Central Italy), looking for a soilless cultivation method based on wooden bins posted at a suitable height from the ground to ease the sowing of corms and harvesting of flowers. Moreover, the spice traceability could be based on investigating the genetic variability of Italian saffron populations using SNP markers. The proposed novel cultivation method showed significantly higher stigma and corm production than the traditional one. At the same time, the genetic analysis revealed a total of 55 thousand SNPs, 53 of which were specific to the Italian saffron populations suitable to start a food traceability and spice certification. Full article
(This article belongs to the Section Plant Genetic Resources)
Show Figures

Figure 1

26 pages, 2185 KB  
Review
Proline and ROS: A Unified Mechanism in Plant Development and Stress Response?
by Marco Renzetti, Dietmar Funck and Maurizio Trovato
Plants 2025, 14(1), 2; https://doi.org/10.3390/plants14010002 - 24 Dec 2024
Cited by 34 | Viewed by 6233
Abstract
The proteinogenic amino acid proline plays crucial roles in both plant development and stress responses, far exceeding its role in protein synthesis. However, the molecular mechanisms and the relative importance of these additional functions of proline remain under study. It is well documented [...] Read more.
The proteinogenic amino acid proline plays crucial roles in both plant development and stress responses, far exceeding its role in protein synthesis. However, the molecular mechanisms and the relative importance of these additional functions of proline remain under study. It is well documented that both stress responses and developmental processes are associated with proline accumulation. Under stress conditions, proline is believed to confer stress tolerance, while under physiological conditions, it assists in developmental processes, particularly during the reproductive phase. Due to proline’s properties as a compatible osmolyte and potential reactive oxygen species (ROS) scavenger, most of its beneficial effects have historically been attributed to the physicochemical consequences of its accumulation in plants. However, emerging evidence points to proline metabolism as the primary driver of these beneficial effects. Recent reports have shown that proline metabolism, in addition to supporting reproductive development, can modulate root meristem size by controlling ROS accumulation and distribution in the root meristem. The dynamic interplay between proline and ROS highlights a sophisticated regulatory network essential for plant resilience and survival. This fine-tuning mechanism, enabled by the pro-oxidant and antioxidant properties of compartmentalized proline metabolism, can modulate redox balance and ROS homeostasis, potentially explaining many of the multiple roles attributed to proline. This review uniquely integrates recent findings on the dual role of proline in both ROS scavenging and signaling, provides an updated overview of the most recent research published to date, and proposes a unified mechanism that could account for many of the multiple roles assigned to proline in plant development and stress defense. By focusing on the interplay between proline and ROS, we aim to provide a comprehensive understanding of this proposed mechanism and highlight the potential applications in improving crop resilience to environmental stress. Additionally, we address current gaps in understanding and suggest future research directions to further elucidate the complex roles of proline in plant biology. Full article
(This article belongs to the Special Issue Multifunctional Mediators in Plant Development and Stress Response)
Show Figures

Figure 1

22 pages, 3625 KB  
Article
Synthesis and Degradation of the Phytohormone Indole-3-Acetic Acid by the Versatile Bacterium Paraburkholderia xenovorans LB400 and Its Growth Promotion of Nicotiana tabacum Plant
by Paulina Vega-Celedón, Diyanira Castillo-Novales, Guillermo Bravo, Franco Cárdenas, María José Romero-Silva and Michael Seeger
Plants 2024, 13(24), 3533; https://doi.org/10.3390/plants13243533 - 18 Dec 2024
Cited by 4 | Viewed by 2951
Abstract
Plant growth-promoting bacteria (PGPB) play a role in stimulating plant growth through mechanisms such as the synthesis of the phytohormone indole-3-acetic acid (IAA). The aims of this study were the characterization of IAA synthesis and degradation by the model aromatic-degrading bacterium Paraburkholderia xenovorans [...] Read more.
Plant growth-promoting bacteria (PGPB) play a role in stimulating plant growth through mechanisms such as the synthesis of the phytohormone indole-3-acetic acid (IAA). The aims of this study were the characterization of IAA synthesis and degradation by the model aromatic-degrading bacterium Paraburkholderia xenovorans LB400, and its growth promotion of the Nicotiana tabacum plant. Strain LB400 was able to synthesize IAA (measured by HPLC) during growth in the presence of tryptophan and at least one additional carbon source; synthesis of anthranilic acid was also observed. RT-PCR analysis indicates that under these conditions, strain LB400 expressed the ipdC gene, which encodes indole-3-pyruvate decarboxylase, suggesting that IAA biosynthesis proceeds through the indole-3-pyruvate pathway. In addition, strain LB400 degraded IAA and grew on IAA as a sole carbon and energy source. Strain LB400 expressed the iacC and catA genes, which encode the α subunit of the aromatic-ring-hydroxylating dioxygenase in the IAA catabolic pathway and the catechol 1,2-dioxygenase, respectively, which may suggest a peripheral IAA pathway leading to the central catechol pathway. Notably, P. xenovorans LB400 promoted the growth of tobacco seedlings, increasing the number and the length of the roots. In conclusion, this study indicates that the versatile bacterium P. xenovorans LB400 is a PGPB. Full article
(This article belongs to the Special Issue Beneficial Effects of Bacteria on Plants)
Show Figures

Figure 1

16 pages, 5793 KB  
Article
RITA® Temporary Immersion System (TIS) for Biomass Growth Improvement and Ex Situ Conservation of Viola ucriana Erben & Raimondo
by Piergiorgio Capaci, Fabrizio Barozzi, Stefania Forciniti, Chiara Anglana, Helena Iuele, Rita Annunziata Accogli, Angela Carra, Marcello Salvatore Lenucci, Loretta L. del Mercato and Gian Pietro Di Sansebastiano
Plants 2024, 13(24), 3530; https://doi.org/10.3390/plants13243530 - 18 Dec 2024
Cited by 1 | Viewed by 2122
Abstract
Viola ucriana Erben & Raimondo is a rare and endangered taxon, endemic to a limited area on Mount Pizzuta in northwestern Sicily, Italy. Its population is significantly threatened by anthropogenic activities, including fires, overgrazing, and habitat alterations. Temporary immersion systems (TISs) have proven [...] Read more.
Viola ucriana Erben & Raimondo is a rare and endangered taxon, endemic to a limited area on Mount Pizzuta in northwestern Sicily, Italy. Its population is significantly threatened by anthropogenic activities, including fires, overgrazing, and habitat alterations. Temporary immersion systems (TISs) have proven effective for large-scale propagation in various protected species, offering potential for ex situ conservation and population reinforcement of V. ucriana. This study aimed to establish a bioreactor-based micropropagation protocol for shoot multiplication and compare the efficacy of a TIS with that of conventional solid culture medium (SCM). Three different plant growth regulators (PGRs) were also compared: 6-benzylaminopurine (BA), zeatin, and meta-topolin-9-riboside (mTR). The starting material originated from seeds collected from mother plants in their natural environment. The best growth outcomes (in terms of shoot multiplication, shoot length, and relative growth rate) were achieved using THE RITA® TIS, with BA (0.2 mg/L) and mTR (0.5 or 0.8 mg/L) outperforming SCM. Anomalous or hyperhydric shoots were observed with all zeatin treatments (especially with 0.8 mg/L) in both the TIS and SCM, suggesting that this cytokinin is unsuitable for V. ucriana biomass production. The rooting phase was significantly improved by transferring propagules onto rockwool cubes fertilized with Hoagland solution. This approach yielded more robust roots in terms of number and length compared to the conventional agar-based medium supplemented with indole-3-butyric acid (IBA). Flow cytometry analysis confirmed the genetic fidelity of the regenerants from the optimal PGR treatments, showing that all plantlets maintained the diploid ploidy level of their maternal plants. Over 90% of the in vitro derived plantlets were successfully acclimatized to greenhouse conditions. This paper represents the first report of V. ucriana biomass multiplication using a RITA® bioreactor. The stability of the regenerants, confirmed by nuclei quantification via cytofluorimetry, provides guidance in establishing a true-to-type ex situ population, supporting conservation and future reinforcement efforts. Full article
Show Figures

Graphical abstract

54 pages, 5547 KB  
Review
Soothing the Itch: The Role of Medicinal Plants in Alleviating Pruritus in Palliative Care
by Sara Gonçalves, Lisete Fernandes, Ana Caramelo, Maria Martins, Tânia Rodrigues and Rita S. Matos
Plants 2024, 13(24), 3515; https://doi.org/10.3390/plants13243515 - 16 Dec 2024
Cited by 8 | Viewed by 14292
Abstract
Chronic pruritus, or persistent itching, is a debilitating condition that severely impacts quality of life, especially in palliative care settings. Traditional treatments often fail to provide adequate relief or are associated with significant side effects, prompting interest in alternative therapies. This review investigates [...] Read more.
Chronic pruritus, or persistent itching, is a debilitating condition that severely impacts quality of life, especially in palliative care settings. Traditional treatments often fail to provide adequate relief or are associated with significant side effects, prompting interest in alternative therapies. This review investigates the antipruritic potential of eight medicinal plants: chamomile (Matricaria chamomilla), aloe vera (Aloe barbadensis), calendula (Calendula officinalis), curcumin (Curcuma longa), lavender (Lavandula angustifolia), licorice (Glycyrrhiza glabra), peppermint (Mentha piperita), and evening primrose (Oenothera biennis). These plants are analyzed for their traditional applications, active bioactive compounds, mechanisms of action, clinical evidence, usage, dosage, and safety profiles. Comprehensive searches were conducted in databases including PubMed, Web of Science, Scopus, and b-on, focusing on in vitro, animal, and clinical studies using keywords like “plant”, “extract”, and “pruritus”. Studies were included regardless of publication date and limited to English-language articles. Findings indicate that active compounds such as polysaccharides in aloe vera, curcuminoids in turmeric, and menthol in peppermint exhibit significant anti-inflammatory, antioxidant, and immune-modulating properties. Chamomile and calendula alleviate itching through anti-inflammatory and skin-soothing effects, while lavender and licorice offer antimicrobial benefits alongside antipruritic relief. Evening primrose, rich in gamma-linolenic acid, is effective in atopic dermatitis-related itching. Despite promising preclinical and clinical results, challenges remain in standardizing dosages and formulations. The review highlights the necessity of further clinical trials to ensure efficacy and safety, advocating for integrating these botanical therapies into complementary palliative care practices. Such approaches emphasize holistic treatment, addressing chronic pruritus’s physical and emotional burden, thereby enhancing patient well-being. Full article
Show Figures

Figure 1

27 pages, 1052 KB  
Article
Foliar Nutrition Strategies for Enhancing Phenolic and Amino Acid Content in Olive Leaves
by Marija Polić Pasković, Mirjana Herak Ćustić, Igor Lukić, Šime Marcelić, Paula Žurga, Nikolina Vidović, Nikola Major, Smiljana Goreta Ban, Marija Pecina, Josip Ražov, Matevž Likar, Paula Pongrac and Igor Pasković
Plants 2024, 13(24), 3514; https://doi.org/10.3390/plants13243514 - 16 Dec 2024
Cited by 5 | Viewed by 2235
Abstract
Studies on selenium (Se) and silicon (Si) foliar biostimulation of different plants have been shown to affect concentrations of phenolic compounds. However, their effects on olive (Olea europaea L.) primary and secondary metabolites have not been fully investigated. Therefore, the effects of [...] Read more.
Studies on selenium (Se) and silicon (Si) foliar biostimulation of different plants have been shown to affect concentrations of phenolic compounds. However, their effects on olive (Olea europaea L.) primary and secondary metabolites have not been fully investigated. Therefore, the effects of foliar sprayed Si and Se and their combination on the concentration of phenols, selected metabolites involved in the phenol biosynthesis, and mineral elements concentrations were determined in olive leaves of the field-grown cultivar Leccino. During the summer period, leaves were foliar sprayed three times, after which were sampled 30 days after the corresponding application. In general, foliar treatment of Si or Se increased the concentrations of several predominant phenolic compounds, such as oleuropein, oleacein, and specific flavonoids. The effects were especially pronounced after the third application in the harvest time sampling time. Amino acids and other phenol precursors were also significantly affected. The effects were phenol-specific and depended on the treatment, sampling time, and treatment × sampling time interaction. The response of verbascoside to the applied treatments appeared to be closely linked to corresponding changes in its amino acid precursors, such as tyrosine, while its connection with tryptophan and IAA has to be cautiously considered. In contrast, for other phenolic compounds like secoiridoids, a clear interdependence with their precursors was not identified, likely due to the more complex nature of their biosynthesis. The effects on the concentrations of elements other than Se and Si were milder. Full article
(This article belongs to the Special Issue Plant Phenolic Compounds: From Biosynthesis to Functional Profiling)
Show Figures

Figure 1

19 pages, 2490 KB  
Article
Mayan Medicinal Plants Bignonia potosina and Thouinia paucidentata Demonstrate Anti-Infective Properties Against the Priority Antibiotic-Resistant Bacteria Acinetobacter baumannii and Pseudomonas aeruginosa
by Gloria María Molina-Salinas, Angel Dzul-Beh, Andrés Humberto Uc-Cachón, Haziel Eleazar Dzib-Baak, Avel Adolfo González-Sánchez, Geovani Antonio Palma-Pech and Carlos Javier Quintal-Novelo
Plants 2024, 13(24), 3498; https://doi.org/10.3390/plants13243498 - 14 Dec 2024
Viewed by 2338
Abstract
(1) Background: Carbapenem-resistant Acinetobacter baumannii (CBRAB) and Pseudomonas aeruginosa (CBRPA) are critical and high-priority pathogens that require new therapeutic developments. Medicinal plants are valuable pharmaceutical resources. This study explored the anti-infective properties of Mayan plants, Bignonia potosina, and Thouinia paucidentata. (2) [...] Read more.
(1) Background: Carbapenem-resistant Acinetobacter baumannii (CBRAB) and Pseudomonas aeruginosa (CBRPA) are critical and high-priority pathogens that require new therapeutic developments. Medicinal plants are valuable pharmaceutical resources. This study explored the anti-infective properties of Mayan plants, Bignonia potosina, and Thouinia paucidentata. (2) Methods: Plant parts were extracted using n-hexane, and their ability to inhibit bacterial growth and counteract resistance mechanisms and virulence factors in CBRAB and CBRPA was assessed. GC-MS analysis of the composition of the non-polar extracts and chemometric techniques correlated the phytoconstituents with anti-infective properties. (3) Results: Bignonia potosina liana and flower extracts exhibited potent antibacterial activity against A. baumannii strains (MIC 15.7 to 250 µg/mL) and moderate activity against P. aeruginosa strains (MIC 250 to 1000 µg/mL). Thouinia paucidentata leaf extract at 1000 µg/mL reduced imipenem MIC by 2048-fold for CBRAB, and B. potosina flower extract significantly inhibited A. baumannii catalase activity (at 62.5 µg/mL) and reduced P. aeruginosa pyocyanin production (at 1000 µg/mL). Chemometric analysis identified fatty acids, fatty acid amides, terpenes, and higher alkanes as contributors to their anti-infective properties. (4) Conclusions: This study highlights the potential of medicinal plants in the development of novel anti-infective therapies against CBRAB and CBRPA with various targets. Full article
Show Figures

Figure 1

21 pages, 2925 KB  
Article
Effects of Different Microplastics on Wheat’s (Triticum aestivum L.) Growth Characteristics and Rhizosphere Soil Environment
by Yan Zhang, Songze Hao, Ping Li, Zhenjie Du, Yuze Zhou, Guohao Wang, Zhijie Liang and Ming Dou
Plants 2024, 13(24), 3483; https://doi.org/10.3390/plants13243483 - 12 Dec 2024
Cited by 3 | Viewed by 1988
Abstract
In order to reveal the effects of microplastics (MPs) on the growth and rhizosphere soil environmental effects of wheat (Triticum aestivum L.), three microplastic types (polypropylene MPs (PP-MPs), high-density polyethylene MPs (HDPE-MPs), and polylactic acid MPs (PLA-MPs)), particle sizes (150, 1000, and [...] Read more.
In order to reveal the effects of microplastics (MPs) on the growth and rhizosphere soil environmental effects of wheat (Triticum aestivum L.), three microplastic types (polypropylene MPs (PP-MPs), high-density polyethylene MPs (HDPE-MPs), and polylactic acid MPs (PLA-MPs)), particle sizes (150, 1000, and 4000 μm), and concentrations (0.1, 0.5, and 1 g·kg−1) were selected for a pot experiment under natural environment conditions. The differences in germination rate (GR), germination inhibition rate (GIR), growth characteristics, physicochemical properties, and enzymatic activities of wheat in rhizosphere soil were analyzed using statistical analysis and variance analysis. The results show that the germination rate of wheat seeds decreased under different MPs, and the HDPE-MPs, medium particle size (1000 μm), and medium concentration (0.5 g·kg−1) had the greatest inhibitory effect on wheat seed germination. The effects of MPs on wheat seed growth characteristics were inconsistent; the germination potential (GP), germination index (GI), and vitality index (VI) showed a significant decreasing trend under the PLA-MPs and medium-concentration (0.5 g·kg−1) treatment, while the mean germination time (MGT) showed a significant increasing trend; the GP and MGT showed a significant decreasing and increasing trend under the high-particle-size (4000 μm) treatment, respectively, while the GI and VI showed a significant decreasing trend under the medium-particle-size (1000 μm) treatment. The growth characteristics of wheat plants showed a significant decreasing trend under different MPs, with the SPAD, nitrogen concentration of the leaves, and plant height decreasing the most under PLA-MP treatment, the SPAD and nitrogen concentration of leaves decreasing the most under low-particle-size (150 μm) and low-concentration (0.1 g·kg−1) treatments, and the decreases in plant height under the high-particle-size (4000 μm) and high-concentration (1 g·kg−1) treatments being the largest. There were significant increasing trends for ammonium nitrogen (NH4+), total phosphorus (TP), soil urease (S-UE), soil acid phosphatase (S-ACP), and soil sucrase (S-SC) under different microplastics, while the PLA-MPs had a significant increasing trend for nitrate nitrogen (NO3) and a significant decreasing trend for pH; there was a significant decreasing trend for total nitrogen (TN) under the HDPE-MPs and PLA-MPs, and for each particle size and concentration, the PLA-MPs and low-concentration (0.1 g·kg−1) treatments showed a significant decreasing trend for soil catalase (S-CAT). The research results could provide certain data and theoretical bases for evaluating the effects of MPs on crop growth and soil ecological environments. Full article
(This article belongs to the Section Plant–Soil Interactions)
Show Figures

Figure 1

16 pages, 4923 KB  
Article
Impacts of Micro/Nanoplastics Combined with Graphene Oxide on Lactuca sativa Seeds: Insights into Seedling Growth, Oxidative Stress, and Antioxidant Gene Expression
by Xuancheng Yuan, Fan Zhang and Zhuang Wang
Plants 2024, 13(24), 3466; https://doi.org/10.3390/plants13243466 - 11 Dec 2024
Cited by 5 | Viewed by 1198
Abstract
Global pollution caused by micro/nanoplastics (M/NPs) is threatening agro-ecosystems, compromising food security and human health. Also, the increasing use of graphene-family nanomaterials (GFNs) in agricultural products has led to their widespread presence in agricultural systems. However, there is a large gap in the [...] Read more.
Global pollution caused by micro/nanoplastics (M/NPs) is threatening agro-ecosystems, compromising food security and human health. Also, the increasing use of graphene-family nanomaterials (GFNs) in agricultural products has led to their widespread presence in agricultural systems. However, there is a large gap in the literature on the combined effects of MNPs and GFNs on agricultural plants. This study was conducted to explore the individual and combined impacts of polystyrene microplastics (PSMPs, 1 μm) or nanoplastics (PSNPs, 50–100 nm), along with agriculturally relevant graphene oxide (GO), on the seed germination and seedling growth of lettuce (Lactuca sativa). The results showed that the combined effects of mixtures of PSMPs/PSNPs and GO exhibited both synergism and antagonism, depending on different toxicity indicators. The cellular mechanism underlying the combined effects on the roots and shoots of seedlings involved oxidative stress. Three SOD family genes, namely, Cu/Zn-SOD, Fe-SOD, and Mn-SOD, played an important role in regulating the antioxidant defense system of seedlings. The extent of their contribution to this regulation was associated with both the distinct plastic particle sizes and the specific tissue locations within the seedlings. Full article
(This article belongs to the Section Plant Response to Abiotic Stress and Climate Change)
Show Figures

Figure 1

30 pages, 1368 KB  
Review
Harnessing Single-Cell and Spatial Transcriptomics for Crop Improvement
by Yuzhao Hu, Linkan Dash, Gregory May, Nagesh Sardesai and Stéphane Deschamps
Plants 2024, 13(24), 3476; https://doi.org/10.3390/plants13243476 - 11 Dec 2024
Cited by 1 | Viewed by 3773
Abstract
Single-cell and spatial transcriptomics technologies have significantly advanced our understanding of the molecular mechanisms underlying crop biology. This review presents an update on the application of these technologies in crop improvement. The heterogeneity of different cell populations within a tissue plays a crucial [...] Read more.
Single-cell and spatial transcriptomics technologies have significantly advanced our understanding of the molecular mechanisms underlying crop biology. This review presents an update on the application of these technologies in crop improvement. The heterogeneity of different cell populations within a tissue plays a crucial role in the coordinated response of an organism to its environment. Single-cell transcriptomics enables the dissection of this heterogeneity, offering insights into the cell-specific transcriptomic responses of plants to various environmental stimuli. Spatial transcriptomics technologies complement single-cell approaches by preserving the spatial context of gene expression profiles, allowing for the in situ localization of transcripts. Together, single-cell and spatial transcriptomics facilitate the discovery of novel genes and gene regulatory networks that can be targeted for genetic manipulation and breeding strategies aimed at enhancing crop yield, quality, and resilience. This review highlights significant findings from recent studies, discusses the expanding roles of these technologies, and explores future opportunities for their application in crop improvement. Full article
Show Figures

Figure 1

16 pages, 898 KB  
Article
Phenolic Fractions from Walnut Milk Residue: Antioxidant Activity and Cytotoxic Potential
by Pamela Ruth Toledo-Merma, María Fernanda Arias-Santé, Miguel Ángel Rincón-Cervera, Omar Porras, Raquel Bridi, Samantha Rhein, Martina Sánchez-Contreras, Paulina Hernandez-Pino, Nicolás Tobar, Luis Puente-Díaz and Adriano Costa de Camargo
Plants 2024, 13(24), 3473; https://doi.org/10.3390/plants13243473 - 11 Dec 2024
Cited by 5 | Viewed by 1664
Abstract
Walnut milk residues (WMR) were investigated for the first time through their phenolic characterization including soluble (free, esterified, and etherified) phenolics and those released from their insoluble-bound form (insoluble-bound phenolic hydrolysates, IBPHs) and their antioxidant properties. Free phenolics were recovered and alkaline or [...] Read more.
Walnut milk residues (WMR) were investigated for the first time through their phenolic characterization including soluble (free, esterified, and etherified) phenolics and those released from their insoluble-bound form (insoluble-bound phenolic hydrolysates, IBPHs) and their antioxidant properties. Free phenolics were recovered and alkaline or acid hydrolysis were used to recover the remaining phenolic fractions. Total phenolic compounds (TPCs) and their antioxidant activity were analyzed by Folin–Ciocalteu, FRAP, and ORAC methods, respectively. Soluble phenolics (free + esterified + etherified fractions) showed a higher TPC (275.3 mg GAE 100 g−1 dw) and antioxidant activity (FRAP: 138.13 µmol TE g−1 dw; ORAC: 45.41 µmol TE g−1 dw) with respect to the IBPH. There was a significant correlation between TPC and FRAP and ORAC values regardless of the fraction and tested sample. Phenolic acids and flavonoids were identified and quantified by ultra-performance liquid chromatography–electrospray tandem mass spectrometry (UPLC-ESI-MS/MS). Gallic acid, mainly in the free form (3061.0 µg 100 g−1), was the most representative, followed by biochanin A, identified for the first time in a walnut product and mostly present in the fraction released from the esterified form (593.75 µg 100 g−1). No detrimental cytotoxic impact on Caco-2 cells was observed. Hence, WMR could be considered a potential source for the development of nutraceutical and/or antioxidant food additives. Full article
Show Figures

Figure 1

36 pages, 2633 KB  
Review
Essential Oils as Alternative Green Broad-Spectrum Biocides
by Fulga Tanasă, Marioara Nechifor and Carmen-Alice Teacă
Plants 2024, 13(23), 3442; https://doi.org/10.3390/plants13233442 - 8 Dec 2024
Cited by 8 | Viewed by 4816
Abstract
Natural compounds from plants represent suitable options to replace synthetic biocides when employed against microorganisms in various applications. Essential oils (EOs) have attracted increased interest due to their biocompatible and rather innocuous nature, and complex biological activity (fungicide, biocide and anti-inflammatory, antioxidant, immunomodulatory [...] Read more.
Natural compounds from plants represent suitable options to replace synthetic biocides when employed against microorganisms in various applications. Essential oils (EOs) have attracted increased interest due to their biocompatible and rather innocuous nature, and complex biological activity (fungicide, biocide and anti-inflammatory, antioxidant, immunomodulatory action, etc.). EOs are complex mixtures of derived metabolites with high volatility obtained from various vegetal parts and employed to a great extent in different healthcare (natural cures, nutrition, phyto- and aromatherapy, spices) and cosmetics applications (perfumery, personal and beauty care), as well as in cleaning products, agriculture and pest control, food conservation and active packaging, or even for restauration and preservation of cultural artifacts. EOs can act in synergy with other compounds, organic and synthetic as well, when employed in different complex formulations. This review will illustrate the employment of EOs in different applications based on some of the most recent reports in a systematic and comprehensive, though not exhaustive, manner. Some critical assessments will also be included, as well as some perspectives in this regard. Full article
(This article belongs to the Special Issue Plant Essential Oil with Biological Activity: 3nd Edition)
Show Figures

Figure 1

16 pages, 4377 KB  
Article
Biochemical and Physiological Responses of Weeds to the Application of a Botanical Herbicide Based on Cinnamon Essential Oil
by Sofiene Ben Kaab, Juan Antonio Fernández Pierna, Berenice Foncoux, Philippe Compère, Vincent Baeten and M. Haïssam Jijakli
Plants 2024, 13(23), 3432; https://doi.org/10.3390/plants13233432 - 6 Dec 2024
Cited by 3 | Viewed by 1912
Abstract
The use of chemical herbicides induces negative impacts on the environment, animals, and human health. It also leads to the development of herbicide-resistant weeds. In this context, natural and efficacious herbicides are highly sought after. Essential oils are natural compounds with antibacterial, fungicidal, [...] Read more.
The use of chemical herbicides induces negative impacts on the environment, animals, and human health. It also leads to the development of herbicide-resistant weeds. In this context, natural and efficacious herbicides are highly sought after. Essential oils are natural compounds with antibacterial, fungicidal, and phytotoxic properties. For this reason, we studied the post-emergence phytotoxic effect of cinnamon essential oil (cinnamon EO) from Cinnamomum cassia under greenhouse conditions, testing it against Trifolium incarnatum (T. incarnatum) and Lolium perenne (L. perenne). The content of malondialdehyde (MDA), percentage of water loss, electrolyte leakage, and the fluorescence of treated leaves by cinnamon EO were determined in order to understand the physiological and biochemical responses. In addition, transmission electron microscopy (TEM) was used to study the effect of cinnamon EO on cellular organelles in different tissues of T. incarnatum leaves. Results showed that cinnamon EO quickly induced oxidative stress in treated leaves by increasing MDA content, impacting membrane integrity and causing water loss. TEM observations confirmed the cell desiccation by cellular plasmolysis and showed an alteration of the membrane integrity and chloroplast damages. Moreover, Raman analysis confirms the disturbance of the plant metabolism by the disappearance of some scattering bands which correspond to primary metabolites. Through our finding, we confirm that cinnamon essential oil (EO) could be proposed in the future as a potential bioherbicide and a suitable source of natural phytotoxic compounds with a multisite action on weeds. Full article
(This article belongs to the Special Issue Biopesticides for Plant Protection)
Show Figures

Graphical abstract

16 pages, 5688 KB  
Article
Combined Effects of Deficit Irrigation and Biostimulation on Water Productivity in Table Grapes
by Susana Zapata-García, Abdelmalek Temnani, Pablo Berríos, Laura Marín-Durán, Pedro J. Espinosa, Claudia Monllor and Alejandro Pérez-Pastor
Plants 2024, 13(23), 3424; https://doi.org/10.3390/plants13233424 - 6 Dec 2024
Cited by 4 | Viewed by 1316
Abstract
Biostimulation and precision irrigation are strategies that increase the sustainability of agriculture, and both have been widely studied in table grapes, but their interaction is a new approach for viticulture. The objective of this field trial was to assess the physiological effects of [...] Read more.
Biostimulation and precision irrigation are strategies that increase the sustainability of agriculture, and both have been widely studied in table grapes, but their interaction is a new approach for viticulture. The objective of this field trial was to assess the physiological effects of water deficit on table grapes pretreated for two consecutive years with five different biostimulation programs. Therefore, during the first year, vines were preconditioned with biostimulants composed of microorganisms, seaweed, and plant extracts and compared to an untreated control. During the second year, the same biostimulation treatments were evaluated under two different irrigation schedules: (i) farmer irrigation (FI), according to a farmer’s criteria; and (ii) a deficit irrigation program, precision irrigation (PI), in which irrigation water was reduced from the post-veraison period to harvest, setting a threshold for allowable soil water depletion of 10% with respect to field capacity in order to minimize water leaching. The water inputs in the treatments under PI were reduced by 30% with respect to the FI treatment. While the deficit irrigation treatment clearly affected the plant water status indicators, biostimulation enhanced the root colonization by mycorrhizae and showed a trend of increased new root density. The combined effect of biostimulation and PI was shown to be an efficient strategy for optimizing the available resources, promoting the yield precocity. Full article
(This article belongs to the Special Issue Grapevine Response to Abiotic Stress)
Show Figures

Figure 1

15 pages, 3846 KB  
Article
Insight into the Amelioration Effect of Nitric Acid-Modified Biochar on Saline Soil Physicochemical Properties and Plant Growth
by Lei Yan, Guang Gao, Mu Lu, Muhammad Riaz, Mengyang Zhang, Kaiqing Tong, Hualong Yu, Yu Yang, Wenjing Hao and Yusheng Niu
Plants 2024, 13(23), 3434; https://doi.org/10.3390/plants13233434 - 6 Dec 2024
Cited by 4 | Viewed by 1882
Abstract
Soil salinization is a major factor threatening global food security. Soil improvement strategies are therefore of great importance in mitigating the adverse effect of salt stress. Our study aimed to evaluate the effect of biochar (BC) and nitric acid-modified biochar (HBC) (1%, 2%, [...] Read more.
Soil salinization is a major factor threatening global food security. Soil improvement strategies are therefore of great importance in mitigating the adverse effect of salt stress. Our study aimed to evaluate the effect of biochar (BC) and nitric acid-modified biochar (HBC) (1%, 2%, and 3%; m/m) on the properties of salinized soils and the morphological and physiological characteristics of pakchoi. Compared with BC, HBC exhibited a lower pH and released more alkaline elements, reflected in reduced contents of K+, Ca2+, and Mg2+, while its hydrophilicity and polarity increased. Additionally, the microporous structure of HBC was altered, showing a rougher surface, larger pore size, pore volume, specific surface area, and carboxyl and aliphatic carbon content, along with lower aromatic carbon content and crystallinity. Moreover, HBC application abated the pH of saline soil. Both BC and HBC treatments decreased the sodium absorption rate (SAR) of saline soil as their concentration increased. Conversely, both types of biochar enhanced the cation exchange capacity (CEC), organic matter, alkali-hydrolyzable nitrogen, and available phosphorus and potassium content in saline soils, with HBC demonstrating a more potent improvement effect. Furthermore, biochar application promoted the growth-related parameters in pakchoi, and reduced proline and Na+ content, whilst increasing leaf K+ content under salt stress. Biochar also enhanced the activity of key antioxidant enzymes (superoxide dismutase (SOD), peroxidase (POD), and catalase (CAT)) in leaves, and reduced hydrogen peroxide (H2O2) and malondialdehyde (MDA) content. Collectively, modified biochar can enhance soil quality and promote plant growth in saline soils. Full article
(This article belongs to the Special Issue Biochar Effects on Soil and Plant Health)
Show Figures

Figure 1

25 pages, 9836 KB  
Article
Vegetation Dynamics and Recovery Potential in Arid and Semi-Arid Northwest China
by Xiran Sui, Qiongling Xu, Hui Tao, Bin Zhu, Guangshuai Li and Zengxin Zhang
Plants 2024, 13(23), 3412; https://doi.org/10.3390/plants13233412 - 5 Dec 2024
Cited by 6 | Viewed by 2173
Abstract
The arid and semi-arid regions of northwest China are characterized by sparse vegetation and fragile ecosystems, making them highly susceptible to the impacts of climate change and human activities. Based on observed meteorological data, the Normalized Difference Vegetation Index (NDVI), the Lund–Potsdam–Jena dynamic [...] Read more.
The arid and semi-arid regions of northwest China are characterized by sparse vegetation and fragile ecosystems, making them highly susceptible to the impacts of climate change and human activities. Based on observed meteorological data, the Normalized Difference Vegetation Index (NDVI), the Lund–Potsdam–Jena dynamic global vegetation model (LPJ), a vegetation recovery potential model, and the MK trend test method, this study investigated the spatiotemporal distribution of vegetation recovery potential in northwest China and its relationship with global warming and increasing precipitation. The results indicated that vegetation in northwest China significantly increased, with greening closely related to trends in warming and wetting during 1982–2019. However, the vegetation recovery potential declined due to climate change. Central and southern Xinjiang and central Qinghai exhibited higher grassland recovery potential, while the central Gobi Desert areas of northwest China had lower recovery potential. The eastern part of northwest China was highly sensitive to drought, with moderate vegetation growth and recovery potential. Remote sensing data indicated a 2.3% increase in vegetation coverage in the region, with an average vegetation recovery potential index (IVCP) of 0.31. According to the results of LPJ model, the average vegetation recovery potential index for northwest China was 0.14, indicating a 1.1% improvement potential in vegetation coverage. Overall, climate warming and wetting facilitated vegetation recovery in northwest China, particularly in mountainous areas. The findings provide valuable insights for ecological restoration efforts and offer practical guidance for combating desertification and enhancing sustainable development. Moreover, these results underline the importance of incorporating vegetation recovery potential into regional policy-making to improve environmental resilience in the face of ongoing climate change. Full article
(This article belongs to the Section Plant Ecology)
Show Figures

Figure 1

23 pages, 9688 KB  
Review
Traditionally Used Medicinal Plants of Armenia
by Arpine Ayvazyan and Christian Zidorn
Plants 2024, 13(23), 3411; https://doi.org/10.3390/plants13233411 - 4 Dec 2024
Cited by 4 | Viewed by 4049
Abstract
The rich and diverse flora of Armenia has been used for medicinal purposes for at least 3000 years. The relevant literature in Armenian, English, and Russian revealed a vast array of used medicinal plants, some of them unique to the Caucasus region. The [...] Read more.
The rich and diverse flora of Armenia has been used for medicinal purposes for at least 3000 years. The relevant literature in Armenian, English, and Russian revealed a vast array of used medicinal plants, some of them unique to the Caucasus region. The usage of medicinal plants confirms the position of Armenia as a country at the crossroads of Asia and Europe because of its traditional usage of medicinal plants from both continents. Literature data in Armenian, English, and Russian on medicinal plants of Armenia were mainly obtained using various electronic databases. From all available sources, 320 Armenian medicinal plant species were extracted with their botanical and local names and traditional uses. The use of medicinal plants by the Armenian people is systematically compiled, including the used plant organs and preparations and the ailments for which the various taxa are/were used. Medicinal plants of Armenia are represented for both wild and cultivated species. Some of the taxa used are unique to Armenia or the Caucasus region, while many other species are also used in various other countries. Some of the species from traditional Armenian medicine are currently being studied using modern methods. Full article
(This article belongs to the Section Phytochemistry)
Show Figures

Figure 1

20 pages, 20323 KB  
Article
Are Cactus Spines Modified Leaves? Morphological and Anatomical Characterization of Saguaro Seedlings (Carnegiea gigantea) with Special Focus on Aerial Organ Primordia
by Cristina Betzabeth Miravel-Gabriel, Ryan Koeth, Nayelli Marsch-Martínez and Tania Hernández-Hernández
Plants 2024, 13(23), 3406; https://doi.org/10.3390/plants13233406 - 4 Dec 2024
Cited by 2 | Viewed by 6903
Abstract
The reduction of leaves was a key event in the evolution of the succulent syndrome in Cactaceae, evolving from large, photosynthetic leaves in Pereskia to nearly suppressed microscopic foliar buds in succulent Cactoideae. This leaf reduction was accompanied by the development of [...] Read more.
The reduction of leaves was a key event in the evolution of the succulent syndrome in Cactaceae, evolving from large, photosynthetic leaves in Pereskia to nearly suppressed microscopic foliar buds in succulent Cactoideae. This leaf reduction was accompanied by the development of spines. Early histological studies, dating back a century, of the shoot apical meristem (SAM) in several species concluded that, in succulent cacti, axillary buds became areoles and leaves transformed into spines. However, these conclusions were based on limited observations, given the challenges of obtaining SAM samples from long-lived, often endangered species. Here, we present a complete study of early aerial organ development in seedlings of the iconic Carnegiea gigantea (saguaro), characterizing the different stages of seedling development. We focus on the SAM to track the emergence and development of primordia and aerial organs, closely following the spine development from undifferentiated structures. We demonstrate that young, few-days-old saguaro seedlings provide a valuable model for morpho-anatomical and molecular studies in Cactaceae. We also outline optimal laboratory practices for germinating saguaro seeds and conducting histological studies. Our observations confirm the absence of clear foliar structures and the presence of a distinct type of primordia, hypothesized to be foliar but lacking definitive foliar features. Based on our observations and a review of the literature, we revive the discussion on the ontogenetic origin of spines and propose saguaro seedlings as a promising model for studying the genetic identity of SAM primordia. Full article
(This article belongs to the Special Issue Anatomical, Ontogenetic, and Embryological Studies of Plants)
Show Figures

Graphical abstract

36 pages, 1275 KB  
Review
Genetic Foundation of Leaf Senescence: Insights from Natural and Cultivated Plant Diversity
by Phan Phuong Thao Doan, Hue Huong Vuong and Jeongsik Kim
Plants 2024, 13(23), 3405; https://doi.org/10.3390/plants13233405 - 4 Dec 2024
Cited by 5 | Viewed by 3484
Abstract
Leaf senescence, the final stage of leaf development, is crucial for plant fitness as it enhances nutrient reutilization, supporting reproductive success and overall plant adaptation. Understanding its molecular and genetic regulation is essential to improve crop resilience and productivity, particularly in the face [...] Read more.
Leaf senescence, the final stage of leaf development, is crucial for plant fitness as it enhances nutrient reutilization, supporting reproductive success and overall plant adaptation. Understanding its molecular and genetic regulation is essential to improve crop resilience and productivity, particularly in the face of global climate change. This review explores the significant contributions of natural genetic diversity to our understanding of leaf senescence, focusing on insights from model plants and major crops. We discuss the physiological and adaptive significance of senescence in plant development, environmental adaptation, and agricultural productivity. The review emphasizes the importance of natural genetic variation, including studies on natural accessions, landraces, cultivars, and artificial recombinant lines to unravel the genetic basis of senescence. Various approaches, from quantitative trait loci mapping to genome-wide association analysis and in planta functional analysis, have advanced our knowledge of senescence regulation. Current studies focusing on key regulatory genes and pathways underlying natural senescence, identified from natural or recombinant accession and cultivar populations, are highlighted. We also address the adaptive implications of abiotic and biotic stress factors triggering senescence and the genetic mechanisms underlying these responses. Finally, we discuss the challenges in translating these genetic insights into crop improvement. We propose future research directions, such as expanding studies on under-researched crops, investigating multiple stress combinations, and utilizing advanced technologies, including multiomics and gene editing, to harness natural genetic diversity for crop resilience. Full article
(This article belongs to the Section Plant Physiology and Metabolism)
Show Figures

Figure 1

20 pages, 4111 KB  
Article
Evaluating the Impact of Phosphorus and Solid Oxygen Fertilization on Snap Bean (Phaseolus vulgaris L.): A Two-Year Field Study
by Md. Jahidul Islam Shohag, Elena Máximo Salgado, Marina Curtis Gluck and Guodong Liu
Plants 2024, 13(23), 3384; https://doi.org/10.3390/plants13233384 - 1 Dec 2024
Cited by 2 | Viewed by 2038
Abstract
The snap bean (Phaseolus vulgaris L.) is highly sensitive to both phosphorus (P) deficiency and hypoxic stress, which together can significantly hinder plant growth, nutrient uptake, and yield; however, limited information exists on the effect of P and oxygen (O2) [...] Read more.
The snap bean (Phaseolus vulgaris L.) is highly sensitive to both phosphorus (P) deficiency and hypoxic stress, which together can significantly hinder plant growth, nutrient uptake, and yield; however, limited information exists on the effect of P and oxygen (O2) fertilization to alleviate these stresses and enhance yield. A two-year field experiment assessed the effects of P and O2 fertilization on plant growth, pod yield, and P uptake in acidic sandy soil. Using a randomized complete block design with four replications, we tested five P rates (0, 45, 90, 135, and 179 kg ha−1 of phosphorus pentoxide, P2O5) in the form of triple superphosphate (TSP) along with two rates (0 and 45 kg ha−1) of solid O2 fertilizer as calcium peroxide (CaO2). Phosphorus and O2 fertilizers improved plant growth and pod yield, with the highest yield from the combination of 135 kg ha−1 P2O5 and 45 kg ha−1 CaO2. Pearson correlation analysis indicated strong associations between plant growth, pod yield, and nutrient accumulation. Principal component analysis (PCA) highlighted notable seasonal differences in snap bean and soil characteristics. This study provides essential insights into the use of O2 fertilizers as a cost-effective approach to mitigate hypoxia, enhance P use efficiency, and improve yield in snap bean. Our findings may inspire the development of sustainable nutrient protocols for high-quality snap bean production and serve as a foundation for similar applications in other crops. Full article
Show Figures

Figure 1

25 pages, 18397 KB  
Review
Advancements in Agricultural Ground Robots for Specialty Crops: An Overview of Innovations, Challenges, and Prospects
by Marcelo Rodrigues Barbosa Júnior, Regimar Garcia dos Santos, Lucas de Azevedo Sales and Luan Pereira de Oliveira
Plants 2024, 13(23), 3372; https://doi.org/10.3390/plants13233372 - 30 Nov 2024
Cited by 11 | Viewed by 5794
Abstract
Robotic technologies are affording opportunities to revolutionize the production of specialty crops (fruits, vegetables, tree nuts, and horticulture). They offer the potential to automate tasks and save inputs such as labor, fertilizer, and pesticides. Specialty crops are well known for their high economic [...] Read more.
Robotic technologies are affording opportunities to revolutionize the production of specialty crops (fruits, vegetables, tree nuts, and horticulture). They offer the potential to automate tasks and save inputs such as labor, fertilizer, and pesticides. Specialty crops are well known for their high economic value and nutritional benefits, making their production particularly impactful. While previous review papers have discussed the evolution of agricultural robots in a general agricultural context, this review uniquely focuses on their application to specialty crops, a rapidly expanding area. Therefore, we aimed to develop a state-of-the-art review to scientifically contribute to the understanding of the following: (i) the primary areas of robots’ application for specialty crops; (ii) the specific benefits they offer; (iii) their current limitations; and (iv) opportunities for future investigation. We formulated a comprehensive search strategy, leveraging Scopus® and Web of Science™ as databases and selecting “robot” and “specialty crops” as the main keywords. To follow a critical screening process, only peer-reviewed research papers were considered, resulting in the inclusion of 907 papers covering the period from 1988 to 2024. Each paper was thoroughly evaluated based on its title, abstract, keywords, methods, conclusions, and declarations. Our analysis revealed that interest in agricultural robots for specialty crops has significantly increased over the past decade, mainly driven by technological advancements in computer vision and recognition systems. Harvesting robots have arisen as the primary focus. Robots for spraying, pruning, weed control, pollination, transplanting, and fertilizing are emerging subjects to be addressed in further research and development (R&D) strategies. Ultimately, our findings serve to reveal the dynamics of agricultural robots in the world of specialty crops while supporting suitable practices for more sustainable and resilient agriculture, indicating a new era of innovation and efficiency in agriculture. Full article
Show Figures

Figure 1

24 pages, 6517 KB  
Review
Antiangiogenic Potential of Pomegranate Extracts
by Riccardo Tornese, Anna Montefusco, Rocco Placì, Teodoro Semeraro, Miriana Durante, Monica De Caroli, Gianpiero Calabrese, Anna Eleonora Caprifico and Marcello Salvatore Lenucci
Plants 2024, 13(23), 3350; https://doi.org/10.3390/plants13233350 - 29 Nov 2024
Cited by 3 | Viewed by 4247
Abstract
Pomegranate (Punica granatum L.) has long been recognised for its rich antioxidant profile and potential health benefits. Recent research has expanded its therapeutic potential to include antiangiogenic properties, which are crucial for inhibiting the growth of tumours and other pathological conditions involving [...] Read more.
Pomegranate (Punica granatum L.) has long been recognised for its rich antioxidant profile and potential health benefits. Recent research has expanded its therapeutic potential to include antiangiogenic properties, which are crucial for inhibiting the growth of tumours and other pathological conditions involving aberrant blood vessel formation. This review consolidates current findings on the antiangiogenic effects of pomegranate extracts. We explore the impact of pomegranate polyphenols, including ellagic acid, punicalagin, anthocyanins, punicic acid and bioactive polysaccharides on key angiogenesis-related pathways and endothelial cell function. Emphasis is placed on the effects of these extracts as phytocomplexes rather than isolated compounds. Additionally, we discuss the use of pomegranate by-products, such as peels and seeds, in the preparation of extracts within a green chemistry and circular economy framework, highlighting their value in enhancing extract efficacy and sustainability. By primarily reviewing in vitro and in vivo preclinical studies, we assess how these extracts modulate angiogenesis across various disease models and explore their potential as adjunctive therapies for cancer and other angiogenesis-driven disorders. This review also identifies existing knowledge gaps and proposes future research directions to fully elucidate the clinical utility of pomegranate extracts in therapeutic applications. Full article
(This article belongs to the Collection Feature Review Papers in Phytochemistry)
Show Figures

Figure 1

19 pages, 5501 KB  
Article
Application of Microwave-Assisted Water Extraction (MAWE) to Fully Realize Various Physiological Activities of Melaleuca quinquenervia Leaf Extract
by Ting-Kang Lin, Jyh-Yih Leu, Yi-Lin Lai, Yu-Chi Chang, Ying-Chien Chung and Hsia-Wei Liu
Plants 2024, 13(23), 3362; https://doi.org/10.3390/plants13233362 - 29 Nov 2024
Cited by 2 | Viewed by 1856
Abstract
Melaleuca quinquenervia is widely grown in tropical areas worldwide. Studies have demonstrated that extracts of its buds, leaves, and branches obtained through hydrodistillation, steam distillation, or solvent extraction exhibit physiological activities, including anti-melanogenic, antibacterial, and antioxidant properties; nevertheless, such extracts are mostly not [...] Read more.
Melaleuca quinquenervia is widely grown in tropical areas worldwide. Studies have demonstrated that extracts of its buds, leaves, and branches obtained through hydrodistillation, steam distillation, or solvent extraction exhibit physiological activities, including anti-melanogenic, antibacterial, and antioxidant properties; nevertheless, such extracts are mostly not effectively collected or adequately utilized. Accordingly, this study applied a rapid, effective, and easy-to-operate microwave-assisted water extraction (MAWE) technique for the first time to prepare M. quinquenervia leaf extract (MLE) with improved physiological activities. The results indicated that the optimal irradiation time and liquid/solid ratio for the production of the MLE were 180 s and 20 mL/g, respectively. Under optimal conditions, the freeze-dried MLE achieved a high yield (6.28% ± 0.08%) and highly effective broad-spectrum physiological activities. The MLE exhibited strong antioxidant, antiaging, and anti-inflammatory activities and excellent antityrosinase and antimicrobial activities. Additionally, the MLE was noncytotoxic at concentrations of ≤300 mg/L, at which it exhibited pharmacological activity. The results also indicated that the MLE comprised a total of 24 chemical compounds and 17 phenolic compounds. Among these compounds, luteolin contributed to antityrosinase activity. The extract’s antiaging activity was attributed to ellagic acid and quercetin, its anti-inflammatory activity resulted from ellagic acid and kaempferol, and its antimicrobial activity resulted from quercetin and 3-O-methylellagic acid. In conclusion, the MAWE-derived MLE may be useful as a functional ingredient in cosmetic products, health foods, and botanical drugs. Full article
(This article belongs to the Special Issue Bioactivities of Nature Products)
Show Figures

Graphical abstract

22 pages, 3321 KB  
Article
Multi-Feature Fusion for Estimating Above-Ground Biomass of Potato by UAV Remote Sensing
by Guolan Xian, Jiangang Liu, Yongxin Lin, Shuang Li and Chunsong Bian
Plants 2024, 13(23), 3356; https://doi.org/10.3390/plants13233356 - 29 Nov 2024
Cited by 6 | Viewed by 1341
Abstract
Timely and accurate monitoring of above-ground biomass (AGB) is of great significance for indicating crop growth status, predicting yield, and assessing carbon dynamics. Compared with the traditional time-consuming and laborious method through destructive sampling, UAV remote sensing provides a timely and efficient strategy [...] Read more.
Timely and accurate monitoring of above-ground biomass (AGB) is of great significance for indicating crop growth status, predicting yield, and assessing carbon dynamics. Compared with the traditional time-consuming and laborious method through destructive sampling, UAV remote sensing provides a timely and efficient strategy for estimating biomass. However, the universality of remote sensing retrieval models with multi-feature fusion under different management practices and cultivars are unknown. The spectral, textural, and structural features extracted by UAV multispectral and RGB imaging, coupled with agricultural meteorological parameters, were integrated to estimate the AGB in potato during the whole growth period. Six advanced modeling algorithms, including random forest (RF), partial least squares regression (PLSR), multiple linear regression (MLR), simple linear regression (SLR), ridge regression (RR), and lasso regression (LR) models, were adopted to evaluate the ability of estimating AGB by single feature and multi-feature information fusion. The results indicate the following: (1) The newly proposed variety-dependent indicator growth process ratio (GPR) can improve the model accuracy by over 20%. (2) The fusion of vegetation indices, canopy cover, growing degree days, and GPR achieved higher accuracy to estimate AGB at all growth stages compared with single feature model. (3) RF model performed best for the estimation of AGB during the whole growth period with R2 0.79 and rRMSE 0.24 ton/ha. The study demonstrated that the fusion of multi-feature coupled with the machine learning algorithm achieved the best performance for estimating potato AGB under different management practices and cultivars, which can be a potential and useful phenotyping strategy for estimating AGB at refined plot scale during the whole growth period. Full article
Show Figures

Figure 1

19 pages, 3320 KB  
Article
Mitigation of Salt Stress in Lactuca sativa L. var. Gentile Rossa Using Microalgae as Priming Agents
by Ornella Francioso, Michela Schiavon, Serenella Nardi, Davide Castellani, Erika Ferrari, Maria Teresa Rodriguez Estrada, Maria Cristina della Lucia, Veronica Zuffi and Andrea Ertani
Plants 2024, 13(23), 3311; https://doi.org/10.3390/plants13233311 - 26 Nov 2024
Cited by 3 | Viewed by 1976
Abstract
Using renewable biomass in agriculture, particularly microalgae as a biostimulant, offers economic and environmental sustainability benefits by reducing costs, improving nutrient cycling, and enhancing water use efficiency. Microalgae contain bioactive compounds that boost crop tolerance to environmental stresses, including salinity. Saline soils, characterized [...] Read more.
Using renewable biomass in agriculture, particularly microalgae as a biostimulant, offers economic and environmental sustainability benefits by reducing costs, improving nutrient cycling, and enhancing water use efficiency. Microalgae contain bioactive compounds that boost crop tolerance to environmental stresses, including salinity. Saline soils, characterized by elevated sodium chloride (NaCl) levels, negatively impact many crops, resulting in low productivity and high remediation costs. Therefore, this study evaluates the biostimulant properties of a microalgae-based commercial preparation (MR) on lettuce (Lactuca sativa L.) plants grown hydroponically and exposed to saline stress. The extract was chemically characterized through elemental analysis, lipid composition (gas chromatography with flame ionization detector—GC-FID), the determination of functional groups (Fourier Transformed Infrared—FT-IR), structure (1H,13C Nuclear Magnetic Resonance—NMR), with their hormone-like activity also assessed. Lettuce plants were treated with or without the microalgae blend, in combination with 0, 50 mM, or 100 mM NaCl. The contents of nutrients, soluble proteins, chlorophylls, and phenols, as well as the lipid peroxidation, antioxidants and root traits of lettuce plants, were estimated. The microalgae applied to salt-stressed plants resulted in a significant increase in biomass, protein, and chlorophyll contents. Additionally, significant effects on the secondary metabolism and mitigation of salinity stress were observed in terms of increased phenol content and the activity of antioxidant enzymes, as well as decreased lipid peroxidation. The potassium (K+) content was increased significantly in plants treated with 100 mM NaCl after addition of microalgae, while the content of sodium (Na+) was concurrently reduced. In conclusion, our results demonstrate that using microalgae can be a potent approach for improving the cultivation of Lactuca sativa L. under saline stress conditions. Full article
(This article belongs to the Special Issue Advances in Biostimulant Use on Horticultural Crops)
Show Figures

Figure 1

22 pages, 3073 KB  
Article
Effects of Rhizobacteria Strains on Plant Growth Promotion in Tomatoes (Solanum lycopersicum)
by Eduardo Hernández-Amador, David Tomás Montesdeoca-Flores, Néstor Abreu-Acosta and Juan Cristo Luis-Jorge
Plants 2024, 13(23), 3280; https://doi.org/10.3390/plants13233280 - 22 Nov 2024
Cited by 2 | Viewed by 1912
Abstract
Numerous factors, such as soil fertility, climatic conditions, human activity, pests, and diseases, limit agricultural yields. Pesticides and fertilizers have become indispensable tools to satisfy the global food demand. However, its adverse environmental effects have led to the search for more sustainable and [...] Read more.
Numerous factors, such as soil fertility, climatic conditions, human activity, pests, and diseases, limit agricultural yields. Pesticides and fertilizers have become indispensable tools to satisfy the global food demand. However, its adverse environmental effects have led to the search for more sustainable and ethical techniques. Biofertilizers and biopesticides based on plant- growth-promoting rhizobacteria (PGPRs) are efficient and ecological treatments that promote plant growth and protection against pathogens and abiotic stresses. In this study, twelve rhizobacterial strains with plant-growth-promoting attributes were selected to evaluate their plant-growth-promoting effect on tomato plants (Solanum lycopersicum L. var Robin). Soil inoculation with these strains resulted in a significant increase in shoot length, up to 50% when compared with control plants. Regarding fresh biomass, rhizobacterial treatments significantly improved seedlings’ fresh aerial weight with a maximum increase of 77%. Root biomass also demonstrated a substantial improvement, yielding 62.26% greater fresh root weight compared to the control. Finally, dry root weights exhibited the most remarkable enhancements, with values between 49 and 124%, when compared to the control plants. Concerning the nutritional status, the strains inoculation increased the macronutrients and micronutrients content in the aerial and root parts of the plants. All these findings suggest that rhizobacteria from different ecosystems and agriculture soils of the Canary Islands could be used as fertilizer inoculants to increase crop yield and promote more sustainable practices in modern agriculture. Full article
(This article belongs to the Special Issue Crop Improvement for Climate Resilience and Global Food Security)
Show Figures

Figure 1

21 pages, 6708 KB  
Article
Smart Automatic Irrigation Enhances Sap Flow, Growth, and Water Use Efficiency in Containerized Prunus × yedoensis Matsum. Seedling
by Eon-Ju Jin, Myung-Suk Choi, Hyeok Lee, Eun-Ji Bae, Do-Hyun Kim and Jun-Hyuck Yoon
Plants 2024, 13(23), 3270; https://doi.org/10.3390/plants13233270 - 21 Nov 2024
Viewed by 2237
Abstract
This study conducted a comparative analysis on the effects of smart automatic and semi-automatic irrigation methods on the physiological characteristics and growth of Prunus × yedoensis Matsum. seedlings. The smart automatic irrigation system, which activates irrigation when the soil moisture drops below 15%, [...] Read more.
This study conducted a comparative analysis on the effects of smart automatic and semi-automatic irrigation methods on the physiological characteristics and growth of Prunus × yedoensis Matsum. seedlings. The smart automatic irrigation system, which activates irrigation when the soil moisture drops below 15%, demonstrated superior characteristics in sap-wood area and bark ratio, as well as excellent water management efficiency, compared to the semi-automatic irrigation method, which involves watering (2.0 L) for 10 min at 60 min intervals starting at 8 AM every day. The analysis of soil moisture content changes under varying weather conditions and irrigation methods showed that smart automatic irrigation effectively maintained optimal moisture levels. Moreover, sap flow in the smart automatic irrigation treatment was more efficiently regulated in response to seasonal variations, showing a strong correlation with climatic factors such as temperature and solar radiation. In contrast, the semi-automatic irrigation treatment led to excessive sap flow during the summer due to a fixed watering schedule, resulting in unnecessary water supply. Analysis of photosynthesis parameters and chlorophyll fluorescence also revealed that smart automatic irrigation achieved higher values in light compensation and saturation points, maximizing photosynthetic efficiency. These findings suggest that the smart automatic irrigation system can enhance plant growth and water use efficiency, contributing to sustainable water management strategies. This research provides critical foundational data for developing efficient agricultural and horticultural irrigation management strategies in response to future climate change. Full article
(This article belongs to the Section Plant Modeling)
Show Figures

Figure 1

22 pages, 2509 KB  
Article
Effects of pH, Temperature, and Light on the Inorganic Carbon Uptake Strategies in Early Life Stages of Macrocystis pyrifera (Ochrophyta, Laminariales)
by Bárbara S. Labbé, Pamela A. Fernández, July Z. Florez and Alejandro H. Buschmann
Plants 2024, 13(23), 3267; https://doi.org/10.3390/plants13233267 - 21 Nov 2024
Cited by 3 | Viewed by 1856
Abstract
The responses of seaweed species to increased CO2 and lowered pH (Ocean Acidification: OA) depend on their carbon concentrating mechanisms (CCMs) and inorganic carbon (Ci) preferences. However, few studies have described these mechanisms in the early life stages of seaweeds or assessed [...] Read more.
The responses of seaweed species to increased CO2 and lowered pH (Ocean Acidification: OA) depend on their carbon concentrating mechanisms (CCMs) and inorganic carbon (Ci) preferences. However, few studies have described these mechanisms in the early life stages of seaweeds or assessed the effects of OA and its interactions with other environmental drivers on their functionality and photophysiology. Our study evaluated the effects of pH, light (PAR), temperature, and their interactions on the Ci uptake strategies and photophysiology in the early stages of Macrocystis pyrifera. Gametophytes were cultivated under varying pH (7.80 and 8.20), light (20 and 50 µmol photons m−2s−1), and temperature (12 and 16 °C) conditions for 25 days. We assessed photophysiological responses and CCMs (in particular, the extracellular dehydration of HCO3 to CO2 mediated by the enzyme carbonic anhydrase (CA) and direct HCO3 uptake via an anion exchange port). This study is the first to describe the Ci uptake strategies in gametophytes of M. pyrifera, demonstrating that their primary CCM is the extracellular conversion of HCO3 to CO2 mediated by CA. Additionally, our results indicate that decreased pH can positively affect their photosynthetic efficiency and maximum quantum yield; however, this response is dependent on the light and temperature conditions. Full article
(This article belongs to the Special Issue Advances in Algal Photosynthesis and Phytochemistry)
Show Figures

Figure 1

19 pages, 29968 KB  
Article
Ripe Tomato Detection Algorithm Based on Improved YOLOv9
by Yan Wang, Qianjie Rong and Chunhua Hu
Plants 2024, 13(22), 3253; https://doi.org/10.3390/plants13223253 - 20 Nov 2024
Cited by 15 | Viewed by 2380
Abstract
Recognizing ripe tomatoes is a crucial aspect of tomato picking. To ensure the accuracy of inspection results, You Only Look Once version 9 (YOLOv9) has been explored as a fruit detection algorithm. To tackle the challenge of identifying tomatoes and the low accuracy [...] Read more.
Recognizing ripe tomatoes is a crucial aspect of tomato picking. To ensure the accuracy of inspection results, You Only Look Once version 9 (YOLOv9) has been explored as a fruit detection algorithm. To tackle the challenge of identifying tomatoes and the low accuracy of small object detection in complex environments, we propose a ripe tomato recognition algorithm based on an enhanced YOLOv9-C model. After collecting tomato data, we used Mosaic for data augmentation, which improved model robustness and enriched experimental data. Improvements were made to the feature extraction and down-sampling modules, integrating HGBlock and SPD-ADown modules into the YOLOv9 model. These measures resulted in high detection performance with precision and recall rates of 97.2% and 92.3% in horizontal and vertical experimental comparisons, respectively. The module-integrated model improved accuracy and recall by 1.3% and 1.1%, respectively, and also reduced inference time by 1 ms compared to the original model. The inference time of this model was 14.7 ms, which is 16 ms better than the RetinaNet model. This model was tested accurately with mAP@0.5 (%) up to 98%, which is 9.6% higher than RetinaNet. Its increased speed and accuracy make it more suitable for practical applications. Overall, this model provides a reliable technique for recognizing ripe tomatoes during the picking process. Full article
Show Figures

Figure 1

47 pages, 3429 KB  
Review
Recent Advances in Postharvest Application of Exogenous Phytohormones for Quality Preservation of Fruits and Vegetables
by Sbulelo Mwelase, Jerry O. Adeyemi and Olaniyi A. Fawole
Plants 2024, 13(22), 3255; https://doi.org/10.3390/plants13223255 - 20 Nov 2024
Cited by 5 | Viewed by 3426
Abstract
The increasing global population has heightened the demand for food, leading to escalated food production and, consequently, the generation of significant food waste. Factors such as rapid ripening, susceptibility to physiological disorders, and vulnerability to microbial attacks have been implicated as contributing to [...] Read more.
The increasing global population has heightened the demand for food, leading to escalated food production and, consequently, the generation of significant food waste. Factors such as rapid ripening, susceptibility to physiological disorders, and vulnerability to microbial attacks have been implicated as contributing to the accelerated senescence associated with food waste generation. Fruits and vegetables, characterized by their high perishability, account for approximately half of all food waste produced, rendering them a major area of concern. Various postharvest technologies have thus been employed, including the application of phytohormone treatments, to safeguard and extend the storability of highly perishable food products. This review, therefore, explores the physicochemical properties and biological aspects of phytohormones that render them suitable for food preservation. Furthermore, this review examines the effects of externally applied phytohormones on the postharvest physiology and quality attributes of fresh produce. Finally, the review investigates the mechanisms by which exogenous phytohormones preserve food quality and discusses the associated limitations and safety considerations related to the use of these compounds in food applications. Full article
(This article belongs to the Special Issue Postharvest Quality and Physiology of Vegetables and Fruits)
Show Figures

Figure 1

28 pages, 2364 KB  
Review
Optimizing Brassica oleracea L. Breeding Through Somatic Hybridization Using Cytoplasmic Male Sterility (CMS) Lines: From Protoplast Isolation to Plantlet Regeneration
by Miriam Romero-Muñoz and Margarita Pérez-Jiménez
Plants 2024, 13(22), 3247; https://doi.org/10.3390/plants13223247 - 19 Nov 2024
Cited by 2 | Viewed by 4456
Abstract
The Brassica oleracea L. species embrace important horticultural crops, such as broccoli, cauliflower, and cabbage, which are highly valued for their beneficial nutritional effects. However, the complexity of flower emasculation in these species has forced breeders to adopt biotechnological approaches such as somatic [...] Read more.
The Brassica oleracea L. species embrace important horticultural crops, such as broccoli, cauliflower, and cabbage, which are highly valued for their beneficial nutritional effects. However, the complexity of flower emasculation in these species has forced breeders to adopt biotechnological approaches such as somatic hybridization to ease hybrid seed production. Protoplasts entail a versatile tool in plant biotechnology, supporting breeding strategies that involve genome editing and hybridization. This review discusses the use of somatic hybridization in B. oleracea L. as a biotechnological method for developing fusion products with desirable agronomic traits, particularly cytoplasmic male sterile (CMS) condition. These CMS lines are critical for implementing a cost-effective, efficient, and reliable system for producing F1 hybrids. We present recent studies on CMS systems in B. oleracea L. crops, providing an overview of established models that explain the mechanisms of CMS and fertility restoration. Additionally, we emphasize key insights gained from protoplast fusion applied to B. oleracea L. breeding. Key steps including pre-treatments of donor plants, the main tissues used as sources of parental protoplasts, methods for obtaining somatic hybrids and cybrids, and the importance of establishing a reliable plant regeneration method are discussed. Finally, the review explores the incorporation of genome editing technologies, such as CRISPR-Cas9, to introduce multiple agronomic traits in Brassica species. This combination of advanced biotechnological tools holds significant promise for enhancing B. oleracea breeding programs in the actual climate change context. Full article
Show Figures

Figure 1

21 pages, 2975 KB  
Article
Patterns and Mechanisms of Legume Responses to Nitrogen Enrichment: A Global Meta-Analysis
by Juan Tang, Wei Li, Ting Wei, Ruilong Huang and Zhuanfei Zeng
Plants 2024, 13(22), 3244; https://doi.org/10.3390/plants13223244 - 19 Nov 2024
Cited by 8 | Viewed by 2601
Abstract
Nitrogen (N), while the most abundant element in the atmosphere, is an essential soil nutrient that limits plant growth. Leguminous plants naturally possess the ability to fix atmospheric nitrogen through symbiotic relationships with rhizobia in their root nodules. However, the widespread use of [...] Read more.
Nitrogen (N), while the most abundant element in the atmosphere, is an essential soil nutrient that limits plant growth. Leguminous plants naturally possess the ability to fix atmospheric nitrogen through symbiotic relationships with rhizobia in their root nodules. However, the widespread use of synthetic N fertilizers in modern agriculture has led to N enrichment in soils, causing complex and profound effects on legumes. Amid ongoing debates about how leguminous plants respond to N enrichment, the present study compiles 2174 data points from 162 peer-reviewed articles to analyze the impacts and underlying mechanisms of N enrichment on legumes. The findings reveal that N enrichment significantly increases total legume biomass by 30.9% and N content in plant tissues by 13.2% globally. However, N enrichment also leads to notable reductions, including a 5.8% decrease in root-to-shoot ratio, a 21.2% decline in nodule number, a 29.3% reduction in nodule weight, and a 27.1% decrease in the percentage of plant N derived from N2 fixation (%Ndfa). Legume growth traits and N2-fixing capability in response to N enrichment are primarily regulated by climatic factors, such as mean annual temperature (MAT) and mean annual precipitation (MAP), as well as the aridity index (AI) and N fertilizer application rates. Correlation analyses show that plant biomass is positively correlated with MAT, and tissue N content also exhibits a positive correlation with MAT. In contrast, nodule numbers and tissue N content are negatively correlated with N fertilizer application rates, whereas %Ndfa shows a positive correlation with AI and MAP. Under low N addition, the increase in total biomass in response to N enrichment is twice as large as that observed under high N addition. Furthermore, regions at lower elevations with abundant hydrothermal resources are especially favorable for total biomass accumulation, indicating that the responses of legumes to N enrichment are habitat-specific. These results provide scientific evidence for the mechanisms underlying legume responses to N enrichment and offer valuable insights and theoretical references for the conservation and management of legumes in the context of global climate change. Full article
(This article belongs to the Special Issue Fertilizer and Abiotic Stress)
Show Figures

Figure 1

22 pages, 1028 KB  
Review
Genetic Basis of Tillering Angle from Other Plants to Wheat: Current Progress and Future Perspectives
by Xiaohong Chen, Tingshu Lei, Yuming Yan, Mengyu Sun, Tao Zhong, Baolin Wu, Hanxi Liu, Chao Zhang, Fengli Sun and Yajun Xi
Plants 2024, 13(22), 3237; https://doi.org/10.3390/plants13223237 - 18 Nov 2024
Cited by 1 | Viewed by 2319
Abstract
Plant architecture is an important agronomic trait that impacts crop yield. The tiller angle is a critical aspect of the plant’s structural organization, which is influenced by both internal and external factors. The genetic mechanisms underlying the tiller angle have been extensively investigated [...] Read more.
Plant architecture is an important agronomic trait that impacts crop yield. The tiller angle is a critical aspect of the plant’s structural organization, which is influenced by both internal and external factors. The genetic mechanisms underlying the tiller angle have been extensively investigated in other plants. However, research on wheat is relatively limited. Additionally, mechanics has emerged as a connection between biochemical signaling and the development of three-dimensional biological forms. It not only reveals how physical interactions at the cellular level influence overall morphogenesis but also elucidates the interplay between these mechanical processes and molecular signaling pathways that collectively determine plant morphology. This review examines the recent advancements in the study of tillering angle in wheat and other plants. It discusses progress in research ranging from observable characteristics to the regulation of genes, as well as the physiological and biochemical aspects, and the adaptability to environmental factors. In addition, this review also discusses the effects of mechanical on plant growth and development, and provides ideas for the study of mechanical regulation mechanism of tillering angle in wheat. Consequently, based on the research of other plants and combined with the genetic and mechanical principles, this approach offers novel insights and methodologies for studying tillering in wheat. This interdisciplinary research framework not only enhances our understanding of the mechanisms underlying wheat growth and development but may also uncover the critical factors that regulate tillering angle, thereby providing a scientific foundation for improving wheat yield and adaptability. Full article
Show Figures

Figure 1

17 pages, 4734 KB  
Article
Antagonistic Effects and Volatile Organic Compound Profiles of Rhizobacteria in the Biocontrol of Phytophthora capsici
by José Luis Ávila-Oviedo, Carlos Méndez-Inocencio, María Dolores Rodríguez-Torres, María Valentina Angoa-Pérez, Mauricio Nahuam Chávez-Avilés, Erika Karina Martínez-Mendoza, Ernesto Oregel-Zamudio and Edgar Villar-Luna
Plants 2024, 13(22), 3224; https://doi.org/10.3390/plants13223224 - 16 Nov 2024
Cited by 3 | Viewed by 1862
Abstract
Phytophthora capsici is a devastating pathogen in horticultural crops, particularly affecting Capsicum annuum (pepper). The overuse of chemical fungicides has led to resistance development, necessitating alternative strategies. This study investigates the antagonistic effects of four rhizobacterial isolates (Bacillus sp., Pseudomonas putida, [...] Read more.
Phytophthora capsici is a devastating pathogen in horticultural crops, particularly affecting Capsicum annuum (pepper). The overuse of chemical fungicides has led to resistance development, necessitating alternative strategies. This study investigates the antagonistic effects of four rhizobacterial isolates (Bacillus sp., Pseudomonas putida, Bacillus subtilis, Bacillus amyloliquefaciens) against P. capsici, focusing on the production of volatile organic compounds (VOCs). Using in vitro dual culture assays, we observed a significant inhibition of mycelial growth and sporangia production, especially by B. subtilis and B. amyloliquefaciens. The GC-MS/SPME-HS analysis identified key VOCs responsible for these antagonistic effects. Our findings demonstrate that specific rhizobacteria and their VOCs offer a promising biocontrol strategy, potentially reducing the reliance on chemical fungicides and contributing to sustainable agriculture. Full article
(This article belongs to the Special Issue Pathogens and Disease Management of Horticultural Crops)
Show Figures

Figure 1

19 pages, 5177 KB  
Article
Impacts of Climate Change-Induced Temperature Rise on Phenology, Physiology, and Yield in Three Red Grape Cultivars: Malbec, Bonarda, and Syrah
by Deolindo L. E. Dominguez, Miguel A. Cirrincione, Leonor Deis and Liliana E. Martínez
Plants 2024, 13(22), 3219; https://doi.org/10.3390/plants13223219 - 15 Nov 2024
Cited by 8 | Viewed by 2041
Abstract
Climate change has significant implications for agriculture, especially in viticulture, where temperature plays a crucial role in grapevine (Vitis vinifera) growth. Mendoza’s climate is ideal for producing high-quality wines, but 21st-century climate change is expected to have negative impacts. This study [...] Read more.
Climate change has significant implications for agriculture, especially in viticulture, where temperature plays a crucial role in grapevine (Vitis vinifera) growth. Mendoza’s climate is ideal for producing high-quality wines, but 21st-century climate change is expected to have negative impacts. This study aimed to evaluate the effects of increased temperature on the phenology, physiology, and yield of Malbec, Bonarda, and Syrah. A field trial was conducted over two seasons (2019–2020 and 2020–2021) in an experimental vineyard with an active canopy heating system (+2–4 °C). Phenological stages (budburst, flowering, fruit set, veraison, harvest), shoot growth (SG), number of shoots (NS), stomatal conductance (gs), chlorophyll content (CC), chlorophyll fluorescence (CF), and water potential (ψa) were measured. Additionally, temperature, relative humidity, light intensity, and canopy temperature were recorded. Heat treatment advanced all phenological stages by approximately two weeks, increased SG and NS, and reduced gs and ψa during the hottest months. CC and CF remained unaffected. The treatment also resulted in lower yields, reduced acidity, and increased °Brix in both seasons. Overall, rising temperatures due to climate change advance the phenological phases of Malbec, Syrah, and Bonarda, leading to lower yields, higher °Brix, and lower acidity, although physiological variables remained largely unchanged. Full article
Show Figures

Figure 1

19 pages, 8945 KB  
Article
Multimodal Data Fusion for Precise Lettuce Phenotype Estimation Using Deep Learning Algorithms
by Lixin Hou, Yuxia Zhu, Mengke Wang, Ning Wei, Jiachi Dong, Yaodong Tao, Jing Zhou and Jian Zhang
Plants 2024, 13(22), 3217; https://doi.org/10.3390/plants13223217 - 15 Nov 2024
Cited by 5 | Viewed by 2294
Abstract
Effective lettuce cultivation requires precise monitoring of growth characteristics, quality assessment, and optimal harvest timing. In a recent study, a deep learning model based on multimodal data fusion was developed to estimate lettuce phenotypic traits accurately. A dual-modal network combining RGB and depth [...] Read more.
Effective lettuce cultivation requires precise monitoring of growth characteristics, quality assessment, and optimal harvest timing. In a recent study, a deep learning model based on multimodal data fusion was developed to estimate lettuce phenotypic traits accurately. A dual-modal network combining RGB and depth images was designed using an open lettuce dataset. The network incorporated both a feature correction module and a feature fusion module, significantly enhancing the performance in object detection, segmentation, and trait estimation. The model demonstrated high accuracy in estimating key traits, including fresh weight (fw), dry weight (dw), plant height (h), canopy diameter (d), and leaf area (la), achieving an R2 of 0.9732 for fresh weight. Robustness and accuracy were further validated through 5-fold cross-validation, offering a promising approach for future crop phenotyping. Full article
(This article belongs to the Special Issue Advances in Artificial Intelligence for Plant Research)
Show Figures

Figure 1

21 pages, 4521 KB  
Article
Effects of Temperature, Precipitation, and Sunshine on Cold-Tolerant Wheat Yield Under Warming Trends: A 20-Year Study in Hokkaido, Japan
by Zenta Nishio, Masatomo Kurushima, Takeshi Suzuki, Seiji Shimoda and Tomoyoshi Hirota
Plants 2024, 13(22), 3165; https://doi.org/10.3390/plants13223165 - 11 Nov 2024
Cited by 1 | Viewed by 2571
Abstract
To clarify the adaptation strategies of cold-tolerant wheat against global warming, this study examined the effects of daily temperature, precipitation, and sunshine duration on wheat yield in Hokkaido, Japan, over 13 years (2011–2023). Yield components were also analyzed over 20 years (2004–2023). The [...] Read more.
To clarify the adaptation strategies of cold-tolerant wheat against global warming, this study examined the effects of daily temperature, precipitation, and sunshine duration on wheat yield in Hokkaido, Japan, over 13 years (2011–2023). Yield components were also analyzed over 20 years (2004–2023). The number of snow-cover days decreased by about 24 days over the 20-year period. As a result, the growth of overwintered wheat accelerated, with the heading and maturity of plants advancing by about 8 and 5 days, respectively, and the grain-filling period extending from about 44 to about 48 days. Multiple regression analysis was conducted using wheat yield as the objective variable and weather conditions as explanatory variables. Three weather conditions were selected: precipitation for 8 days from 27 March, sunshine hours for 8 days from 21 March, and sunshine hours for 12 days from 13 June, which yielded a coefficient of determination of 0.953. Despite the highest mean summer temperatures on record being registered in 2023, high yields were ensured by the number of sunshine hours, which were approximately 1.5 times the normally recorded hours. This highlights the importance of this parameter in mitigating the impact of high summer temperatures. Full article
(This article belongs to the Special Issue Wheat Breeding for Global Climate Change)
Show Figures

Figure 1

27 pages, 10980 KB  
Article
Resistance in Soybean Against Infection by Phakopsora pachyrhizi Is Induced by a Phosphite of Nickel and Potassium
by Bianca Apolônio Fontes, Leandro Castro Silva, Bárbara Bezerra Menezes Picanço, Aline Vieira Barros, Isabela Maria Grossi Leal, Leonardo Packer Quadros and Fabrício Ávila Rodrigues
Plants 2024, 13(22), 3161; https://doi.org/10.3390/plants13223161 - 11 Nov 2024
Viewed by 2057
Abstract
Soybean (Glycine max (L.) Merr.) is one of the most profitable crops among the legumes grown worldwide. The occurrence of rust epidemics, caused by Phakopsora pachyrhizi, has greatly contributed to yield losses and an abusive use of fungicides. Within this context, [...] Read more.
Soybean (Glycine max (L.) Merr.) is one of the most profitable crops among the legumes grown worldwide. The occurrence of rust epidemics, caused by Phakopsora pachyrhizi, has greatly contributed to yield losses and an abusive use of fungicides. Within this context, this study investigated the potential of using a phosphite of nickel (Ni) and potassium (K) [referred to as induced resistance (IR) stimulus] to induce soybean resistance against infection by P. pachyrhizi. Plants were sprayed with water (control) or with IR stimulus and non-inoculated or inoculated with P. pachyrhizi. The germination of urediniospores was greatly reduced in vitro by 99% using IR stimulus rates ranging from 2 to 15 mL/L. Rust severity was significantly reduced from 68 to 78% from 7 to 15 days after inoculation (dai). The area under the disease progress curve significantly decreased by 74% for IR stimulus-sprayed plants compared to water-sprayed plants. For inoculated plants, foliar concentrations of K and Ni were significantly higher for IR stimulus treatment than for the control treatment. Infected and IR stimulus-sprayed plants had their photosynthetic apparatus (a great pool of photosynthetic pigments, and lower values for some chlorophyll a fluorescence parameters) preserved, associated with less cellular damage (lower concentrations of malondialdehyde, hydrogen peroxide, and anion superoxide) and a greater production of phenolics and lignin than plants from the control treatment. In response to infection by P. pachyrhizi, defense-related genes (PAL2.1, PAL3.1, CHIB1, LOX7, PR-1A, PR10, ICS1, ICS2, JAR, ETR1, ACS, ACO, and OPR3) were up-regulated from 7 to 15 dai for IR stimulus-sprayed plants in contrast to plants from the control treatment. Collectively, these findings provide a global picture of the enhanced capacity of IR stimulus-sprayed plants to efficiently cope with fungal infection at both biochemical and physiological levels. The direct effect of this IR stimulus against urediniospores’ germination over the leaf surface needs to be considered with the aim of reducing rust severity. Full article
(This article belongs to the Special Issue Plant Protection and Integrated Pest Management)
Show Figures

Figure 1

24 pages, 7334 KB  
Article
The Effect of Temperature and UV Manipulation on Anthocyanins, Flavonols, and Hydroxycinnamoyl-Tartrates in cv Nebbiolo Grapes (Vitis vinifera L.)
by Alena Wilson, Alessandra Ferrandino, Simone Giacosa, Vittorino Novello and Silvia Guidoni
Plants 2024, 13(22), 3158; https://doi.org/10.3390/plants13223158 - 10 Nov 2024
Cited by 2 | Viewed by 1939
Abstract
This research aimed to identify the effects of increased temperature and decreased ultraviolet (UV) exposure on berry characteristics and quality parameters of cv Nebbiolo, identifying the potential risks associated with climate change for the quality of grapes and the identity of Barolo wine. [...] Read more.
This research aimed to identify the effects of increased temperature and decreased ultraviolet (UV) exposure on berry characteristics and quality parameters of cv Nebbiolo, identifying the potential risks associated with climate change for the quality of grapes and the identity of Barolo wine. This two-year research (2022 and 2023) was performed in three vineyards, located at different elevations in La Morra (Piedmont, northwestern Italy), monitored from the beginning of veraison to harvest. A split-plot design was set up, applying a passive greenhouse amplifying temperature in the bunch zone (‘T’ = increased temperature; ‘C’ = control temperature) and UV-blocking plastics over individual bunches (‘1’ = full UV exposure; ‘0’ = UV-blocked). Berry weight, skin weight, and juice total soluble solids were measured. Grape skin anthocyanins, flavonols, and hydroxycinnamic acid tartaric esters were analyzed by HPLC-DAD. Both treatments negatively influenced the berry weight but not the skin weight; the increased T had a negative impact on the sugar per berry content. Limited UV and increased temperature negatively impacted total anthocyanins at harvest and on di-hydroxylated anthocyanins. Limited UV-depressed flavonol concentration and high temperature decreased their synthesis. Increased UV promoted cis-p-coumaroyl tartaric acid and decreased trans-p-coumaroyl tartaric acid. The results of this research are valuable for improving the quality production of Nebbiolo through understanding the impacts of increased temperature and alterations to UV exposure expected by climate change. Full article
Show Figures

Figure 1

22 pages, 4280 KB  
Article
Essential Oil Composition and Physiology of Three Mentha Genotypes Under Shaded Field Conditions
by Charlotte Hubert-Schöler, Saskia Tsiaparas, Katharina Luhmer, Marcel Dieter Moll, Maike Passon, Matthias Wüst, Andreas Schieber and Ralf Pude
Plants 2024, 13(22), 3155; https://doi.org/10.3390/plants13223155 - 9 Nov 2024
Cited by 1 | Viewed by 2580
Abstract
Mentha spp. are commonly used for the production of tea and for the extraction of essential oils (EOs). The key factor of mint quality is the content and composition of the EO. Health-promoting compounds such as menthol are desirable, whereas the presence of [...] Read more.
Mentha spp. are commonly used for the production of tea and for the extraction of essential oils (EOs). The key factor of mint quality is the content and composition of the EO. Health-promoting compounds such as menthol are desirable, whereas the presence of potentially health-damaging compounds such as menthofuran should be avoided. This study examines the effect of shading on the EO content and composition of three Mentha genotypes (Mentha × piperita ‘Multimentha’, Mentha × piperita ‘Fränkische Blaue’ and Mentha rotundifolia ‘Apfelminze’). The Mentha genotypes were cultivated in field trials for two years (2022–2023). Each genotype was shaded with a shading net (50% photosynthetic active radiation (PAR) reduction), and a control without shading was prepared. EO content was determined by steam distillation and EO composition was characterized by GC-MS analysis. Furthermore, biomass, vegetation indices (VIs) and the electron transport rate (ETR) were analyzed. While shading led to higher plant heights, higher EO content and a slightly reduced amount of undesired EO compounds, the unshaded control yielded a higher biomass accumulation. Significant genotypic differences were determined. In conclusion, the benefits of shading depend on the intended use and genotype selection. Full article
Show Figures

Figure 1

24 pages, 2533 KB  
Review
Plants Under Stress: Exploring Physiological and Molecular Responses to Nitrogen and Phosphorus Deficiency
by Swarup Mishra, Hannah Levengood, Jinping Fan and Cankui Zhang
Plants 2024, 13(22), 3144; https://doi.org/10.3390/plants13223144 - 8 Nov 2024
Cited by 8 | Viewed by 4675
Abstract
Nitrogen (N) and phosphorus (P) are essential mineral macronutrients critical for plant structure and function. Both contribute to processes ranging from cellular integrity to signal transduction. Since plants require these nutrients in high concentrations, replenishing them in soil often involves chemical fertilizers. However, [...] Read more.
Nitrogen (N) and phosphorus (P) are essential mineral macronutrients critical for plant structure and function. Both contribute to processes ranging from cellular integrity to signal transduction. Since plants require these nutrients in high concentrations, replenishing them in soil often involves chemical fertilizers. However, the main source of P, rock phosphate, is non-renewable and in decline. N, second only to carbon, oxygen, and hydrogen in plant requirements, is vital for synthesizing proteins, nucleic acids, and plant pigments. Although N is available to plants through biological fixation or fertilizer application, the frequent application of N is not a sustainable solution due to environmental concerns like groundwater contamination and eutrophication. Plants have developed sophisticated mechanisms to adapt to nutrient deficiencies, such as changes in root architecture, local signaling, and long-distance signaling through the phloem. A dual deficiency of N and P is common in the field. In addition to individual N and P deficiency responses, this review also highlights some of the most recent discoveries in the responses of plants to the combined N and P deficiencies. Understanding the molecular and physiological responses in plants to mineral deficiency will help implement strategies to produce plants with high mineral use efficiency, leading to the reduced application of fertilizers, decreased mineral runoff, and improved environment. Full article
(This article belongs to the Special Issue Molecular Mechanism of Plant Mineral Nutrient)
Show Figures

Figure 1

16 pages, 6793 KB  
Article
Exploring the Inhibitory Potential of Phytosterols β-Sitosterol, Stigmasterol, and Campesterol on 5-Alpha Reductase Activity in the Human Prostate: An In Vitro and In Silico Approach
by Mădălina-Georgiana Buț, Amelia Tero-Vescan, Amalia Pușcaș, George Jîtcă and Gabriel Marc
Plants 2024, 13(22), 3146; https://doi.org/10.3390/plants13223146 - 8 Nov 2024
Cited by 4 | Viewed by 4947
Abstract
Steroidal 5α-reductase type 2 (S5αR2) is a key enzyme involved in the conversion of testosterone (TST) to dihydrotestosterone (DHT), a crucial process in the development of benign prostatic hyperplasia (BPH). Phytosterols (PSs), natural plant-derived compounds, have been proposed as potential inhibitors of S5αR2, [...] Read more.
Steroidal 5α-reductase type 2 (S5αR2) is a key enzyme involved in the conversion of testosterone (TST) to dihydrotestosterone (DHT), a crucial process in the development of benign prostatic hyperplasia (BPH). Phytosterols (PSs), natural plant-derived compounds, have been proposed as potential inhibitors of S5αR2, but studies on their efficacy are limited. This study evaluates the inhibitory effects of three PSs (β-sitosterol, stigmasterol, and campesterol) on S5αR2 activity using a combined in vitro and in silico approach. The inhibitory activity of the respective PSs was assessed in vitro, by measuring TST and DHT, while molecular docking and dynamics explored PS interactions with S5αR2’s active site. The in vitro tests indicated significantly higher IC50 values (β-sitosterol, 3.24 ± 0.32 µM; stigmasterol, 31.89 ± 4.26 µM; and campesterol, 15.75 ± 5.56 µM) for PSs compared to dutasteride (4.88 × 10−3 ± 0.33 µM), suggesting a lower efficiency in inhibiting S5αR2. The in silico studies confirmed these observations, explained by the lower binding affinity identified for PSs to the enzyme’s active site in the molecular docking studies and the reduced stability of the interactions with the active site of the enzyme during the molecular dynamics simulations compared to dutasteride. The results suggest that PSs exhibit low-to-negligible inhibitory activity against S5αR2 (µM range) compared to the synthetic inhibitor dutasteride (nM range). Among the three PSs studied, β-sitosterol showed the highest inhibitory activity and the best stability in its interaction with S5αR2, when compared with stigmasterol and campesterol. Full article
(This article belongs to the Section Phytochemistry)
Show Figures

Figure 1

35 pages, 2264 KB  
Review
Development and Applications of Somatic Embryogenesis in Grapevine (Vitis spp.)
by Angela Carra, Akila Wijerathna-Yapa, Ranjith Pathirana and Francesco Carimi
Plants 2024, 13(22), 3131; https://doi.org/10.3390/plants13223131 - 7 Nov 2024
Cited by 4 | Viewed by 4487
Abstract
Somatic embryogenesis (SE) provides alternative methodologies for the propagation of grapevine (Vitis spp.) cultivars, conservation of their germplasm resources, and crop improvement. In this review, the current state of knowledge regarding grapevine SE as applied to these technologies is presented, with a [...] Read more.
Somatic embryogenesis (SE) provides alternative methodologies for the propagation of grapevine (Vitis spp.) cultivars, conservation of their germplasm resources, and crop improvement. In this review, the current state of knowledge regarding grapevine SE as applied to these technologies is presented, with a focus on the benefits, challenges, and limitations of this method. The paper provides a comprehensive overview of the different steps involved in the grapevine SE process, including callus induction, maintenance of embryogenic cultures, and the production of plantlets. Additionally, the review explores the development of high-health plant material through SE; the molecular and biochemical mechanisms underlying SE, including the regulation of gene expression, hormone signaling pathways, and metabolic pathways; as well as its use in crop improvement programs. The review concludes by highlighting the future directions for grapevine SE research, including the development of new and improved protocols, the integration of SE with other plant tissue culture techniques, and the application of SE for the production of elite grapevine cultivars, for the conservation of endangered grapevine species as well as for cultivars with unique traits that are valuable for breeding programs. Full article
(This article belongs to the Special Issue Advances and Applications in Plant Tissue Culture—2nd Edition)
Show Figures

Figure 1

19 pages, 4333 KB  
Article
Transcriptome Analysis Reveals Genes Responsive to Three Low-Temperature Treatments in Arabidopsis thaliana
by Bricia Ruiz-Aguilar, Natalia B. Torres-Serrallonga, María Azucena Ortega-Amaro, Arianna Duque-Ortiz, Cesaré Ovando-Vázquez and Juan Francisco Jiménez-Bremont
Plants 2024, 13(22), 3127; https://doi.org/10.3390/plants13223127 - 6 Nov 2024
Cited by 3 | Viewed by 2426
Abstract
Cold stress impedes the growth and development of plants, restricts the geographical distribution of plant species, and impacts crop productivity. In this study, we analyzed the Arabidopsis thaliana transcriptome to identify differentially expressed genes (DEGs) in 14-day-old plantlets exposed to temperatures of 0 [...] Read more.
Cold stress impedes the growth and development of plants, restricts the geographical distribution of plant species, and impacts crop productivity. In this study, we analyzed the Arabidopsis thaliana transcriptome to identify differentially expressed genes (DEGs) in 14-day-old plantlets exposed to temperatures of 0 °C, 4 °C, and 10 °C for 24 h, compared to the 22 °C control group. Among the top 50 cold-induced genes at each temperature, we identified 31 genes that were common across all three low temperatures, with nine genes common to 0–4 °C, eight genes to 4–10 °C, and two genes to 0–10 °C. Using q-RTPCR, we analyzed selected genes at 24, 48, and 72 h under the three low temperatures. Our data revealed that genes, such as galactinol synthase 3 (Gols3, At1g09350), CIR1 (At5g37260), DnaJ (At1g71000), and At5g05220 (unknown function), exhibited the highest expressions at 0 °C and 4 °C throughout all time points. We also studied genes from the UDP-glycosyltransferase (UGT78) family, including At5g17030 (D3), At5g17040 (D4), At5g17050 (D2), and At1g30530 (D1), which showed increased expression at low temperatures compared to plantlets at 22 °C for 24 h. Gene ontology analysis revealed that DEGs highly enriched were found in biological processes such as “RNA secondary structure unwinding” and “rRNA processing” induced at the three low temperatures, whereas processes related to photosynthesis were repressed. Our findings indicated upregulation in the expression of four RNA helicases (RH13, RH48, RH32, and RH29), belonging to the “RNA secondary structure unwinding” category, mainly at 0 °C and 4 °C. This study provides valuable information on the molecular mechanisms that activate Arabidopsis thaliana in its early response to these three low temperatures. Full article
Show Figures

Figure 1

24 pages, 2677 KB  
Review
Unravelling the Nexus of Beach Litter and Plant Species and Communities Along the Mediterranean Coasts: A Critical Literature Review
by Giulia Calderisi, Donatella Cogoni and Giuseppe Fenu
Plants 2024, 13(22), 3125; https://doi.org/10.3390/plants13223125 - 6 Nov 2024
Cited by 1 | Viewed by 1964
Abstract
Beach litter, an anthropogenic and hazardous component, can interact with psammophilous plant species and communities. These are particularly prominent in the Mediterranean Basin, renowned for its highly specialized and unique flora but recognized as one of the areas that is globally most severely [...] Read more.
Beach litter, an anthropogenic and hazardous component, can interact with psammophilous plant species and communities. These are particularly prominent in the Mediterranean Basin, renowned for its highly specialized and unique flora but recognized as one of the areas that is globally most severely affected by marine litter. To provide a comprehensive picture and outline possible future directions, data on beach litter in the Mediterranean coastal ecosystems were collected through a bibliographic research. Overall, 103 studies investigated the presence of beach litter on the Mediterranean coasts, of which only 18 considered its relationship with psammophilous plant species and communities. Our research highlights that this topic is rather underexplored in the Mediterranean Basin and the need to develop a standardized protocol for the assessment of beach litter that can be applied consistently across different beaches and countries. Information collected through a standardized protocol might improve the management and conservation strategies for these fragile ecosystems. Full article
Show Figures

Figure 1

15 pages, 1750 KB  
Article
AIpollen: An Analytic Website for Pollen Identification Through Convolutional Neural Networks
by Xingchen Yu, Jiawen Zhao, Zhenxiu Xu, Junrong Wei, Qi Wang, Feng Shen, Xiaozeng Yang and Zhonglong Guo
Plants 2024, 13(22), 3118; https://doi.org/10.3390/plants13223118 - 5 Nov 2024
Cited by 5 | Viewed by 2100
Abstract
With the rapid development of artificial intelligence, deep learning has been widely applied to complex tasks such as computer vision and natural language processing, demonstrating its outstanding performance. This study aims to exploit the high precision and efficiency of deep learning to develop [...] Read more.
With the rapid development of artificial intelligence, deep learning has been widely applied to complex tasks such as computer vision and natural language processing, demonstrating its outstanding performance. This study aims to exploit the high precision and efficiency of deep learning to develop a system for the identification of pollen. To this end, we constructed a dataset across 36 distinct genera. In terms of model selection, we employed a pre-trained ResNet34 network and fine-tuned its architecture to suit our specific task. For the optimization algorithm, we opted for the Adam optimizer and utilized the cross-entropy loss function. Additionally, we implemented ELU activation function, data augmentation, learning rate decay, and early stopping strategies to enhance the training efficiency and generalization capability of the model. After training for 203 epochs, our model achieved an accuracy of 97.01% on the test set and 99.89% on the training set. Further evaluation metrics, such as an F1 score of 95.9%, indicate that the model exhibits good balance and robustness across all categories. To facilitate the use of the model, we develop a user-friendly web interface. Users can upload images of pollen grains through the URL link provided in this article) and immediately receive predicted results of their genus names. Altogether, this study has successfully trained and validated a high-precision pollen grain identification model, providing a powerful tool for the identification of pollen. Full article
(This article belongs to the Special Issue Advances in Artificial Intelligence for Plant Research)
Show Figures

Figure 1

18 pages, 3578 KB  
Article
Acidic Stress Induces Cytosolic Free Calcium Oscillation, and an Appropriate Low pH Helps Maintain the Circadian Clock in Arabidopsis
by Wei Chen, Jing Xu, Jia Chen, Jun-Feng Wang, Shu Zhang and Zhen-Ming Pei
Plants 2024, 13(21), 3107; https://doi.org/10.3390/plants13213107 - 4 Nov 2024
Cited by 2 | Viewed by 1986
Abstract
Acidic stress is a formidable environmental factor that exerts adverse effects on plant growth and development, ultimately leading to a potential reduction in agricultural productivity. A low pH triggers Ca2+ influx across the plasma membrane (PM), eliciting distinct responses under various acidic [...] Read more.
Acidic stress is a formidable environmental factor that exerts adverse effects on plant growth and development, ultimately leading to a potential reduction in agricultural productivity. A low pH triggers Ca2+ influx across the plasma membrane (PM), eliciting distinct responses under various acidic pH levels. However, the underlying mechanisms by which Arabidopsis plant cells generate stimulus-specific Ca2+ signals in response to acidic stress remain largely unexplored. The experimentally induced stimulus may elicit spikes in cytosolic free Ca2+ concentration ([Ca2+]i) spikes or complex [Ca2+]i oscillations that persist for 20 min over a long-term of 24 h or even several days within the plant cytosol and chloroplast. This study investigated the increase in [Ca2+]i under a gradient of low pH stress ranging from pH 3.0 to 6.0. Notably, the peak of [Ca2+]i elevation was lower at pH 4.0 than at pH 3.0 during the initial 8 h, while other pH levels did not significantly increase [Ca2+]i compared to low acidic stress conditions. Lanthanum chloride (LaCl3) can effectively suppress the influx of [Ca2+]i from the apoplastic to the cytoplasm in plants under acid stress, with no discernible difference in intracellular calcium levels observed in Arabidopsis. Following 8 h of acid treatment in the darkness, the intracellular baseline Ca2+ levels in Arabidopsis were significantly elevated when exposed to low pH stress. A moderately low pH, specifically 4.0, may function as a spatial-temporal input into the circadian clock system. These findings suggest that acid stimulation can exert a continuous influence on intracellular calcium levels, as well as plant growth and development. Full article
(This article belongs to the Special Issue Abiotic Stress Responses in Plants)
Show Figures

Figure 1

Back to TopTop